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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to uselinear PDEs to create
a scale space representation that consists of gradualpliéd images where some
image features such as edges are maintained or even enh@heeghrliest nonlinear
diffusion model proposed in image processing is the sadaihisotropic diffusion’
by Perona and Malik [2].

In their formulation, they replaced the constant diffusioefficient of linear equa-
tion by a smooth nonincreasing diffusivity functignwith ¢(0) = 1, g(s) > 0, and
lims; ;0 ¢(s) = 0. As a consequence, the diffusivities become variable ih bpace
and time. The Perona-Malik equation is

ou
® 5=V @(Vu)Vu)
with homogeneous Neumann boundary conditions and thaligitinditionu®(x) =
f(x), f denoting the inputimage.
Perona and Malik suggested two different choices for thaislifity function:
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1In fact, Perona-Malik equation is an isotropic nonhomogesseequation as it uses a scalar-valued dif-
fusivity. A true example of anisotropic diffusion model,gedenhancing diffusion [3], will be summarized
in Section 2.
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1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

whereA corresponds to a contrast parameter. These functions singtar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diifun below since it
clearly demonstrates the role of the contrast paramietard the main behavior of the
equation [4]. For 1D case, the Perona-Malik equation is bevs:
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with ¢(|uy|) = W org(lux]) =e 2.

Figure 1 shows the diffusivity functions and the correspngdiux functions for
linear diffusion and Perona-Malik type nonlinear diffusidOne can easily observe
that for linear diffusion the diffusivity is constang(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, imting the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity isiedte and decreases ps; |
increases. It is evident that the decay in diffusivity istjgatarly rapid after the con-
trast parametek. This leads to two different behaviors in the diffusion pFss. Since
WU = @' (uy)ury, for the points wherduy| < A, @' (uy) > 0 which corresponds
to lost in the material. For the points wheee,| > A, on the contrary®’ (i) < 0
which generates an enhancement in the material. Hencepgltithe diffusivity is al-
ways nonnegative, one can observe Hotlward andbackward diffusions during the
smoothing process, and the contrast parametaparates the regions of forward dif-
fusion from the regions of backward diffusion.
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Figure 1: Diffusivities and the corresponding flux funcsdor linear diffusion plotted
in dashed line) and Perona-Malik type nonlinear diffusiopltted in solid line). For

Perona-Malik diffusivityg (s) = 177175 is used withh = 3.

If we consider the 2D case, the diffusivities are reducechatitnage locations
where|Vu|? is large. As|Vu|? can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image®dg particular, the
contrast parametey specifies a measure that determines which edge points aee to b
preserved or blurred during the diffusion process. Everesdgn be sharpened due to
the local backward diffusion behavior as discussed for ihedse. Since the backward
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Figure 2: The staircasing effect. (a) Original noisy imag.Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

diffusion is a well-known ill-posed process, this may caasénstability, the so-called
staircasing effect, where a piece-wise smooth region in the original imagevesinto
many unintuitive piecewise constant regions. Figure 2 shaw example where this
instability occurs. The unintuitive regions such as the ahé¢he woman'’s face and
shoulder are clearly visible in Figure 2(b). A possible siolu to this drawback is to
use regularized gradients in diffusivity computations(Rigure 2(c)).

Replacing the diffusivitieg(|Vu|) with the regularized oneg(|Vu,|) leads to
the following equation:

®) o =V -(&(|Vus|)Vu)

whereu, = G, * u represents a Gaussian-smoothed version of the image.grdien
equivalence of the Gaussian smoothing and the linear spatesnto accoun®y/ u,
can also be considered as the gradient computed at a speaifics> 0.

Some example results of regularized Perona-Malik filtewth different diffusion
times are shown in Figure3 and Figure 4. Itis evident frons¢hienages that the corre-
sponding smoothing process diminishes noise while retgioi even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differenoespproximate the gradient
magnitude at a pixek(j) in the diffusivity estimationg; ; = g(|Vu; ;)

B dujj 2+ du;, ZN Uip1j — Ui-1, 2+ Uije1 — jj-1\?
N dx dy )~ 2 2

The Perona-Malik equation (Equation 1) is first discretimect. spatial variables.

(6)
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1. PERONA-MALIK TYPE NONLINEAR DIFFUSION
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Figure 3: Reg. Perona-Malik results for different diffustime A = 1, 0 = 1).
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Figure 4: Reg. Perona-Malik results for different diffustimes = 1,0 = 1).

