BIL 717 Image Processing

Erkut Erdem Dept. of Computer Engineering Hacettepe University

Markov Random Fields

Energy Minimization

• Many vision tasks are naturally posed as energy minimization problems on a rectangular grid of pixels:

 $E(u) = E_{data}(u) + E_{smoothness}(u)$

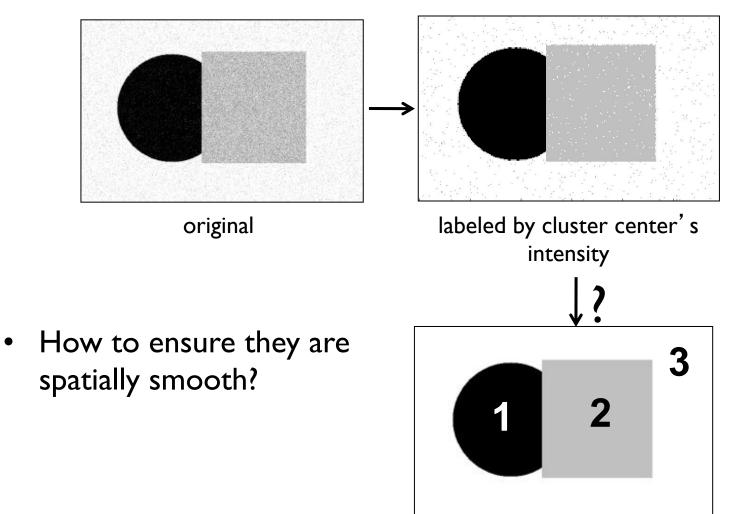
- The data term $E_{data}(u)$ expresses our goal that the optimal model u be consistent with the measurements.
- The smoothness energy $E_{smoothness}(u)$ is derived from our prior knowledge about plausible solutions.
- Recall Mumford-Shah functional

Sample Vision Tasks

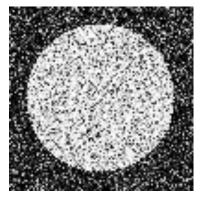
- Image Denoising: Given a noisy image Î(x,y), where some measurements may be missing, recover the original image I(x, y), which is typically assumed to be smooth.
- **Image Segmentation:** Assign labels to pixels in an image, e.g., to segment foreground from background.
- Stereo matching
- Surface Reconstruction
- ..

Smoothing out cluster assignments

• Assigning a cluster label per pixel may yield outliers:

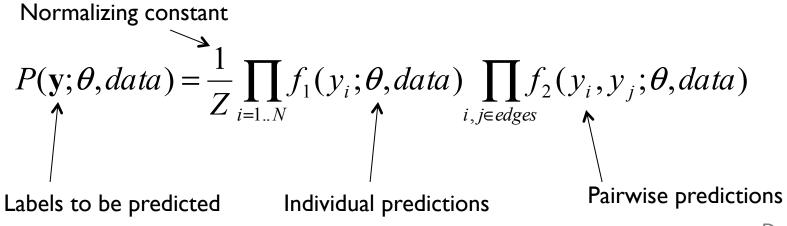


K. Grauman



P(foreground | image)

Encode dependencies between pixels



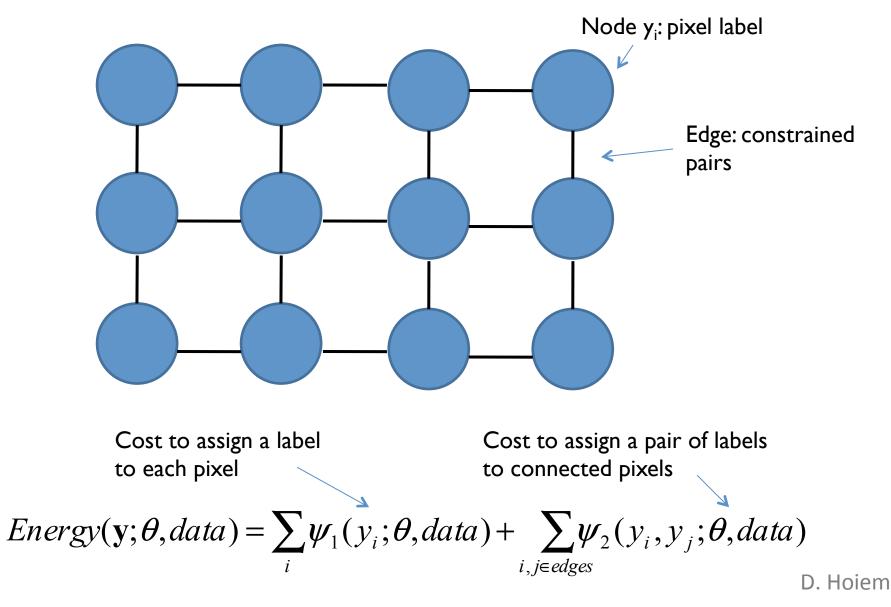
Writing Likelihood as an "Energy"

