Bilateral Filtering, and Non-local Means Denoising

Erkut Erdem

Acknowledgement: The slides are adapted from the course "A Gentle Introduction to Bilateral Filtering and its Applications" given by Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand (http://people.csail.mit.edu/sparis/bf_course/)

Review - Smoothing and Edge Detection

- While eliminating noise via smoothing, we also lose some of the (important) image details.
 - Fine details
 - Image edges
 - etc.
- What can we do to preserve such details?
 - Use edge information during denoising!
 - This requires a definition for image edges.

Chicken-and-egg dilemma!

Edge preserving image smoothing

Notation and Definitions

Image = 2D array of pixels

Pixel = intensity (scalar) or color (3D vector)

- $I_{\mathbf{p}}$ = value of image I at position: $\mathbf{p} = (p_x, p_y)$
- F[I] = output of filter F applied to image I

Strategy for Smoothing Images

- Images are not smooth because adjacent pixels are different.
- Smoothing = making adjacent pixels look more similar.
- Smoothing strategy
 pixel → average of its neighbors

Box Average

Equation of Box Average

Square Box Generates Defects

- Axis-aligned streaks
- Blocky results

output

Strategy to Solve these Problems

- Use an isotropic (i.e. circular) window.
- Use a window with a smooth falloff.

box window

Gaussian window

Gaussian Blur

Equation of Gaussian Blur

Same idea: weighted average of pixels.

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

Spatial Parameter

input

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\mathbf{q}} (\| \mathbf{p} - \mathbf{q} \|) I_{\mathbf{q}}$$

size of the window

limited smoothing

strong smoothing

How to set σ

Depends on the application.

- Common strategy: proportional to image size
 - e.g. 2% of the image diagonal
 - property: independent of image resolution

Properties of Gaussian Blur

Weights independent of spatial location

linear convolution

well-known operation

- efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

input

- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$
space

Blur Comes from Averaging across Edges

Bilateral Filter [Aurich 95, Smith 97, Tomasi 98] No Averaging across Edges

The kernel shape depends on the image content.

Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

Illustration a ID Image

ID image = line of pixels

Better visualized as a plot

Gaussian Blur and Bilateral Filter

Gaussian blur

Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} \frac{G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|)}{\operatorname{space}} I_{\mathbf{q}}$$

$$SP[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} \frac{G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|)}{\operatorname{space}} \frac{G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{\operatorname{space}} I_{\mathbf{q}}$$

$$SP[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} \frac{G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|)}{\operatorname{space}} \frac{G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{\operatorname{space}} I_{\mathbf{q}}$$

$$SP[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} \frac{G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|)}{\operatorname{space}} \frac{G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{\operatorname{space}} I_{\mathbf{q}}$$

Bilateral Filter on a Height Field

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

from [Durand 02]

Space and Range Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- space σ_s : spatial extent of the kernel, size of the considered neighborhood.
- range $\sigma_{\rm r}$: "minimum" amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.

input

Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$

 $\sigma_{\rm r} = 0.25$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

 $\sigma_{\rm s} = 2$

input

Varying the Range Parameter

 $\sigma_{\rm r} = \infty$ (Gaussian blur)

input

Varying the Space Parameter

 $\sigma_{\rm r} = 0.1$

 $\sigma_{\rm s} = 6$

 $\sigma_{\rm S} = 2$

$$\sigma_{\rm s} = 18$$

How to Set the Parameters

Depends on the application. For instance:

- space parameter: proportional to image size
 - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 - e.g., mean or median of image gradients
- independent of resolution and exposure

Bilateral Filter Crosses Thin Lines

- Bilateral filter averages across features thinner than $\sim 2\sigma_{\rm s}$
- Desirable for smoothing: more pixels = more robust
- Different from diffusion that stops at thin lines

Iterating the Bilateral Filter

$$I_{(n+1)} = BF\left[I_{(n)}\right]$$

- Generate more piecewise-flat images
- Often not needed in computational photo.

Bilateral Filtering Color Images

For gray-level images

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\| \mathbf{p} - \mathbf{q} \|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
scalar

For color images

For color images
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (\|\mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{q}}\|) C_{\mathbf{q}}$$
3D vector (RGB, Lab)

Hard to Compute

• Nonlinear
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) \frac{G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|)} I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT...

Brute-force implementation is slow > 10min

Additional Reading: S. Paris and F. Durand, A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, In Proc. ECCV, 2006

Noisy input Bilateral filter 7x7 window

Bilateral filter Median 3x3

Bilateral filter Median 5x5

Bilateral filter — lower sigma

Bilateral filter — higher sigma

Denoising

- Small spatial sigma (e.g. 7x7 window)
- Adapt range sigma to noise level
- Maybe not best denoising method, but best simplicity/quality tradeoff
 - No need for acceleration (small kernel)

Goal: Understand how does bilateral filter relates with other methods

Additional Reading: Generalised Nonlocal Image Smoothing, L. Pizarro, P. Mrazek, S. Didas, S. Grewenig and J. Weickert, IJCV, 2010

New Idea: NL-Means Filter (Buades 2005)

- Same goals: 'Smooth within Similar Regions'
- KEY INSIGHT: Generalize, extend 'Similarity'
 - Bilateral:

Averages neighbors with **similar intensities**;

- NL-Means:

Averages neighbors with **similar neighborhoods!**

For each and every pixel p:

For each and every pixel p:

- Define a small, simple fixed size neighborhood;

- Define a small, simple fixed size neighborhood;
- Define vector $\mathbf{V}_{\mathbf{p}}$: a list of neighboring pixel values.

'Similar' pixels p, q

→ SMALL
vector distance;

$$| | V_p - V_q | |^2$$

'Dissimilar' pixels p, q→ LARGEvector distance;

$$| | V_p - V_q | |^2$$

'Dissimilar' pixels p, q→ LARGEvector distance;

$$| | V_p - V_q | |^2$$

Filter with this!

p, q neighbors define a vector distance:

$$| | V_p - V_q | |^2$$

Filter with this:

No spatial term!

$$NLMF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(\|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^{2}) I_{\mathbf{q}}$$

pixels **p**, **q** neighbors Set a vector distance;

$$| | V_p - V_q | |^2$$

Vector Distance to p sets weight for each pixel q

$$NLMF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{r}}} (\|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^{2}) I_{\mathbf{q}}$$

Figure 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The weights go from 1(white) to zero(black).

Fig. 9. NL-means denoising experiment with a natural image. Left: Noisy image with standard deviation 20. Right: Restored image.

Noisy source image:

GaussianFilter

Low noise, Low detail

Anisotropic
 Diffusion

(Note 'stairsteps': ~ piecewise constant)

Bilateral Filter

(better, but similar 'stairsteps':

• NL-Means:

Sharp,
Low noise,
Few artifacts.

Figure 4. Method noise experience on a natural image. Displaying of the image difference $u-D_h(u)$. From left to right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization, Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.

original

noisy

denoised

original

noisy

http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/

denoised