BBM 413

Fundamentals of

Image Processing

Erkut Erdem
Dept. of Computer Engineering Hacettepe University

Segmentation - Part 2

Review- The goals of segmentation

- Separate image into coherent "objects"

image

Review- Image segmentation

- Goal: identify groups of pixels that go together

Review- What is segmentation?

- Clustering image elements that "belong together"
- Partitioning
- Divide into regions/sequences with coherent internal properties
- Grouping
- Identify sets of coherent tokens in image

Review- K-means clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
I. Randomly initialize the cluster centers, $\mathrm{c}_{\mathrm{l}}, \ldots, \mathrm{c}_{\mathrm{K}}$

2. Given cluster centers, determine points in each cluster

- For each point p, find the closest c_{i}. Put p into cluster i

3. Given points in each cluster, solve for c_{i}

- Set c_{i} to be the mean of points in cluster i

4. If c_{i} have changed, repeat Step 2

Properties

- Will always converge to some solution
- Can be a "local minimum"
- does not always find the global minimum of objective function:

$$
\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
- K-means clustering
- Mean-shift segmentation
- Graph-theoretic segmentation
- Min cut
- Normalized cuts
- Interactive segmentation

Review - K-means: pros and cons

Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

Mean shift clustering and segmentation

- An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
D. Comaniciu and P. Meer, Mean Shift:A Robust Approach toward Feature Space Analysis, PAMI 2002.

Finding Modes in a Histogram

- How Many Modes Are There?
- Easy to see, hard to compute

Mean shift algorithm

Mean Shift Algorithm

I. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the "mode" or point of highest density of a data distribution:

Two issues:
(I) Kernel to interpolate density based on sample positions.
(2) Gradient ascent to mode.

Mean shift algorithm

- The mean shift algorithm seeks modes or local maxima of density in the feature space

Mean shift

Mean shift

Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Slide credit: Y. Ukrainitz \& B. Sarel

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html Slide credit: S. Lazebnik

Fig. 4. Visualization of mean shift-based filtering and segmentation for gray-level data. (a) Input. (b) Mean shitt paths for the pixels on the plateau and on the line. The black dots are the points of corvergence. (c) Filteing result $\left(h_{s}, h_{r}\right)=(8,4)$. (d) Segmentation result.

Comaniciu and Meer, IEEE PAMI vol. 24, no. 5, 2002

More results

More results

Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
- K-means clustering
- Mean-shift segmentation
- Graph-theoretic segmentation
- Min cut
- Normalized cuts
- Interactive Segmentation

Mean shift pros and cons

- Pros
- Does not assume spherical clusters
- Just a single parameter (window size)
- Finds variable number of modes
- Robust to outliers
- Cons
- Output depends on window size
- Computationally expensive
- Does not scale well with dimension of feature space

Graph-Theoretic Image Segmentation

Build a weighted graph $G=(V, E)$ from image

V : image pixels
E : connections between pairs of nearby pixels
$W_{i j}$: probability that $\mathrm{i} \& \mathrm{j}$ belong to the same region

Segmentation $=$ graph partition

Graphs Representations

Segmentation by graph partitioning

- Break graph into segments
- Delete links that cross between segments
- Easiest to break links that have low affinity
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

A Weighted Graph and its Representation

Affinity Matrix

$$
\begin{aligned}
\mathrm{w}= & {\left[\begin{array}{ccccc}
1 & .1 & .3 & 0 & 0 \\
.1 & 1 & .4 & 0 & .2 \\
.3 & .4 & 1 & .6 & .7 \\
0 & 0 & .6 & 1 & 1 \\
0 & .2 & .7 & 1 & 1
\end{array}\right] } \\
W_{i j}: & \text { probability that } \mathrm{i} \& \mathrm{j} \\
& \text { belong to the same } \\
& \text { region }
\end{aligned}
$$

Slide credit: B. Freeman and A. Torralba

Affinity between pixels

Similarities among pixel descriptors

$\sigma=$ Scale factor...
it will hunt us later

Affinity between pixels

Similarities among pixel descriptors

$$
W_{i j}=\exp \left(-\left\|z_{i}-z_{i}\right\|^{2} / \sigma^{2}\right)
$$

Interleaving edges
$\sigma=$ Scale factor. it will hunt us later
With $\mathrm{Pb}=$ probability of boundary

Slide credit: B. Freeman and A. Torralba

Feature grouping by "relocalisation" of eigenvectors of the proximity matrix
British Machine Vision Conference,pp. 103-108, 1990

Three points in feature space
H. Christopher Longuet-Higgins

University of Sussex
Falmer
Brighton
$W_{i j}=\exp \left(-\left\|z_{i}-z_{i j}\right\|^{2} / \sigma^{2}\right)$
With an appropriate σ

The eigenvectors of W are:

The first 2 eigenvectors group the points as desired..