$$P(\mathbf{y}; \theta, data) = \frac{1}{Z} \prod_{i=1..N} p_1(y_i; \theta, data) \prod_{i,j \in edges} p_2(y_i, y_j; \theta, data)$$

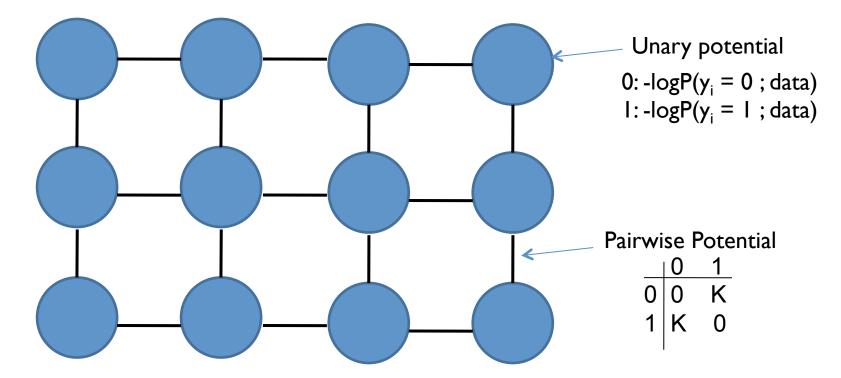
$$Energy(\mathbf{y}; \theta, data) = \sum_i \psi_1(y_i; \theta, data) + \sum_{i,j \in edges} \psi_2(y_i, y_j; \theta, data)$$
"Cost" of assignment y_i
"Cost" of pairwise assignment y_i y_j

D. Hoiem

Markov Random Fields



Markov Random Fields



• Example: "label smoothing" grid

$$Energy(\mathbf{y};\boldsymbol{\theta},data) = \sum_{i} \psi_{1}(y_{i};\boldsymbol{\theta},data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\boldsymbol{\theta},data)$$

D. Hoiem

Binary MRF Example

 Consider the following energy function for two binary random variables, y₁ & y₂.

 $E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$

Binary MRF Example

 Consider the following energy function for two binary random variables, y₁ & y₂.

$$E(y_1, y_2) = \psi_1(y_1) + \psi_2(y_2) + \psi_{12}(y_1, y_2)$$

= $5\bar{y}_1 + 2y_1$
 ψ_1
 $+ \bar{y}_2 + 3y_2$
 ψ_2
 $+ 3\bar{y}_1y_2 + 4y_1\bar{y}_2$
where $\bar{y}_1 = 1 - y_1$ and $\bar{y}_2 = 1 - y_2$.

S. Gould

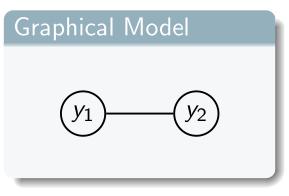
Binary MRF Example

 Consider the following energy function for two binary random variables, y₁ & y₂.

$$E(y_{1}, y_{2}) = \psi_{1}(y_{1}) + \psi_{2}(y_{2}) + \psi_{12}(y_{1}, y_{2})$$

= $\underbrace{5\bar{y}_{1} + 2y_{1}}_{\psi_{1}}$
+ $\underbrace{\bar{y}_{2} + 3y_{2}}_{\psi_{2}}$
+ $\underbrace{3\bar{y}_{1}y_{2} + 4y_{1}\bar{y}_{2}}_{\psi_{12}}$

where $\overline{y}_1 = 1 - y_1$ and $\overline{y}_2 = 1 - y_2$.



