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Image Smoothing

Acknowledgement: The slides are mostly adapted from the course “A Gentle Introduction to Bilateral
Filtering and its Applications” given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand
(http://people.csail.mit.edu/sparis/bf_course/)

Review - Smoothing and Edge Detection

* While eliminating noise via smoothing, we also lose some of the

(important) image details.
— Fine details

— Image edges

— etc.

* What can we do to preserve such details?

— Use edge information during denoising!
— This requires a definition for image edges.

Chicken-and-egg dilemma!

» Edge preserving image smoothing

Today

* Bilateral filter (Tomasi et al., 1998)
* NL-means filter (Buades et al., 2005)

* Structure-texture decomposition via region covariances
(Karacan et al. 2013)

Notation and Definitions

Image = 2D array of pixels y

Pixel = intensity (scalar) or color (3D vector)
I, = value of image [ at position: p = (p,, p,)

F[ 1] = output of filter F applied to image /




Strategy for Smoothing Images

* Images are not smooth because
adjacent pixels are different.

* Smoothing = making adjacent pixels
look more similar.

* Smoothing strategy
pixel as average of its neighbors

Box Average

square neighborhood

output

[]

Equation of Box Average

result at ‘

intensity at
pixel p sum over pixel q
all pixels q

normalized
box function

Square Box Generates Defects

* Axis-aligned streaks

* Blocky results
output




Strategy to Solve these Problems

* Use an isotropic (i.e. circular) window.

* Use a window with a smooth falloff.

box window Gaussian window

Gaussian Blur

per-pixel multiplication

! . *
input




Equation of Gaussian Blur

Same idea: weighted average of pixels.
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normalized
Gaussian function
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Spatial Parameter

GB[I], G: Ip—qll)!
qes

size of the window

small s

limited smoothing strong smoothing

How to set S

» Depends on the application.

* Common strategy: proportional to image size
— e.g. 2% of the image diagonal
— property: independent of image resolution




Properties of Gaussian Blur

* Weights independent of spatial location
— linear convolution

— well-known operation

— efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

* Does smooth images

¢ But smoothes too much:
edges are blurred.

— Only spatial distance matters
— No edge term

Gal11, = X [Galin=ald /.

qes space

Blur Comes from
Averaging across Edges

. . [Aurich 95, Smith 97, Tomasi 98]
Bilateral Filter

No Averaging across Edges

Same Gaussian kernel everywhere.

The kernel shape depends on the image content.




Bilateral Filter Definition:
an Additional Edge Term

Same idea: weighted average of pixels.
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normalization space weight range weight
factor
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lllustration a 1D Image

* |D image = line of pixels
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* Better visualized as a plot
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Gaussian Blur and Bilateral Filter

Gaussian blur

: g GBI, =Y ,G,(lp—al),

qeS

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]
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Bilateral Filter on a Height Field

1
BFIN, = - 20, (lp-ql) G, (11,~1,1) 1,
qeS
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Space and Range Parameters

1
BF[I], = W 2.6, (lp—al)G, ( 1, =1, |)Iq
p

qeS

* space S;: spatial extent of the kernel, size of the considered
neighborhood.

* range S, : “minimum” amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.

ce

range

Exploring the Parameter Space

s,.= 00
(Gaussian blur)

s.= 0.1 s.=0.25

s, =

(Gaussian blur)







Varying the Space Parameter

sr = o0
s.=0.1 s,=0.25 (Gaussian blur)

.




How to Set the Parameters

Depends on the application. For instance:

* space parameter: proportional to image size
— e.g., 2% of image diagonal

* range parameter: proportional to edge amplitude
— e.g.,, mean or median of image gradients

* independent of resolution and exposure

Bilateral Filter Crosses Thin Lines

* Bilateral filter averages across

features thinner than ~2s
* Desirable for smoothing: more pixels = more robust
+ Different from diffusion that stops at thin lines

- =
close-up

v

Iterating the Bilateral Filter

Ly =BF[,)]

* Generate more piecewise-flat images

» Often not needed in computational photo.







Bilateral Filtering Color Images

For gray-level images intensity difference
1
BFI, = o~ .G, (Ip-al) G, (ISR
poass scalar
For color imaies color difference
BF|[I] = — G — G
1= 5 >.G..(Ip-al) (o o)l
3D vector
(RGB, Lab)

Hard to Compute

¢ Nonlinear BF[I], = . ZGUS (I p_q||)-1q

qesS

* Complex, spatially varying kernels
— Cannot be precomputed, no FFT...

* Brute-force implementation is slow > |0min

Basic denoising

Noisy input Bilateral filter 7x7 window

Basic denoising

Bilateral filter Median 3x3




Basic denoising

Bilateral filter

Median 5x5

Basic denoising

Bilateral filter Bilateral filter — lower sigma

Basic denoising

Bilateral filter

Bilateral filter — higher sigma

Denoising

» Small spatial sigma (e.g. 7x7 window)
* Adapt range sigma to noise level

* Maybe not best denoising method, but best simplicity/quality
tradeoff
— No need for acceleration (small kernel)
— But the denoising feature in e.g. Photoshop is better




Goal: Understand how does bilateral filter
relates with other methods

Bilateral
/ filter \

Partial Local mode
differential filtering
equations /

\ Robust
statistics

more in BIL717 Image Processing graduate course..

