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Review - Smoothing and Edge Detection"

•  While eliminating noise via smoothing, we also lose some of the 
(important) image details.!
–  Fine details!
–  Image edges!
–  etc.!

•  What can we do to preserve such details?!
–  Use edge information during denoising!!
–  This requires a definition for image edges. !
!
!

•  Edge preserving image smoothing!

Chicken-and-egg dilemma!"

Today"

•  Bilateral filter (Tomasi et al., 1998)!

•  NL-means filter (Buades et al., 2005)!

•  Structure-texture decomposition via region covariances 
(Karacan et al. 2013)!

Notation and Definitions"

•  Image = 2D array of pixels!

•  Pixel = intensity (scalar) or color (3D vector)!

•  Ip = value of image I at position: p = ( px , py ) 

•  F [ I ] = output of filter F applied to image I 

x 

y 



Strategy for Smoothing Images"

•  Images are not smooth because "
adjacent pixels are different.!

•  Smoothing = making adjacent pixels"
! ! !look more similar.!

•  Smoothing strategy"
!pixel as average of its neighbors!

Box Average"

average!

input!

square neighborhood!

output!

sum over "
all pixels q"

normalized"
box function!

intensity at"
pixel q"

result at"
pixel p"

Equation of Box Average"
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Square Box Generates Defects "

•  Axis-aligned streaks!

•  Blocky results!

input!

output!



Strategy to Solve these Problems"

•  Use an isotropic (i.e. circular) window.!

•  Use a window with a smooth falloff.!

box window! Gaussian window!

Gaussian Blur"

average!

input!

per-pixel multiplication!

output!*!

input" box average"



Gaussian blur"

normalized"
Gaussian function!

Equation of Gaussian Blur"
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Same idea: weighted average of pixels.!

0!

1!

size of the window!

Spatial Parameter"
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small s! large s!

input!

limited smoothing! strong smoothing!

How to set s!
•  Depends on the application.!

•  Common strategy: proportional to image size!
–  e.g. 2% of the image diagonal!
–  property: independent of image resolution!



Properties of Gaussian Blur"

•  Weights independent of spatial location!

–  linear convolution!

–  well-known operation!

–  efficient computation (recursive algorithm, FFT…)!

Properties of Gaussian Blur"

•  Does smooth images!

•  But smoothes too much: "
edges are blurred.!
–  Only spatial distance matters!
–  No edge term!

input!

output!
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Blur Comes from !
Averaging across Edges"

*!

*!

*!

input! output!

Same Gaussian kernel everywhere.!

Bilateral Filter !
No Averaging across Edges"

*!

*!

*!

input! output!

The kernel shape depends on the image content.!

[Aurich 95, Smith 97, Tomasi 98]!



space weight!

not new!

range weight!

I!

new!

normalization"
factor!

new!

Bilateral Filter Definition:!
an Additional Edge Term"
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Same idea: weighted average of pixels.!

Illustration a 1D Image"

•  1D image = line of pixels!

•  Better visualized as a plot!

pixel !
intensity"

pixel position"

space!

Gaussian Blur and Bilateral Filter"

space! range!
normalization!

Gaussian blur!
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Bilateral filter"
[Aurich 95, Smith 97, Tomasi 98]!

space!

space!

range!

p"

p"

q"

q"
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Bilateral Filter on a Height Field"

output! input!
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p

reproduced!
from [Durand 02]"



Space and Range Parameters"

•  space ss : spatial extent of the kernel, size of the considered 
neighborhood.!

•  range sr : “minimum” amplitude of an edge!
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Influence of Pixels"

p"

Only pixels close in space and in range are considered.!

space!

range!

ss = 2!

ss = 6!

ss = 18!

sr = 0.1! sr = 0.25!
sr = � "

(Gaussian blur)!

input!

Exploring the Parameter Space"

ss = 2!

ss = 6!

ss = 18!

sr = 0.1! sr = 0.25!
sr = � "

(Gaussian blur)!

input!

Varying the Range Parameter"



input" sr = 0.1"

sr = 0.25" sr = �!
(Gaussian blur)"



ss = 2!

ss = 6!

ss = 18!

sr = 0.1! sr = 0.25!
sr = � "

(Gaussian blur)!

input!

