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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion1

by Perona and Malik [2].
In their formulation, they replaced the constant diffusioncoefficient of linear equa-

tion by a smooth nonincreasing diffusivity functiong with g(0) = 1, g(s) ≥ 0, and
lims→∞ g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u

∂t
= ∇ · (g(|∇u|)∇u)

with homogeneous Neumann boundary conditions and the initial conditionu0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s2/λ2
,(2)

g(s) = e
− s2

λ2(3)

∗erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [3], will be summarized
in Section 2.
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1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

whereλ corresponds to a contrast parameter. These functions sharesimilar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameterλ and the main behavior of the
equation [4]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u

∂t
=

∂

∂x
(g(|ux|)ux)
︸ ︷︷ ︸

Φ(ux)

= Φ
′(ux)uxx

with g(|ux|) =
1

1+|ux|2/λ2 or g(|ux|) = e
−

|ux|2

λ2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as|ux|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameterλ. This leads to two different behaviors in the diffusion process. Since
∂u
∂t = Φ

′(ux)uxx, for the points where|ux| < λ, Φ
′(ux) > 0 which corresponds

to lost in the material. For the points where|ux| > λ, on the contrary,Φ′(ux) < 0

which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe bothforward andbackward diffusions during the
smoothing process, and the contrast parameterλ separates the regions of forward dif-
fusion from the regions of backward diffusion.
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Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivityg(s) = 1

1+s2/λ2 is used withλ = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where|∇u|2 is large. As|∇u|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameterλ specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
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(a) (b) (c)

Figure 2: The staircasing effect. (a) Original noisy image.(b) Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

diffusion is a well-known ill-posed process, this may causean instability, the so-called
staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the oneat the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [1](Figure 2(c)).

Replacing the diffusivitiesg(|∇u|) with the regularized onesg(|∇uσ|) leads to
the following equation:

(5)
∂u

∂t
= ∇ · (g(|∇uσ|)∇u)

whereuσ = Gσ ∗ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account,∇uσ

can also be considered as the gradient computed at a specific scaleσ > 0.

Some example results of regularized Perona-Malik filteringwith different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation,gi,j = g(|∇ui,j|):

(6)

|∇ui,j| =

√
(

dui,j

dx

)2

+

(
dui,j

dy

)2

≈

√
(

ui+1,j − ui−1,j

2

)2

+

(
ui,j+1 − ui,j−1

2

)2

.

The Perona-Malik equation (Equation 1) is first discretizedw.r.t. spatial variables.

3



1. PERONA-MALIK TYPE NONLINEAR DIFFUSION
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Figure 3: Reg. Perona-Malik results for different diffusion time (λ = 1, σ = 1).
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Figure 4: Reg. Perona-Malik results for different diffusion times (λ = 1, σ = 1).

This results in the following space-discrete equation:

∂u

∂t
=

∂

∂x
(g(|∇u|)ux) +

∂

∂y

(
g(|∇u|)uy

)
,

dui,j

dt
= gi+ 1

2
,j ·

(
ui+1,j − ui,j

)
− gi− 1

2
,j ·

(
ui,j − ui−1,j

)

+ gi,j+ 1
2
·
(
ui,j+1 − ui,j

)
− gi,j− 1

2
·
(
ui,j − ui,j−1

)
.(7)4
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Figure 5: Discretization grid used in (Equation 7).

This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:

(8) gi± 1
2

,j =
gi±1,j + gi,j

2
, gi,j± 1

2
=

gi,j±1 + gi,j

2
.

The time derivative in (Equation 7) can be discretized usingforward difference.
This yields an iterative scheme with an explicit time discretization, where homoge-
neous Neumann boundary condition is imposed along the imageboundary

uk+1
i,j − uk

i,j

∆t
= gk

i+ 1
2

,j
· uk

i+1,j + gk
i− 1

2
,j
· uk

i−1,j + gk
i,j+ 1

2

· uk
i,j+1 + gk

i,j− 1
2

· uk
i,j−1

−
(

gk
i+ 1

2
,j
+ gk

i− 1
2

,j
+ gk

i,j+ 1
2

+ gk
i,j− 1

2

)

· uk
i,j(9)

with ∆t denoting the time step. For the Perona-Malik diffusion, thestability require-
ment is again∆t ≤ 0.25.

2 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |∇u|2 is large, and as a result, the edges are preserved or even enhanced. In [3],
Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(10)
∂u

∂t
= ∇ · (D(∇u)∇u)

where u is the smoothed image that is initialized with the input image f (that is
u0(x) = f (x)), andD represents a matrix-valued diffusion tensor that describes the
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2. EDGE ENHANCING DIFFUSION

smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined asD(∇u) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion,D(∇u) = g(|∇uσ|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amountin all directions. In
actual anisotropic setting, the diffusion tensorD is defined as a function of the structure
tensor given by

(11) J(∇u) = ∇u∇uT =

[
u2

x uxuy

uxuy u2
y

]

.

The structure tensorJ(∇u) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basisof eigenvectorsv1 andv2

with v1 ‖ ∇u andv2 ⊥ ∇u, and the corresponding eigenvaluesλ1 = |∇u|2 and
λ2 = 0. It is important to note that noise significantly affects thetensor estimation.
Thus the given imageu is usually convolved with a Gaussian kernelGσ with a relatively
small standard deviationσ as a presmoothing step and the structure tensor is computed
accordingly by using∇uσ = ∇(Gσ ∗ u) instead of∇u.

The main idea behind edge enhancing diffusion is to use the structure tensor as
an image/edge descriptor to construct a diffusion tensor that reduces the amount of
smoothing across the edges while smoothing is still carriedout along the edges. In
order to perform this, Weickert proposed to utilize same orthonormal basis of eigen-
vectorsv1 ‖ ∇uσ andv2 ⊥ ∇uσ estimated from the structure tensorJ(∇uσ) with the

following choice of eigenvalues satisfyingλ1(|∇uσ|)
λ2(|∇uσ|)

→ 0 for |∇uσ| → ∞

λ1(|∇uσ|) =

{
1 if |∇uσ| = 0

1 − exp
(

− 3.31488

(|∇uσ|/λ)8

)

otherwise,
(12)

λ2(|∇uσ|) = 1(13)

whereλ denotes the contrast parameter.

Such a choice preserves and enhances image edges by reducingthe diffusivity λ1

perpendicular to edges for sufficiently large values of|∇uσ|. Specifically, the diffusion
tensor is given by the formula

(14)

D =

[

(uσ)x − (uσ)y

(uσ)y (uσ)x

]

·

[
λ1(|∇uσ|) 0

0 λ2(|∇uσ|)

]

·

[

(uσ)x − (uσ)y

(uσ)y (uσ)x

]−1

.

Figure 6 and Figure 7 illustrate example results of edge enhancing diffusion filter
for different diffusion times. As it can be clearly seen fromthese images, the corre-
sponding smoothing process diminishes noise and fine image details while retaining
and even enhancing edges as in the Perona-Malik type nonlinear diffusion. On the
other hand, the corners become more rounded in the anisotropic model compared to
the Perona-Malik filter (cf. Figure 3 and Figure 4) since edgeenhancing diffusion al-
lows smoothing along edges while preventing smoothing across them. As discussed
in [4], this causes a slight shrinking effect in the image structures, which eliminates
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Figure 6: Edge enhancing diffusion results for different diffusion times (λ = 2, σ = 1).
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Figure 7: Edge enhancing diffusion results for different diffusion times (λ = 1.8,
σ = 1).

fine or thin structures better than the Perona-Malik model. Thus, through this process
one can capture semantically more correct image regions.
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