New ldea:
NL-Means Filter (Buades 2005)

* Same goals: ‘Smooth within Similar Regions’

+ KEY INSIGHT: Generalize, extend Similarity’

— Bilateral:
Averages neighbors with similar intensities;

— NL-Means:
Averages neighbors with similar neighborhoods!

NL-Means Method: _
Buades (2005)

* For each and

every pixel p:

NL-Means Method: -
Buades (2005)

¢ For each and

every pixel p:

— Define a small, simple fixed size neighborhood;




NL-Means Method: __
Buades (2005)

0.74
0.32
V_=|04]
P loss

* For each and

every pixel p:

— Define a small, simple fixed size neighborhood;

— Define vector V;:a list of neighboring pixel values.

NL-Means Method: __

Buades (2005)

‘Similar’ pixels p, q

-> SMALL
vector distance;

" vp - vq ”2

NL-Means Method: __
Buades (2005)

‘Dissimilar’ pixels p, q

- LARGE
vector distance;

| Vo= VqlI?

NL-Means Method: __

Buades (2005)

‘Dissimilar’ pixels p, q

- LARGE
vector distance;

| Vo = VqI?

Filter with this!




NL-Means Method: -
Buades (2005)

P, q neighbors define

a vector distance;

Filter with this:

" vp = vq ”2

No spatial term!

NLMF([I], =

NL-Means Method: -
Buades (2005)

pixels p, q neighbors
Set a vector distance;

I Vo = VqlI?

Vector Distance to p sets
weight for each pixel q

NLMF(I], =

NL-Means Filter (Buades 2005)

1A
Pri B

Figure 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The
weights go from 1(white) to zero(black).

®

F1G. 9. NL-means denoising experiment with a natural image. Left: Noisy image with standard
deviation 20. Right: Restored image.




NL-Means Filter (Buades 2005)

* Noisy
source
image:

NL-Means Filter (Buades 2005)

¢ Gaussian
Filter

Low noise,

Low detail

NL-Means Filter (Buades 2005)

* Anisotropic
Diffusion

(Note
‘stairsteps’:
~ piecewise
constant)

NL-Means Filter (Buades 2005)

¢ Bilateral
Filter

(better, but
similar
‘stairsteps’:




NL-Means Filter (Buades 2005)

¢ NL-Means:

Sharp,
Low noise,

Few artifacts.

NL-Means Filter (Buades 2005)

Figure 4. Method noise experience on a natural image. Displaying of the image difference u — Dy, («). From left to
right and from top to bottom: original image, G filtering, ani pic filtering, Total variation minimization,
Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.

NL-Means Filter (Buades 2005)

original noisy, standard deviation 15

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

denoised

NL-Means Filter (Buades 2005)

original

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




NL-Means Filter (Buades 2005)

noisy

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

NL-Means Filter (Buades 2005)

denoised

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

NL-Means Filter (Buades 2005)
, S
NV

original

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

TN

NL-Means Filter (Buades 2005)

- T

noisy

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




NL-Means Filter (Buades 2005)

denoised

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

Structure-Texture Decomposition
Karacan et al.,, SIGGRAPH Asia 2013

Input Image

Structure-Texture Decomposition
Karacan et al.,, SIGGRAPH Asia 2013

Structure Component

Structure-Texture Decomposition
Karacan et al., SIGGRAPH Asia 2013

Texture Component




Structure-Texture Decomposition
Karacan et al.,, SIGGRAPH Asia 2013

Input Image

Texture

Region Covariances as Region Descriptors
Tuzel et al.,, ECCV 2006

F(z,y) = ¢(I,z,y)
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Main motivation

* Region covariances well capture
local structure and texture
information.

* Similar regions have similar
statistics.

U et B2
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Formulation

I=8+T * Structure-texture decomposition
via smoothing

1
S(p) = Zo e; )wqu(q) * Smoothing as weighted averaging
q P,

* Different kernels (w,,) result in

different types of filters.

* Two novel patch-based kernels for

structure-texture decomposition




Model |

» Covariance matrices do not live on Euclidean space.
* Hong et al.,CVPR’09 suggested a way to transform covariance
matrices into Euclidean Space.

* Every covariance matrix has a unique Cholesky decomposition

C=LL"T Cholesky Decomposition
S={s} Sigma Points

. — avdL; if 1<i<d
Tl —avdL; ifd+1<i<?2d

* First order statistics can be easily incorporated to the formulation.

Model |
U(C) = (1,81, -.,84,Sd11,---,824)" Final representation
_ 2
Wpg X €XP <— ”\II(CP)Q ;II(CC‘)” ) Resulting kernel
g

Model 2

* An alternative way is to use statistical measures.

* A Mahalanobis-like distance measure to compare to image patches

d(p,q) = v/ (ttp — 1a)C~ (tip — pq)”

C =Cp+ Cq

Resulting kernel

202

Wpq X €XP <—

lllustrative Example

Modell
k=9

Model2
0=0.3 k=9




lllustrative Example

lllustrative Example

Model2 Structure
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Model2 Texture

Multiscale Decomposition
I(p) = > _T:(p) + Sn(p)




Multiscale Decomposition

Multiscale Decomposition

Multiscale Decomposition

1(0) = 3" Ti(p) + Su(p)
= S3(k = 9)

Model 2 + Model |

Model2 Structure




Model 2 + Model | Model 2 + Model |

Model2 Texture Model2+Modell

Model 2 + Model | Model 2 + Model |

Input Model2 Model2+Modell Input Model2 Texture Model2+Modell