Varying the Space Parameter"
input"

ss = 2" ss = 6"



ss = 18"
How to Set the Parameters"

Depends on the application. For instance:!
!

•  space parameter: proportional to image size!
–  e.g., 2% of image diagonal!

•  range parameter: proportional to edge amplitude!
–  e.g., mean or median of image gradients!

•  independent of resolution and exposure!

Bilateral Filter Crosses Thin Lines"

•  Bilateral filter averages across "
!features thinner than ~2ss !

•  Desirable for smoothing: more pixels = more robust!

•  Different from diffusion that stops at thin lines!

close-up! kernel!

Iterating the Bilateral Filter"

•  Generate more piecewise-flat images!

•  Often not needed in computational photo.!

][ )()1( nn IBFI =+



input" 1 iteration"

2 iterations" 4 iterations"



Bilateral Filtering Color Images"
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For gray-level images !

For color images !

intensity difference!

color difference!

scalar!

3D vector "
(RGB, Lab)!

input!

output!

Hard to Compute"

•  Nonlinear!

•  Complex, spatially varying kernels!
–  Cannot be precomputed, no FFT…!

•  Brute-force implementation is slow > 10min!
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Basic denoising"

Noisy input! Bilateral filter 7x7 window! Bilateral filter!

Basic denoising"

Median 3x3!



Bilateral filter!

Basic denoising"

Median 5x5!

Basic denoising"

Bilateral filter! Bilateral filter – lower sigma!

Bilateral filter!

Basic denoising"

Bilateral filter – higher sigma!

Denoising"

•  Small spatial sigma (e.g. 7x7 window)!

•  Adapt range sigma to noise level !

•  Maybe not best denoising method, but best simplicity/quality 
tradeoff!
–  No need for acceleration (small kernel)!
–  But the denoising feature in e.g. Photoshop is better!



Goal: Understand how does bilateral filter 
relates with other methods!

Local mode!
filtering!

Robust!
statistics!

Partial!
differential!
equations!

Bilateral!
filter!

more in BIL717 Image Processing graduate course..!

New Idea:!
NL-Means Filter (Buades 2005)"

•  Same goals: ‘Smooth within Similar Regions’!

•  KEY INSIGHT: Generalize, extend‘Similarity’!
–  Bilateral: "
!Averages neighbors with similar intensities;!

–  NL-Means:  "
  Averages neighbors with similar neighborhoods!"

NL-Means Method:!
Buades (2005)"

!

!

•  For each and!

   every pixel p: "

NL-Means Method:!
Buades (2005)"

!

•  For each and!

   every pixel p: !
"

"

"
–  Define a small, simple fixed size neighborhood;!



!

•  For each and!
   every pixel p: !
"
– Define a small, simple fixed size neighborhood;!
–  Define vector Vp: a list of neighboring pixel values.!

NL-Means Method:!
Buades (2005)"

Vp = "

0.74!
0.32!
0.41!
0.55!
…!
…!
…!

NL-Means Method:!
Buades (2005)"

‘Similar’ pixels p, q"

! SMALL!
 vector distance;!

!

!

!

 || Vp – Vq ||2 "

p!

q!

NL-Means Method:!
Buades (2005)"

‘Dissimilar’ pixels  p, q"

! LARGE !
 vector distance;!

!

!

!

 || Vp – Vq ||2 "

p!
q!

q!

NL-Means Method:!
Buades (2005)"

‘Dissimilar’ pixels  p, q"

! LARGE!
 vector distance;!

!

!

Filter with this!"

"

 || Vp – Vq ||2 "

p!
q!



NL-Means Method:!
Buades (2005)"

p, q neighbors define!

a vector distance;!

Filter with this:!
"

"

"
No spatial term!"

"

 || Vp – Vq ||2 " p!
q!
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NL-Means Method:!
Buades (2005)"

pixels  p, q neighbors"
Set a vector distance;!

"

"
"

Vector Distance to p sets !
weight for each pixel q"

 || Vp – Vq ||2 " p!
q!
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NL-Means Filter (Buades 2005)" NL-Means Filter (Buades 2005)"



NL-Means Filter (Buades 2005)"

•  Noisy "
source"
image:!

NL-Means Filter (Buades 2005)"

•  Gaussian"
Filter!

