BBM 413 Fundamentals of Image Processing

Erkut Erdem Dept. of Computer Engineering Hacettepe University

Frequency Domain Techniques – Part I

Review - Point Operations

- Smallest possible neighborhood is of size IxI
- Process each point independently of the others
- Output image g depends only on the value of f at a single point (x,y)
- Transformation function T remaps the sample's value:

s = T(r)

where

- r is the value at the point in question
- s is the new value in the processed result
- T is a intensity transformation function

1

1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$\frac{1}{9} \frac{1}{11} \frac{1}{11} \frac{1}{11}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot, \frac{1}{9}]_{\frac{1}{9}}^{1}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}$$

1	1	1	1
C	1	1	1
9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}$$

1	1	1	1
- -	1	1	1
9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

1	0	-1
2	0	-2
1	0	-1

Sobel

Slide credit: J. Hays

Fill in the blanks:

Today

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Slide credit: D. Hoiem

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Slide credit: J. Hays

Answer to these questions?

• Thinking images in terms of frequency.

• Treat images as infinite-size, continuous periodic functions.

...

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea had crazy idea Any univariate fi rewritten as a weight of the score of generality and even rigour.

sines and cosines frequencies.

- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.

- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's (mostly) true!
 - called Fourier Series
 - there are some subtle restrictions

A sum of sines

Our building block:

 $A\sin(\omega x + \phi)$

Add enough of them to get any signal f(x) you want!

• example: $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$

Image credit: Lucas V. Barbosa

Example: Music

• We think of music in terms of frequencies at different magnitudes.

Slide credit: D . Hoeim

Other signals

• We can also think of all kinds of other signals the same way

Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat... Meow

xkcd.com

Fourier Transform

We want to understand the frequency *w* of our signal. So, let's reparametrize the signal by *w* instead of *x*:

For every w from 0 to inf, F(w) holds the amplitude A and phase f of the corresponding sine $A\sin(\omega x + \phi)$

• How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

We can always go back:

Slide credit: A. Efros

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude:
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

Phase:
$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

Discrete Fourier transform

• Forward transform

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for $u = 0, 1, 2, ..., M - 1, v = 0, 1, 2, ..., N - 1$

Inverse transform

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

for
$$x = 0, 1, 2, ..., M - 1, y = 0, 1, 2, ..., N - 1$$

u, *v* : the transform or frequency variables *x*, *y* : the spatial or image variables

Slide credit: B. Freeman and A. Torralba

The Fourier Transform

- Represent function on a new basis
 - Think of functions as vectors, with many components
 - We now apply a linear transformation to transform the basis
 - dot product with each basis element
- In the expression, u and v select the basis element, so a function of x and y becomes a function of u and v
- basis elements have the form $e^{-i2\pi(ux+vy)}$

How to interpret 2D Fourier Spectrum

Slide credit: B. Freeman and A. Torralba

Fourier basis element $e^{-i2\pi(ux+vy)}$

example, real part

 $F^{u,v}(x,y)$

 $F^{u,v}(x,y)$ =const. for (ux+vy)=const.

Vector (u,v)

- Magnitude gives frequency
- Direction gives orientation.

Slide credit: S. Thrun
Here u and v are larger than in the previous slide.

е

Slide credit: S. Thrun

Slide credit: S. Thrun

2D FFT

Sinusoid with frequency = I and its FFT

2D FFT

Sinusoid with frequency = 3 and its FFT

Sinusoid with frequency = 5 and its FFT

2D FFT

Sinusoid with frequency = 10 and its FFT

Sinusoid with frequency = 15 and its FFT

2D FFT

Sinusoid with varying frequency and their FFT

Rotation

Sinusoid rotated at 30 degrees and its FFT

Sinusoid rotated at 60 degrees and its FFT

2D FFT

$$F(u,v) = \frac{1}{MN} \cdot \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-i2\pi(xu/M + yv/N)}$$

Fourier analysis in images

Intensity Image

Fourier Image

Slide credit: A. Efros

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Signals can be composed

Slide credit: A. Efros

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Some important Fourier Transforms

age			
<u>_</u>			

Magnitude FT

Some important Fourier Transforms

The Fourier Transform of some well-known images

Log(1+Magnitude FT)

Image

Slide credit: B. Freeman and A. Torralba

Fourier Amplitude Spectrum

Fourier transform magnitude

What in the image causes the dots?

Masking out the fundamental and harmonics from periodic pillars

The Convolution Theorem

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$\mathbf{F}[g * h] = \mathbf{F}[g]\mathbf{F}[h]$

• The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

Properties of Fourier Transforms

- Linearity $\mathcal{F}[ax(t) + by(t)] = a\mathcal{F}[x(t)] + b\mathcal{F}[y(t)]$
- Fourier transform of a real signal is symmetric about the origin

• The energy of the signal is the same as the energy of its Fourier transform

Filtering in spatial domain

Slide credit: D. Hoiem

credit: D. Hoiem

2D convolution theorem example

 $|F(\mathbf{s}_x,\mathbf{s}_y)|$

f(x,y)

 $|H(s_x,s_y)|$

g(x,y)

 $|G(s_x,s_y)|$

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Filtering

Gaussian

Filtering

Box Filter

Fourier Transform pairs

Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

Edges in images

FFT in Matlab

• Filtering with fft

```
im = ... % "im" should be a gray-scale floating point image
[imh, imw] = size(im);
fftsize = 1024; % should be order of 2 (for speed) and include padding
im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding
hs = 50; % filter half-size
fil = fspecial('gaussian', hs*2+1, 10);
fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image
im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images
im_fil = ifft2(im_fil_fft); % 4) inverse fft2
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding
```

• Displaying with fft

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap
jet

Phase and Magnitude

- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

Image with cheetah phase (and zebra magnitude)

Image with zebra phase (and cheetah magnitude)

Slide credit: B. Freeman and A. Torralba

This is the magnitude transform of the cheetah picture

Slide credit: B. Freeman and A. Torralba

Slide credit: B. Freeman and A. Torralba

This is the magnitude transform of the zebra picture

Slide credit: B. Freeman and A. Torralba
Reconstruction with zebra phase, cheetah magnitude

Slide credit: B. Freeman and A. Torralba

Reconstruction with cheetah phase, zebra magnitude

Slide credit: B. Freeman and A. Torralba

Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Slide credit: J. Hays

Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive human visual system is...

Slide credit: J. Hays

Lossy Image Compression (JPEG)

$$X_{k_{1},k_{2}} = \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x_{n_{1},n_{2}} \cos \left[\frac{\pi}{N_{1}} \left(n_{1} + \frac{1}{2} \right) k_{1} \right] \cos \left[\frac{\pi}{N_{2}} \left(n_{2} + \frac{1}{2} \right) k_{2} \right].$$

Block-based Discrete Cosine Transform (DCT) on 8x8 Slide credit: A. Bobick

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right high frequencies

Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Loose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT IDCT

JPEG compression comparison

I2k

89k

Slide credit: A. Bobick

Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis
- Can be faster to filter using FFT for large images (N logN vs. N² for auto-correlation)
- Images are mostly smooth
 - Basis for compression

Practice question

1. Match the spatial domain image to the Fourier magnitude image

Slide credit: J. Hays

Summary

- Frequency domain techniques
- Images in terms of frequency
- Fourier Series
- Convolution Theorem

Next Week

- Sampling
- Gabor wavelets
- Steerable filters