Probability Table			
<i>y</i> ₁	<i>y</i> ₂	E	Р
0	0	6	0.244
0	1	11	0.002
1	0	7	0.090
1	1	5	0.664

Image Denoising

- Given a noisy image v, perhaps with missing pixels, recover an image u that is both smooth and close to v.
- Classical techniques:
 - Linear filtering (e.g. Gaussian filtering)
 - Median filtering
 - Wiener filtering
- Modern techniques
 - PDE-based techniques
 - Non-local methods
 - Wavelet techniques
 - MRF-based techniques

Denoising/smoothing techniques that preserve edges in images

Denoising as a Probabilistic Inference

• Perform maximum a posteriori (MAP) estimation by maximizing the *a posteriori* distribution:

p(true image | noisy image) = p(u | v)

- By Bayes theorem: likelihood of noisy image given true image $p(u | v) = \frac{p(v | u)p(u)}{p(v)}$ normalization term
- If we take logarithm:

$$\log p(u \mid v) = \log p(v \mid u) + \log p(u) - \log p(v)$$

• MAP estimation corresponds to minimizing the encoding cost $E(u) = -\log p(v \mid u) - \log p(u)$

Modeling the Likelihood

• We assume that the noise at one pixel is independent of the others.

$$p(v \mid u) = \prod_{i,j} p(v_{ij} \mid u_{ij})$$

• We assume that the noise at each pixel is additive and Gaussian distributed:

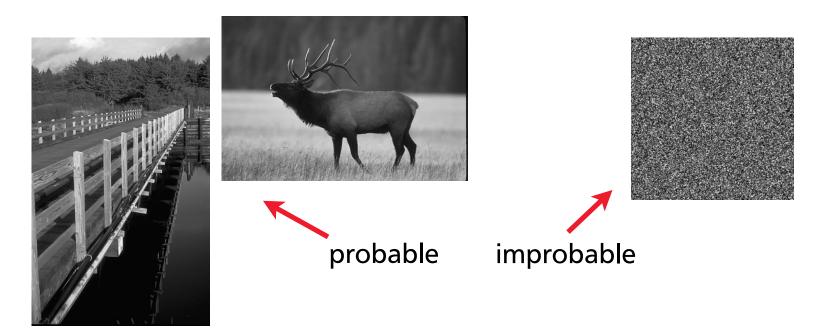
$$p(v_{ij} \mid u_{ij}) = G_{\sigma}(v_{ij} - u_{ij})$$

• Thus, we can write the likelihood:

$$p(v \mid u) = \prod_{i,j} G_{\sigma}(v_{ij} - u_{ij})$$

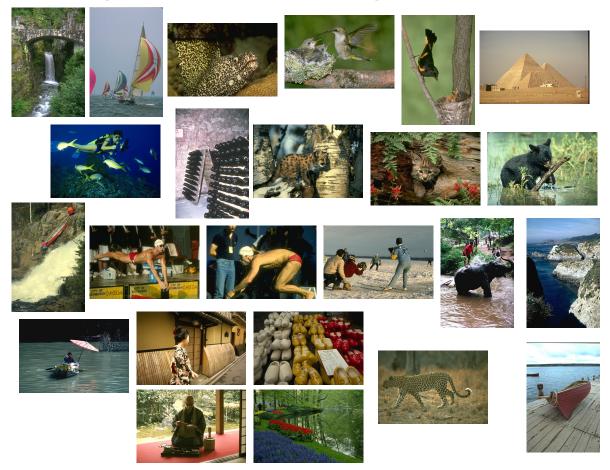
Modeling the Prior

- How do we model the prior distribution of true images?
- What does that even mean?
 - We want the prior to describe how probable it is (a-priori) to have a particular true image among the set of all possible images.



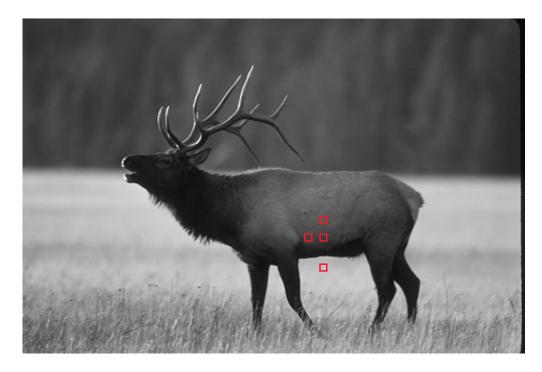
Natural Images

• What distinguishes "natural" images from "fake" ones?