Scale affects affinity

- Small σ : group only nearby points
- Large σ : group far-away points

Slide credit: S. Lazebnik

Example eigenvector

Example eigenvector

Slide credit: B. Freeman and A. Torralba

Graph cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation
- What is a "good" graph cut and how do we find one?

Minimum cut

A cut of a graph G is the set of edges S such that removal of S from G disconnects G.

Cut: sum of the weight of the cut edges:

Minimum cut

- We can do segmentation by finding the minimum cut in a graph
- Efficient algorithms exist for doing this

Drawbacks of Minimum cut

- Weight of cut is directly proportional to the number of edges in the cut.

Minimum cut

- We can do segmentation by finding the minimum cut in a graph
- Efficient algorithms exist for doing this

Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
- K-means clustering
- Mean-shift segmentation
- Graph-theoretic segmentation
- Min cut
- Normalized cuts
- Interactive segmentation

Normalized cuts

Write graph as V, one cluster as A and the other as B

$$
\operatorname{Ncut}(\mathrm{A}, \mathrm{~B})=\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{A}, \mathrm{~V})}+\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{B}, \mathrm{~V})}
$$

$\operatorname{cut}(A, B)$ is sum of weights with one end in A and one end in B

$$
\begin{aligned}
& \operatorname{cut}(\mathrm{A}, \mathrm{~B})= \sum_{u \in \mathrm{~A}, v \in \mathrm{~B}} \mathrm{~W}(u, v), \\
& \text { with } \mathrm{A} \cap \mathrm{~B}=\varnothing
\end{aligned}
$$

$\operatorname{assoc}(\mathrm{A}, \mathrm{V})$ is sum of all edges with one end in A .

$$
\operatorname{assoc}(\mathrm{A}, \mathrm{~B})=\sum_{u \in \mathrm{~A}, v \in \mathrm{~B}} \mathrm{~W}(u, v)
$$

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut

- Finding the exact minimum of the normalized cut cost is NPcomplete, but if we relax y to take on arbitrary values, then we can minimize the relaxed cost by solving the generalized eigenvalue problem $(D-W) y=\lambda D y$
- The solution y is given by the generalized eigenvector corresponding to the second smallest eigenvalue
- Intitutively, the ith entry of y can be viewed as a "soft" indication of the component membership of the ith feature
- Can use 0 or median value of the entries as the splitting point (threshold), or find threshold that minimizes the Ncut cost

Normalized cut

- Let W be the adjacency matrix of the graph
- Let D be the diagonal matrix with diagonal entries

$$
D(i, i)=\Sigma_{j} W(i, j)
$$

- Then the normalized cut cost can be written as

$$
\frac{y^{T}(D-W) y}{y^{T} D y}
$$

where y is an indicator vector whose value should be I in the ith position if the ith feature point belongs to A and a negative constant otherwise

Normalized cut algorithm

1. Given an image or image sequence, set up a weighted graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, and set the weight on the edge connecting two nodes being a measure of the similarity between the two nodes.
2. Solve $(\mathbf{D}-\mathbf{W}) \boldsymbol{x}=\lambda \mathbf{D} \boldsymbol{x}$ for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.
4. Decide if the current partition should be sub-divided, and recursively repartition the segmented parts if necessary.

Global optimization

- In this formulation, the segmentation becomes a global process.
- Decisions about what is a boundary are not local (as in Canny edge detector)

Boundaries of image regions defined by a number of attributes

- Brightness/color
- Texture
- Motion
- Stereoscopic depth
- Familiar configuration

[Malik]

(7)

Figure 12: Subplot (1) plots the smallest eigenvectors of the generalized eigenvalue system (11). Subplot (2) - (9) shows the eigenvectors corresponding the 2nd smallest to the 9th smallest eigenvalues of the system. The eigenvectors are reshaped to be the size of the image.

Brightness Image Segmentation

converge. On the 100×120 test images shown here, the normalized cut algorithm takes about 2 minutes on Intel Pentium 200 MHz machines.
is running time furtherentation can be used to reduce this running time further on larger images. In our current
experiments, with this implementation, the running experiments, with this implementation, the running time on
a 300×400 image can be reduced to about 20 seconds on Intel Pentium 300 MHz machines. Furthermore, the bottleneck of the computation, a sparse matrix-vector
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Results on color segmentation

[^0]
Example results

Normalized cuts: Pro and con

- Pros
- Generic framework, can be used with many different features and affinity formulations
- Cons
- High storage requirement and time complexity
- Bias towards partitioning into equal segments

Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/

Segmentation methods

- Segment foreground from background
- Histogram-based segmentation
- Segmentation as clustering
- K-means clustering
- Mean-shift segmentation
- Graph-theoretic segmentation
- Min cut
- Normalized cuts
- Interactive segmentation

Intelligent Scissors [Mortensen 95]

- Approach answers a basic question
- Q: how to find a path from seed to mouse that follows object boundary as closely as possible?

