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Review - Point Operations

• Smallest possible neighborhood is of size 1x1

• Process each point independently of the others

• Output image g depends only on the value of f
at a single point (x,y)

• Transformation function T remaps the sample’s value: 

s = T(r) 

where 
– r is the value at the point in question 
– s is the new value in the processed result 
– T is a intensity transformation function
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Review – Spatial Filtering
Fill in the blanks:

a) _ = D * B 
b) A = _ * _
c) F = D * _
d) _ = D * D

A

B

C

D

E

F

G

H I

Filtering 
Operator

Slide credit: D. Hoiem



Today

• Frequency domain techniques

• Images in terms of frequency

• Fourier Series

• Convolution Theorem



Why does the Gaussian give a nice smooth image, 
but the square filter give edgy artifacts?

Gaussian Box filter

Slide credit: D. Hoiem



Why does a lower resolution image still make sense 
to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide credit: D. Hoiem



How is it that a 4MP image can be compressed to a 
few hundred KB without a noticeable change?

Slide credit: J. Hays



Answer to these questions?

• Thinking images in terms of frequency.

• Treat images as infinite-size, continuous periodic 
functions.

The"2D"(Con6nuousBTime)"Fourier"Transform
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Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

Slide credit: A. Efros



Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

– Not translated into 
English until 1878!

...the manner in which the author arrives at these 
equations is not exempt of difficulties and...his analysis 
to integrate them still leaves something to be desired 

on the score of generality and even rigour.

Laplace

Lagrange Legendre



Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

– Not translated into 
English until 1878!

• But it’s (mostly) true!
– called Fourier Series
– there are some subtle 

restrictions
Slide credit: A. Efros



A sum of sines
Our building block:

Add enough of them to get 
any signal f(x) you want!

)+fwxAsin(

Slide credit: A. Efros



Frequency Spectra

• example:  g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Slide credit: A. Efros



Frequency Spectra

Slide credit: A. Efros



= +

= 

Frequency Spectra
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Frequency Spectra

Slide credit: A. Efros



Frequency Spectra

Image credit: Lucas V. Barbosa



Example: Music

• We think of music in terms of frequencies at different 
magnitudes.

Slide credit: D . Hoeim



Other signals

• We can also think of all kinds of other signals the same way

xkcd.com
Slide credit: J. Hays



Fourier Transform
We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:

)+fwxAsin(

f(x) F(w)Fourier 
Transform

F(w) f(x)Inverse Fourier 
Transform

For every w from 0 to inf, F(w) holds the amplitude A and 
phase f of the corresponding sine  

• How can F hold both?  Complex number trick!

)()()( www iIRF +=
22 )()( ww IRA +±=
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w
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R
I-=

We can always go back:

Slide credit: A. Efros



• Fourier	transform	stores	the	magnitude	and	phase	at	each	
frequency
– Magnitude	encodes	how	much	signal	there	is	at	a	particular	frequency
– Phase	encodes	spatial	information	(indirectly)
– For	mathematical	convenience,	this	is	often	notated	in	terms	of	real	and	

complex	numbers

22 )()( ww IRA +±=
)(
)(tan 1

w
wf

R
I-=Amplitude: Phase:

Fourier Transform



Slide credit: B. Freeman and A. Torralba

Discrete Fourier transform

• Forward transform

• Inverse transform

Euler’s definition of eiθ

u, v : the transform or frequency variables
x, y : the spatial or image variables

F(u,v) = 1
MN

f (x, y)e− j2π (ux/M+vy/N )

y=0

N−1

∑
x=0

M−1

∑     

for u = 0,1, 2,...,M −1,v = 0,1, 2,...,N −1

1,...,2,1,0,1,...,2,1,0for 
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The Fourier Transform
• Represent function on a new basis

– Think of functions as vectors, with many 
components

– We now apply a linear transformation to transform 
the basis

• dot product with each basis element

• In the expression, u and v select the basis 
element, so a function of x and y becomes a 
function of u and v

• basis elements have the form

€ 

e−i2π ux+vy( )

Slide credit: S. Thrun



How to interpret a 2-d Fourier 
Spectrum 

Horizontal 
orientation 

Vertical orientation 

45 deg. 

0 fmax 

0 

fx in cycles/image 

Low spatial frequencies 

High  
spatial  
frequencies 

Log power spectrum 

Slide credit: B. Freeman and A. Torralba

How to interpret 2D Fourier 
Spectrum

Log power spectrum



Fourier basis element 

example, real part

Fu,v(x,y)

Fu,v(x,y)=const. for (ux+vy)=const.

Vector (u,v)
• Magnitude gives frequency
• Direction gives orientation. 

€ 

e−i2π ux+vy( )

Slide credit: S. Thrun



Here u and 
v are larger 
than in the 
previous 
slide.

Slide credit: S. Thrun



And larger still...

Slide credit: S. Thrun



2D FFT

Sinusoid with frequency = 1 and its FFT

Slide credit: M. H. Yang



2D FFT

Sinusoid with frequency = 3 and its FFT

Slide credit: M. H. Yang



2D FFT

Sinusoid with frequency = 5 and its FFT

Slide credit: M. H. Yang



2D FFT

Sinusoid with frequency = 10 and its FFT

Slide credit: M. H. Yang



2D FFT

Sinusoid with frequency = 15 and its FFT

Slide credit: M. H. Yang



2D FFT

Sinusoid with varying frequency and their  FFT

Slide credit: M. H. Yang



Rotation

Sinusoid rotated at 30 degrees and its FFT

Slide credit: M. H. Yang



2D FFT

Sinusoid rotated at 60 degrees and its FFT

Slide credit: M. H. Yang



2D FFT

Slide credit: M. H. Yang



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.htmlSlide credit: A. Efros



Signals can be composed

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.htmlSlide credit: A. Efros



Some important Fourier Transforms
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Slide credit: B. Freeman and A. Torralba
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The Fourier Transform of some 
important images 
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Slide credit: B. Freeman and A. Torralba

The Fourier Transform of some 
well-known images



A B C

1 2 3

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size)

Slide credit: B. Freeman and A. Torralba

Fourier Amplitude Spectrum



Fourier transform magnitude

Slide credit: B. Freeman and A. Torralba

What in the image causes the dots?