Simple Observation

• Nearby pixels often have a similar intensity:



• But sometimes there are large intensity changes.

MRF-based Image Denoising

• Let each pixel be a node in a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with 4-connected neighborhoods.

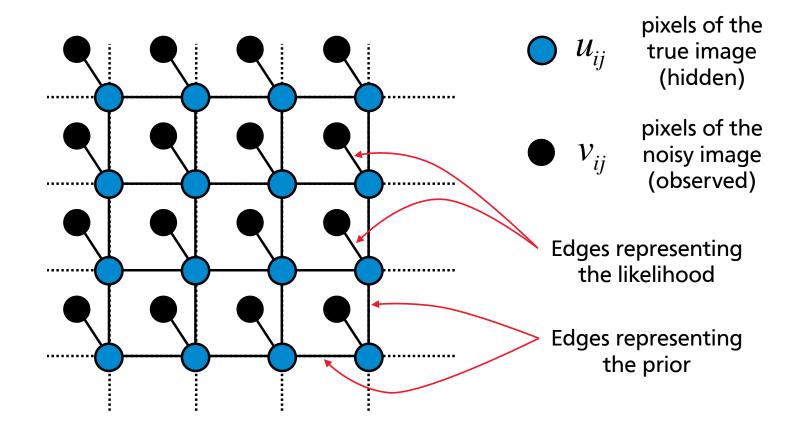


Image Denoising

• The energy function is given by

$$E(u) = \sum_{i \in \mathcal{V}} D(u_i) + \sum_{(i,j) \in \mathcal{E}} V(u_i, u_j)$$

- Unary (clique) potentials D stem from the measurement model, penalizing the discrepancy between the data v and the solution u.
- Interaction (clique) potentials V provide a definition of smoothness, penalizing changes in u between pixels and their neighbors.

Denoising as Inference

- **Goal:** Find the image u that minimizes E(u)
- Several options for MAP estimation process:
 - Gradient techniques
 - Gibbs sampling
 - Simulated annealing
 - Belief propagation
 - Graph cut

— ...

Quadratic Potentials in ID

- Let v be the sum of a smooth ID signal u and IID Gaussian noise e: where $u = (u_1, ..., u_N), v = (v_1, ..., v_N)$, and $e = (e_1, ..., e_N)$.
- With Gaussian IID noise, the negative log likelihood provides a quadratic *data term*. If we let the *smoothness term* be quadratic as well, then up to a constant, the log posterior is

$$E(u) = \sum_{n=1}^{N} (u_n - v_n)^2 + \lambda \sum_{n=1}^{N-1} (u_{n+1} - u_n)^2$$

D. J. Fleet

Quadratic Potentials in ID

• To find the optimal u^* , we take derivatives of E(u) with respect to u_n :

$$\frac{\partial E(u)}{\partial u_n} = 2\left(u_n - v_n\right) + 2\lambda\left(-u_{n-1} + 2u_n - u_{n+1}\right)$$

and therefore the necessary condition for the critical point is

$$u_n + \lambda \left(-u_{n-1} + 2u_n - u_{n+1} \right) = v_n$$

• For endpoints we obtain different equations:

$$u_1 + \lambda (u_1 - u_2) = v_1$$
 N linear equations
 $u_N + \lambda (u_N - u_{N-1}) = v_N$ in the N unknowns

Missing Measurements

• Suppose our measurements exist at a subset of positions, denoted P. Then we can write the energy function as

$$E(u) = \sum_{n \in P} (u_n - v_n)^2 + \lambda \sum_{\text{all } n} (u_{n+1} - u_n)^2$$

• At locations n where no measurement exists, we have:

$$-u_{n-1} + 2u_n - u_{n+1} = 0$$

• The Jacobi update equation in this case becomes:

$$u_n^{(t+1)} = \begin{cases} \frac{1}{1+2\lambda} (v_n + \lambda u_{n-1}^{(t)} + \lambda u_{n+1}^{(t)}) & \text{for } n \in P, \\ \frac{1}{2} (u_{n-1}^{(t)} + u_{n+1}^{(t)}) & \text{otherwise} \end{cases}$$

2D Image Smoothing

• For 2D images, the analogous energy we want to minimize becomes:

$$\begin{split} E(u) &= \sum_{n,m \in P} (u[n,m] - v[n,m])^2 \\ &+ \lambda \sum_{\text{all } n,m} (u[n+1,m] - u[n,m])^2 + (u[n,m+1] - u[n,m])^2 \end{split}$$

where P is a subset of pixels where the measurements v are available.