Low noise,!

Low detail!

NL-Means Filter (Buades 2005)"

•  Anisotropic"
Diffusion!

!

(Note "
‘stairsteps’: "
~ piecewise"
constant)!

NL-Means Filter (Buades 2005)"

•  Bilateral "
Filter!

!

(better, but"
similar"
‘stairsteps’: "
!



NL-Means Filter (Buades 2005)"

•  NL-Means:!

!

!

!

Sharp,!

Low noise,!

Few artifacts. "
!

NL-Means Filter (Buades 2005)"

NL-Means Filter (Buades 2005)"

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"

original!

NL-Means Filter (Buades 2005)"

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"



noisy!

NL-Means Filter (Buades 2005)"

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"

denoised!

NL-Means Filter (Buades 2005)"

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"

original!

NL-Means Filter (Buades 2005)"

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"

noisy!

NL-Means Filter (Buades 2005)"

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"



denoised!

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/"

NL-Means Filter (Buades 2005)"

Input Image!

Structure-Texture Decomposition!
Karacan et al., SIGGRAPH Asia 2013"

Structure Component 

Structure-Texture Decomposition!
Karacan et al., SIGGRAPH Asia 2013"

Texture Component 

Structure-Texture Decomposition !
Karacan et al., SIGGRAPH Asia 2013"



Structure 

Texture 

Input Image!

Structure-Texture Decomposition !
Karacan et al., SIGGRAPH Asia 2013"

Region Covariances as Region Descriptors !
Tuzel et al., ECCV 2006"

A B C D E F G H

Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix C

R

of the feature points:

C
R

=

1

n� 1

nX
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(z
k
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with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s

i

}, referred to as Sigma Points, can be computed as:

s
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(3)

where L
i

is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1

Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix C

R

of the feature points:

C
R

=

1

n� 1

nX

i=0

(z
k

� µ)(z
k

� µ)T (2)

with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s

i

}, referred to as Sigma Points, can be computed as:

s
i

=

⇢
↵
p
dL

i

if 1  i  d

�↵
p
dL

i

if d+ 1  i  2d
(3)

where L
i

is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1

Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.

Structure-Preserving Image Smoothing via Region Covariances        •        176:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

Main motivation"

• Region covariances well capture 
local structure and texture 
information.!

• Similar regions have similar 
statistics.!

Formulation"

•  Structure-texture decomposition "
via smoothing!

•  Smoothing as weighted averaging  !

•  Different kernels (wpq) result in 

different types of filters.!

•  Two novel patch-based kernels for 

structure-texture decomposition!

!
!

p
 q


A B C D E F G H

Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix C

R

of the feature points:

C
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with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s

i

}, referred to as Sigma Points, can be computed as:
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where L
i

is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1

Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix C
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of the feature points:
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with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s
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}, referred to as Sigma Points, can be computed as:
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where L
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is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1

Zp

X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
p
2.
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Figure 2: Region covariance descriptors for different regions of
the publicly available Barbara image. Regions having similar vi-
sual characteristics are represented by similar covariance descrip-
tors. In this example, the covariance representations are based on
very simple image features, namely intensity, orientation, and pixel
coordinates (Equation 6).

2.2 Region covariances

Expressing an image region by the covariance of features extracted
from the pixels within it, known as the region covariance descriptor,
was first proposed in [Tuzel et al. 2006]. In mathematical terms,
let F denote the feature image extracted from an image I:

F (x, y) = �(I, x, y) (1)

where � defines a mapping function that extracts an d-dimensional
feature vector (such as constructed from intensity, color, orienta-
tion, pixel coordinates, etc.) from each pixel i 2 I . Then, a region
R inside F can be represented with a d⇥ d covariance matrix C
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of the feature points:
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with z
k=1...n denoting the d-dimensional feature vectors inside R

and µ being the mean of these feature vectors.

A covariance matrix provides a compact and natural way of fus-
ing different visual features with its diagonal elements represent-
ing the feature variances and its non-diagonal elements represent-
ing the correlations among the features. Moreover, it provides sur-
prising strong discriminative power in distinguishing local image
structures. As illustrated in Figure 2, regions with similar texture
and local structures are described by similar covariance matrices.
Motivated by these properties, in this study we employ the region
covariance descriptor to measure the similarity between two pixels
with respect to local image geometry.