Mortensen and Barrett, Intelligent Scissors for Image Composition, Proc. 22nd annual conference on Computer graphics and interactive techniques, 1995

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor move ment). The path of the free point is shown in white. Live-wire segmen
from previous free point positions (t_{0}, t_{1}, and t_{2}) are shown in green.

Path Search (basic idea)

- Graph Search Algorithm
- Computes minimum cost path from seed to all other pixels

11	13	12	9	5	8	3	1	2	4	10
14	11	7	4	2	5	8	4	6	3	8
11	6	3	5	7	9	12	11	10	7	4
7	4	6	11	13	18	17	14	8	5	2
6	2	7	10	15	15	21	19	8	3	5
8	3	4	7	9	13	14	15	9	5	6
11	5	2	8	3	4	5	7	2	5	9
12	4	2	1	5	6	3	2	4	8	12
10	9	7	5	9	8	5	3	7	8	15

Slide credit: S. Seitz

Intelligent Scissors

- Basic Idea
- Define edge score for each pixel
- edge pixels have low cost
- Find lowest cost path from seed to mouse

Questions

- How to define costs?
- How to find the path?

How does this really work?

- Treat the image as a graph

Graph

- node for every pixel p
- link between every adjacent pair of pixels, p,q
- cost c for each link

Note: each link has a cost

- this is a little different than the figure before where each pixel had a cost

Slide credit: S. Seitz

Defining the costs

- Treat the image as a graph

Want to hug image edges: how to define cost of a link?

- the link should follow the intensity edge
- want intensity to change rapidly \perp to the link
- $c \approx-$ |difference of intensity \perp to link|

Defining the costs

- c can be computed using a cross-correlation filter
- assume it is centered at p
- Also typically scale c by its length
- set c = (max-|filter response|)
- where max $=$ maximum |filter response| over all pixels in the image

Defining the costs

- c can be computed using a cross-correlation filter
- assume it is centered at p
- Also typically scale c by its length
- set c = (max-|filter response|)
- where max = maximum |filter response| over all pixels in the image

Dijkstra's shortest path algorithm

Algorithm

I. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(\mathrm{P})=0$
2. expand p as follows:
for each of p 's neighbors q that are not expanded
" set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(\mathrm{p})+c_{p q}, \operatorname{cost}(q)\right)$

Dijkstra's shortest path algorithm

Algorithm

I. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(\mathrm{P})=0$
2. expand p as follows:
for each of p 's neighbors q that are not expanded
» set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(p)+c_{p q}, \operatorname{cost}(q)\right)$
" if q 's cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)

Dijkstra's shortest path algorithm

Algorithm
I. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p 's neighbors q that are not expanded
» set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(p)+c_{p q}, \operatorname{cost}(q)\right)$
» if q 's cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)
3. set $r=$ node with minimum cost on the ACTIVE list
4. repeat Step 2 for $p=r$

Dijkstra's shortest path algorithm

Algorithm
I. init node costs to ∞, set $p=$ seed point, $\operatorname{cost}(p)=0$
2. expand p as follows:
for each of p 's neighbors q that are not expanded
» set $\operatorname{cost}(q)=\min \left(\operatorname{cost}(p)+c_{p q}, \operatorname{cost}(q)\right)$
" if q 's cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)
3. set $r=$ node with minimum cost on the ACTIVE list
4. repeat Step 2 for $p=r$

Segmentation by min (s-t) cut

- node for each pixel, link between pixels
- specify a few pixels as foreground and background
- create an infinite cost link from each bg pixel to the " t " node
- create an infinite cost link from each fg pixel to the "s" node
- compute min cut that separates sfrom t
- how to define link cost between neighboring pixels?

Random Walker

- Compute probability that a random walker arrives at seed

L. Grady, Random Walks for Image Segmentation, IEEE T-PAMI, 2006
http://cns.bu.edu/~Igrady/Random Walker Image Segmentation.html

Top-down segmentation

- E. Borenstein and S. Ullman, Class-specific, top-down segmentation, ECCV 2002
- A. Levin and Y. Weiss, Learning to Combine Bottom-Up and TopDown Segmentation, ECCV 2006.

Do we need recognition to take the next step in performance?

Slide credit: B. Freeman and A. Torralba

Top-down segmentation

Normalized
cuts Top-down

- E. Borenstein and S. Ullman, Class-specific, top-down segmentation, ECCV 2002
- A. Levin and Y. Weiss, Learning to Combine Bottom-Up and TopDown Segmentation, ECCV 2006.

Motion segmentation

Input sequence

Input sequence

Image Segmentation

Image Segmentation

Motion Segmentation

Motion Segmentation
A. Barbu, S.C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities, IEEE TPAMI, 2005.

[^0]: http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf Slide credit: B. Freeman and A. Torralba