Looks familiar??

Robust Potentials

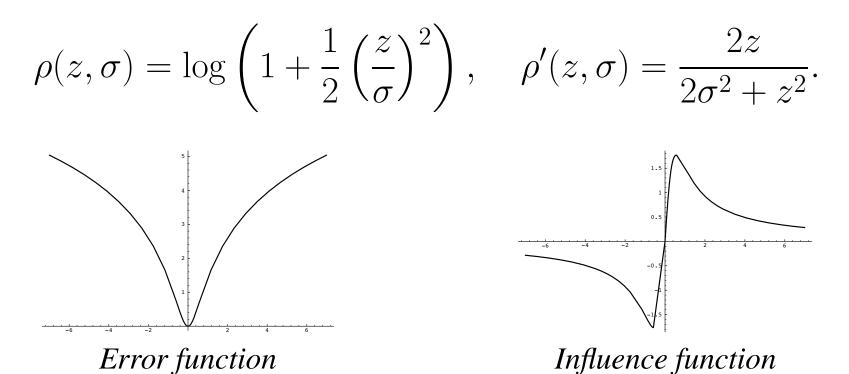
- Quadratic potentials are not robust to *outliers* and hence they over-smooth edges. These effects will propagate throughout the graph.
- Instead of quadratic potentials, we could use a robust error function ρ :

$$E(u) = \sum_{n=1}^{N} \rho(u_n - v_n, \, \sigma_d) + \lambda \sum_{n=1}^{N-1} \rho(u_{n+1} - u_n, \, \sigma_s) \,,$$

where σ_d and σ_s are scale parameters.

Robust Potentials

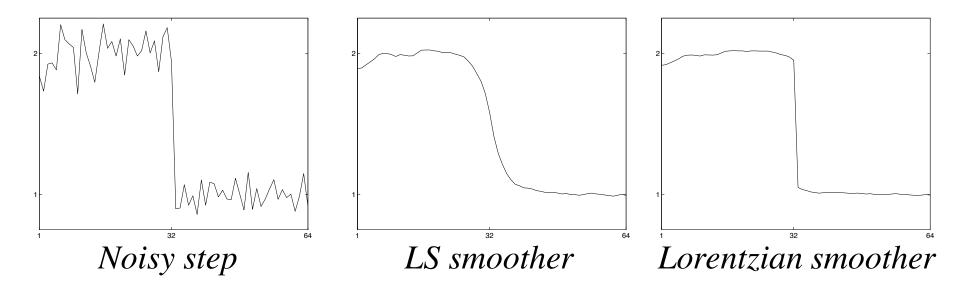
• **Example:** the *Lorentzian* error function



D. J. Fleet

Robust Potentials

- **Example:** the *Lorentzian* error function
- Smoothing a noisy step edge



Robust Image Smoothing

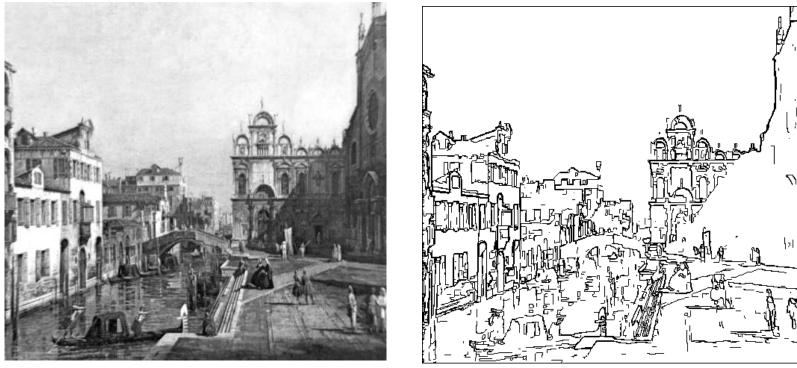
• A Lorentzian smoothness potential encourages an approximately piecewise constant result:

Original image

Output of robust smoothing

Robust Image Smoothing

• A Lorentzian smoothness potential encourages an approximately piecewise constant result:



Original image

D. J. Fleet

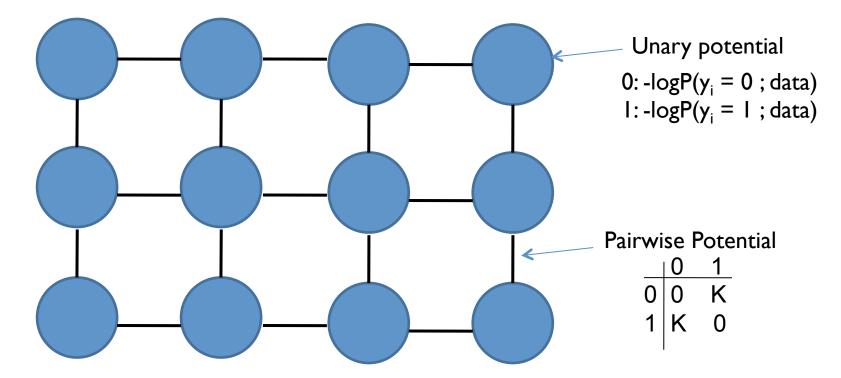
Edges

Image Segmentation

- Given an image, partition it into meaningful regions or segments.
- Approaches
 - Variational segmentation models
 - Clustering-based approaches (K-means, Mean Shift)
 - Graph-theoretic formulations
- MRF-based techniques

MRFs and Graph-cut

Markov Random Fields



• Example: "label smoothing" grid

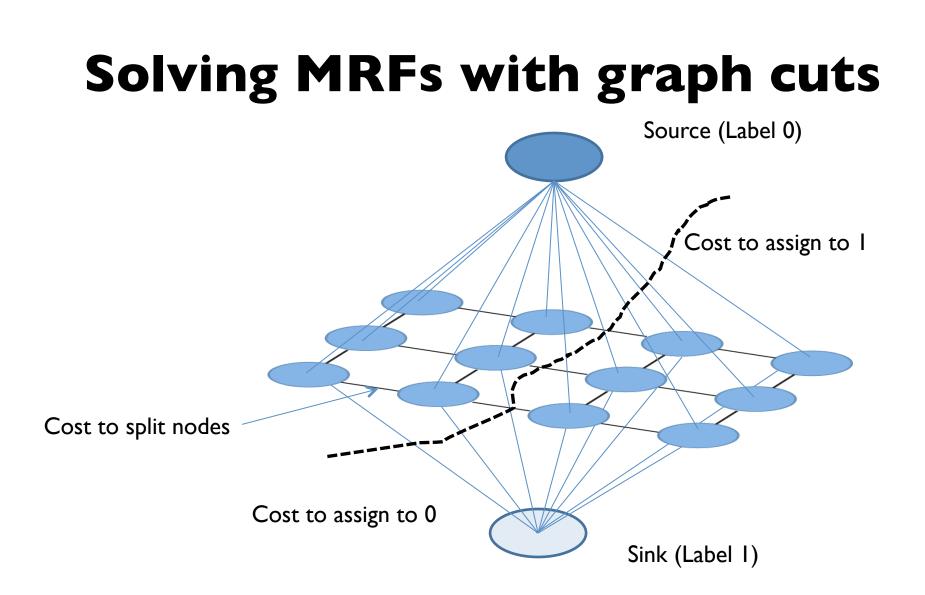
$$Energy(\mathbf{y};\boldsymbol{\theta},data) = \sum_{i} \psi_{1}(y_{i};\boldsymbol{\theta},data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\boldsymbol{\theta},data)$$