This results in the following space-discrete equation:

du d d
5 = g(g(|Vu|)ux)+@(g(|Vu|)uy),
du,',]'
T = Sieyy (i —wig) =gy (i —uic )
@) Gy (i i) = &gy (i — i)
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Figure 5: Discretization grid used in (Equation 7).

This discretization scheme requires the diffusivities éodstimated at mid-pixel
points (Figure 5). They are simply computed by taking avesagf the diffusivities
over neighboring pixels:

_ 8i+1,j T 8&ij _ 8ij+1 T 8&ij
(8) gii_l/j = f’ gi,ji-% - f .
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The time derivative in (Equation 7) can be discretized udorgvard difference.
This yields an iterative scheme with an explicit time disizagion, where homoge-
neous Neumann boundary condition is imposed along the itnagedary
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with At denoting the time step. For the Perona-Malik diffusion, stebility require-

ment is agaimyt < 0.25.

2 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Matigleys a scalar-valued
diffusivity function to guide the smoothing process as suarized in Section 1. The
diffusivities are reduced at the image locations where thgmtude of image gradi-
ent|Vu|? is large, and as a result, the edges are preserved or evenceshén [3],
Weickert suggested an alternative approach that addityota&es direction of the im-
age gradients into account. The suggested model is an mpgohonlinear diffusion
model with better edge enhancing capabilities.
In general, any anisotropic nonlinear diffusion can be diesd by the equation

(10) g—”t‘ = V- (D(Vu)Vu)

whereu is the smoothed image that is initialized with the input imgg(that is
u%(x) = f(x)), andD represents a matrix-valued diffusion tensor that dessribe



2. EDGE ENHANCING DIFFUSION

smoothing directions and the corresponding diffusiviti@se can easily observe that
for linear diffusion the diffusion tensor can be definedasvVu) = I, which results
in a constant diffusion coefficient for all image points ihditections. Similarly, for
Perona-Malik type nonlinear diffusiol}(Vu) = g(|Vu|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal anmatitdirections. In
actual anisotropic setting, the diffusion tenébis defined as a function of the structure
tensor given by

2
T uy o Uxlly
(11) J(Vu) = VuVu' = [ ity u§ } .

The structure tensgi( Vi) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basfigigenvectors; and v,
with v; || Vu andv, L Vu, and the corresponding eigenvalues = |Vu|? and
Ap = 0. It is important to note that noise significantly affects teasor estimation.
Thus the givenimage is usually convolved with a Gaussian kerfg!with a relatively
small standard deviatianas a presmoothing step and the structure tensor is computed
accordingly by using/u, = V(G * u) instead ofVu.

The main idea behind edge enhancing diffusion is to use tiuetaste tensor as
an image/edge descriptor to construct a diffusion tensatr iduces the amount of
smoothing across the edges while smoothing is still camigdalong the edges. In
order to perform this, Weickert proposed to utilize saméambrmal basis of eigen-
vectorsy; || Vuy ando, L Vi, estimated from the structure tengdiv i) with the
following choice of eigenvalues satisfyir%% — 0for |Vuy| — oo

1 if |[Vug| =0

12)  M(|Vue|) = {

3.31488 P
1-—- exp (—W) 0therW|Se,

13)  Aa([Vue) = 1

whereA denotes the contrast parameter.

Such a choice preserves and enhances image edges by rethecditjusivity A,
perpendicular to edges for sufficiently large valuep\fi|. Specifically, the diffusion
tensor is given by the formula

(14)
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Figure 6 and Figure 7 illustrate example results of edge reihg diffusion filter
for different diffusion times. As it can be clearly seen frdnese images, the corre-
sponding smoothing process diminishes noise and fine imatisdwhile retaining
and even enhancing edges as in the Perona-Malik type nanldi#usion. On the
other hand, the corners become more rounded in the anisotrajlel compared to
the Perona-Malik filter (cf. Figure 3 and Figure 4) since edgkancing diffusion al-
lows smoothing along edges while preventing smoothingsactbem. As discussed
in [4], this causes a slight shrinking effect in the imageictures, which eliminates



Figure 6: Edge enhancing diffusion results for differefffugion times f = 2,0 = 1).
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Figure 7: Edge enhancing diffusion results for differerffudiion times @ = 1.8,
o =1).

fine or thin structures better than the Perona-Malik modielsT through this process
one can capture semantically more correct image regions.
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