Despite these advantages, comparing two image regions with re-
spect to their covariance descriptors tends to be computationally
time consuming as covariance matrices do not live on an Eu-
clidean space, but rather on a Riemannian manifold, and requires

non-trivial similarity measures [Tuzel et al. 2006; Cherian et al.
2011]. An interesting take on this issue was offered by Hong et
al. [2009] where the authors make use of the property that every
covariance matrix (symmetric positive semi-definite matrix) has a
unique Cholesky decomposition and use it to transform covariance
matrices into an Euclidean vector space.

More formally, let C be a d⇥ d covariance matrix, a unique set of
points S = {s
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}, referred to as Sigma Points, can be computed as:
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where L
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is the ith column of the lower triangular matrix L ob-
tained with the Cholesky decomposition C = LLT and ↵ is a
scalar1. Here, it is important to note that the set of columns of L
has the same second order statistics as the original covariance ma-
trix C [Hong et al. 2009].

3 Approach

Many natural textures lie in between the two extremes of regular
and stochastic textures as they contain regular periodic structures as
well as additional irregular stochastic components. Here we adopt
a general definition of texture as being any visual pattern which has
a distinct appearance and local statistics [Efros and Leung 1999].
In this regard, the region covariance descriptor [Tuzel et al. 2006]
is a perfect candidate to represent texture information as covariance
matrices effectively encode local geometry via second-order statis-
tical relations among features. However, it should be noted that
this descriptor has a minor drawback that it falls short on explain-
ing differences in means. Therefore, in this paper, we investigated
two different models which incorporate both first and second order
statistics to come up with a simple yet effective filtering framework
for extracting structure from different types of texture.

Our aim is to decompose a given image I into its structural (S) and
textural (T ) parts, that is:

I = S + T (4)

In this study, we follow a patch-based approach, much like the
NL-Means [Buades et al. 2005] method, and compute the structure
component of a pixel p as:

S(p) =
1
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X

q2N(p,r)

wpqI(q) (5)

where N(p, r) denotes a squared neighborhood centered at p and
of size (2r + 1) ⇥ (2r + 1) pixels, and the weight wpq measures
the similarity between two pixels p and q based on the similarity
between k ⇥ k patches centered on these pixels, and Zp=

P
q

wpq

is a normalization factor.

The key to our adaptive filtering framework relies on how we de-
fine wpq. In contrast to the NL-Means method, which computes
wpq based on Gaussian-weighted Euclidean distance between the
patches, here we propose two alternative schemes based on the re-
gion covariance [Tuzel et al. 2006] descriptor, which make use of
first and second-order statistics to encode local structure as well as
texture information.

The proposed framework is quite general and does not depend on
specific features. In our implementation, we use simple visual fea-
tures, namely intensity, orientation and pixel coordinates so that an

1In the experiments, we take ↵ =
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp
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�k (Cp)� (Cq)k2
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with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp
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�d(p,q)2
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(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:
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image pixel is represented with a 7-dimensional feature vector:
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where I denotes the intensity of the pixel,

��� @I
@x

���,
��� @I
@x

���,
��� @

2
I

@x

2

���,
��� @

2
I

@y

2

���
are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)

����
@I

@x

����

����
@I

@y

����

����
@2I

@x2

����

����
@2I

@y2

���� x y
i
T

(6)
where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)

176:4        •        L. Karacan et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 176, Publication Date: November 2013

image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0
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n
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
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image pixel is represented with a 7-dimensional feature vector:
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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image pixel is represented with a 7-dimensional feature vector:

F (x, y) =
h
I(x, y)
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where I denotes the intensity of the pixel,
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are first and second derivatives of the intensity in both x and y di-
rections, estimated via the filters [�1 0 1] and [�1 2 � 1], and
(x, y) denotes the pixel location. Hence, the covariance descriptor
of an image patch is computed as a 7 ⇥ 7 matrix. Including (x, y)
into the feature set is important since it allows us to encode the
correlation of other features with the spatial coordinates. The fea-
ture set can be extended to include other features, like for example
rotationally invariant forms of the derivatives, if desired.