Masking out the fundamental and 
harmonics from periodic pillars

Slide credit: B. Freeman and A. Torralba



The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two inverse 
Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =*

][F][F][F 111 hggh --- *=

Slide credit: A. Efros



Properties of Fourier Transforms

• Linearity

• Fourier transform of a real signal is symmetric about 
the origin

• The energy of the signal is the same as the energy of 
its Fourier transform

Slide credit: J. Hays



Filtering in spatial domain

-101

-202

-101

* =

Slide credit: D. Hoiem



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Slide credit: D. Hoiem



2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|

Slide credit: A. Efros



Why does the Gaussian give a nice smooth image, but 
the square filter give edgy artifacts?

Gaussian Box filter

Filtering

Slide credit: A. Efros



Gaussian

Slide credit: A. Efros

Filtering



Box Filter

Slide credit: A. Efros

Filtering



Fourier Transform pairs

Slide credit: A. Efros



Low-pass, Band-pass, High-pass filters
low-pass:

High-pass / band-pass:

Slide credit: A. Efros



Edges in images

Slide credit: A. Efros



FFT in Matlab
• Filtering with fft

• Displaying with fft

im = ... % “im” should be a gray-scale floating point image
[imh, imw] = size(im);
fftsize = 1024; % should be order of 2 (for speed) and include padding
im_fft = fft2(im, fftsize, fftsize); % 1) fft im with padding
hs = 50; % filter half-size
fil = fspecial('gaussian', hs*2+1, 10); 
fil_fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image
im_fil_fft = im_fft .* fil_fft; % 3) multiply fft images
im_fil = ifft2(im_fil_fft); % 4) inverse fft2
im_fil = im_fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding

figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap
jet

Slide credit: D. Hoiem



Phase and Magnitude
• Curious fact

– all natural images have about the same 
magnitude transform

– hence, phase seems to matter, but 
magnitude largely doesn’t

• Demonstration
– Take two pictures, swap the phase 

transforms, compute the inverse - what 
does the result look like?

Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 

Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 

Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 

Slide credit: B. Freeman and A. Torralba

Image with cheetah phase 
(and zebra magnitude)

Image with zebra phase 
(and cheetah magnitude)



Slide credit: B. Freeman and A. Torralba



This is the 
magnitude 
transform of 
the cheetah 
picture

Slide credit: B. Freeman and A. Torralba



Slide credit: B. Freeman and A. Torralba



This is the 
magnitude 
transform of 
the zebra 
picture

Slide credit: B. Freeman and A. Torralba



Reconstruction 
with zebra 
phase, cheetah 
magnitude

Slide credit: B. Freeman and A. Torralba



Reconstruction 
with cheetah 
phase, zebra 
magnitude

Slide credit: B. Freeman and A. Torralba



• Early processing in humans filters for various orientations and scales of 
frequency

• Perceptual cues in the mid-high frequencies dominate perception

• When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Clues from Human Perception

Slide credit: J. Hays



Campbell-Robson contrast 
sensitivity curve

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Campbell-Robson contrast sensitivity curve 

The higher the frequency the less sensitive 
human visual system is… 

The higher the frequency the less sensitive human visual system is...
Slide credit: J. Hays



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT) on 8x8

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Lossy Image Compression (JPEG) 

Block-based Discrete Cosine Transform (DCT) on 8x8 Slide credit: A. Bobick



Using DCT in JPEG

• The first coefficient B(0,0) is the DC component, the average 
intensity 

• The top-left coeffs represent low frequencies, 
the bottom right – high frequencies 

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Using DCT in JPEG    
• The first coefficient B(0,0) is the DC component, the 

average intensity 
• The top-left coeffs represent low frequencies, the bottom 

right – high frequencies 
 

Slide credit: A. Bobick



Image compression using DCT

• DCT enables image compression by concentrating most image 
information in the low frequencies 

• Loose unimportant image info (high frequencies) by cutting 
B(u,v) at bottom right 

• The decoder computes the inverse DCT – IDCT

Slide credit: A. Bobick

Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

Using DCT in JPEG    
• The first coefficient B(0,0) is the DC component, the 

average intensity 
• The top-left coeffs represent low frequencies, the bottom 

right – high frequencies 
 



JPEG compression comparison
Frequency and Fourier Transform CS 4495 Computer Vision – A. Bobick 

JPEG compression comparison 

89k 12k 89k 12k

Slide credit: A. Bobick



Things	to	Remember
• Sometimes it makes sense to think of images 

and filtering in the frequency domain
– Fourier analysis

• Can be faster to filter using FFT for large 
images (N logN vs. N2 for auto-correlation)

• Images are mostly smooth
– Basis for compression

Slide credit: J. Hays



Practice	question

1. Match	the	spatial	domain	image	to	the	Fourier	magnitude	
image

1 54

A

32

C

B

D
E

Slide credit: J. Hays



Summary

• Frequency domain techniques

• Images in terms of frequency

• Fourier Series

• Convolution Theorem



Next Week

• Sampling

• Gabor wavelets

• Steerable filters


