Introduction

Erkut Erdem

BIL717, February 2012

What causes an edge?

Reflectance change: appearance information, texture

Change in surface orientation: shape

Depth discontinuity: object boundary

Cast shadows

Edges/gradients and invariance

Image Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: S. Seitz

Partial derivatives of an image

Original Image

Gradient magnitude image

Thresholding gradient with a lower threshold

Thresholding gradient with a higher threshold

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: Smooth first

Smoothing with a Gaussian

Recall: parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

Effect of σ on derivatives

 σ = I pixel

 σ = 3 pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Differentiation property of convolution.

Laplacian of Gaussian Consider $\frac{\partial^2}{\partial x^2}(h \star f)$

Zero-crossings of bottom graph

Source: K. Grauman

Where is the edge?

2D edge detection filters

original image

convolution with $\nabla^2 h_{\sigma}(u, v)$

convolution with

 $abla^2 h_\sigma(u,v)$ (pos. values – white, neg. values – black)

zero-crossings

The Canny edge detector

original image (Lena)

The Canny edge detector

thresholding

The Canny edge detector

How to turn these thick regions of the gradient into curves?

Non-maximum suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

- requires checking interpolated pixels p and r

The Canny Edge Detector

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use **hysteresis**
 - use a high threshold to start edge curves and a low threshold to continue them.

Hysteresis thresholding

high threshold (strong edges) Source: L. Fei-Fei

original image

low threshold (weak edges)

hysteresis threshold