In the experiments, we handle color images by computing the patch
similarity weights wpq using the intensity information and taking
the weighted average over the corresponding RGB vectors rather
than the intensity values in Equation 5. We empirically found that
including RGB components to the feature set does not change the
results much but increases the running times.

Model 1

Using the set S defined by Equation (3), a vectorial representation
of a covariance matrix can be obtained by simply concatenating
the elements of S. Moreover, first-order statistics can be easily
incorporated to this representation scheme by including the mean
vector of the features µ. This enriched feature vector denote by
 (C) is defined as:

 (C) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (7)

Then, we simply define the weight wpq in Equation (5) as:

wpq / exp

✓
�k (Cp)� (Cq)k2

2�2

◆
(8)

with Cp and Cq denoting the covariance descriptors extracted from
the patches centered at pixels p and q, respectively.

Model 2

As an alternative way to measure the similarity between two im-
age pixels with respect to first and second-order feature statistics,
we came up with a distance measure, which can be seen as an ap-
proximation of the Mahalanobis distance between two Normal dis-
tributions. More specifically, for two image pixels p and q, the
corresponding distance measure is defined as:

d(p,q) =
p

(µp � µq)C�1
(µp � µq)

T (9)

with C = Cp +Cq, µp, and µq and Cp, Cq denoting the means
and covariances of features extracted from the image patches cen-
tered at pixels p and q.

Based on this measure, the adaptive weight for the computations in
Equation can be alternatively defined as follows:

wpq / exp

✓
�d(p,q)2

2�2

◆
(10)

A naive implementation of our structure preserving image smooth-
ing algorithm is summarized in Algorithm 1. Our code is publicly
available in the project website.

Algorithm 1 Structure preserving image smoothing

Input: image I , scale parameter k, smoothing parameter �
1: extract visual features F via Eq. 6
2: for each: image pixel p do
3: compute first and second order region statistics, µp and Cp

4: end for
5: for each: image pixel p do
6: for each: neighboring image pixel q do
7: compute weight wpq using either Eq. 8 (Model 1) or

Eq. 10 (Model 2)
8: end for
9: estimate structure component S(p) using Eq. 5

10: end for
Output: structure image S

Figure 3 shows sample structure-texture decompositions obtained
with our smoothing models (Model 1 and Model 2). The input im-
age contains various textured regions with different characteristics,
such as the cloth spread over the table, the pants and the scarf of
the girl. It may be seen that both of the proposed models success-
fully separated texture from structure, with Model 2 slightly bet-
ter than Model 1. Interestingly, the similarity measures defined in
Equations 8 and 10 are so effective that they can differentiate local
structures from the texture, without employing an explicit edge or
texture definition. Moreover, as we will analyze in Section 4, one
key difference of our approach is that both of our smoothing models
also preserve shading information.

Effects of parameters

Both of our models have two main parameters, k and �. The spa-
tial parameter � controls the level of smoothing as it implicitly de-
termines the size of the neighbourhood window. For small values
of �, we have limited smoothing whereas increasing the value of
� causes blurriness. On the other hand, the parameter k controls
the size of the patches from which the feature statistics are calcu-
lated and accordingly the local structure information to be captured.
Hence, its value should be set by taking into account the scale of the
texture elements. In that respect, it is more important for structure-
texture separation than the spatial parameter �. As demonstrated
in Figure 4, with a proper value of k, the structure component of
a mosaic image can be accurately separated from texture. Increas-
ing the patch size too much might cause inaccurate information to
be extracted from patches as it may blend texture and meaningful
structures, leading to structures to be perceived as fine details. In
all the experiments, we empirically set the neighborhood size to
21 ⇥ 21 pixels (See the supplementary material for an analysis on
the effect of varying the size of the neighborhood window).

Multi-scale decomposition

While smoothing a given image I , our approach separates it into
a structure component S and a texture component T . We use this
process iteratively to obtain a multi-scale decomposition of an input
image with each layer capturing different fine details of I . Specif-
ically, we smooth the input image by increasing the patch size k
(by increasing the scale of analysis) at each iteration and by using
the extracted structure component at an iteration as an input for the
smoothing process at the subsequent iteration: After n iterations,
this yields the decomposition:

I(p) =
nX

i=0

T
i

(p) + S
n

(p) (11)
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