D. Hoiem

Solving MRFs with graph cuts

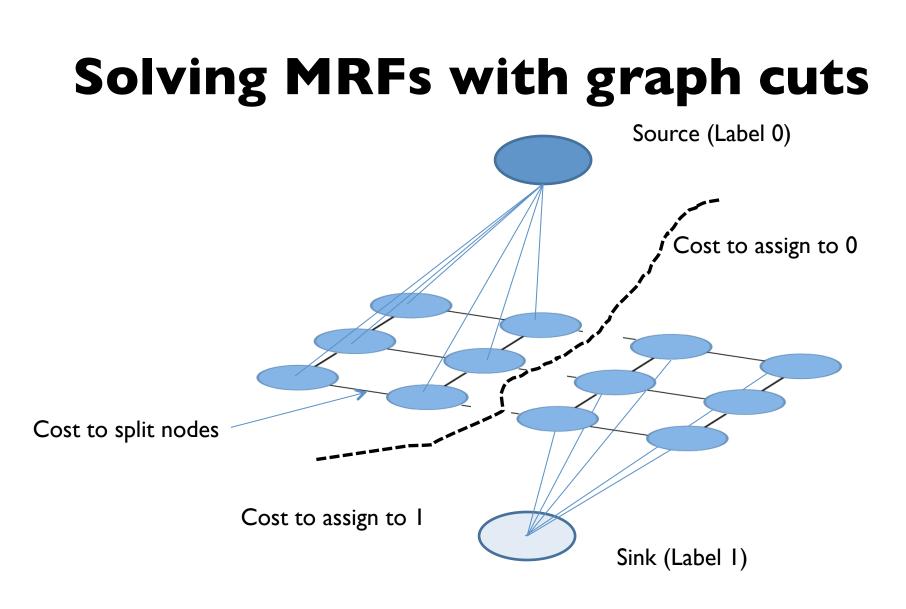
Main idea:

- Construct a graph such that every st-cut corresponds to a joint assignment to the variables y
- The cost of the cut should be equal to the energy of the assignment, E(y; data)*.
- The minimum-cut then corresponds to the minimum energy assignment, $\mathbf{y}^* = \operatorname{argmin}_{\mathbf{y}} E(\mathbf{y}; \operatorname{data})$.



$$Energy(\mathbf{y};\boldsymbol{\theta},data) = \sum_{i} \psi_{1}(y_{i};\boldsymbol{\theta},data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\boldsymbol{\theta},data)$$

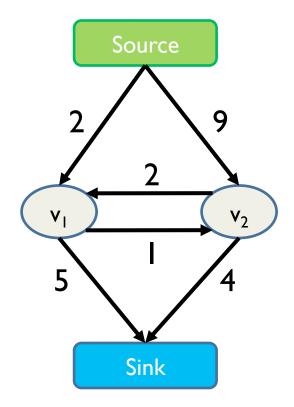
D. Hoiem



$$Energy(\mathbf{y};\boldsymbol{\theta},data) = \sum_{i} \psi_{1}(y_{i};\boldsymbol{\theta},data) + \sum_{i,j \in edges} \psi_{2}(y_{i},y_{j};\boldsymbol{\theta},data)$$

D. Hoiem

The st-Mincut Problem

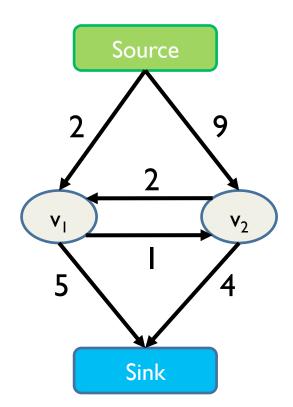


Graph (V, E, C)

Vertices V = $\{v_1, v_2 ... v_n\}$ Edges E = $\{(v_1, v_2)\}$ Costs C = $\{c_{(1, 2)}\}$

The st-Mincut Problem

What is a st-cut?



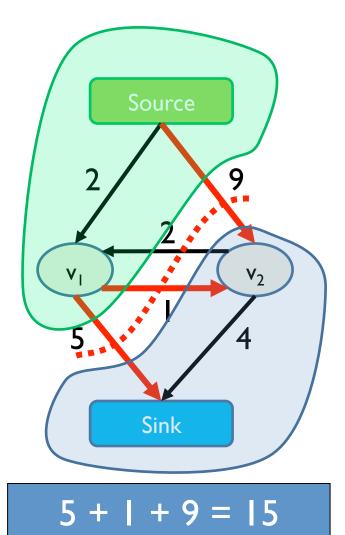
The st-Mincut Problem

What is a st-cut?

An st-cut (**S**,**T**) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T



The st-Mincut Problem

What is a st-cut?

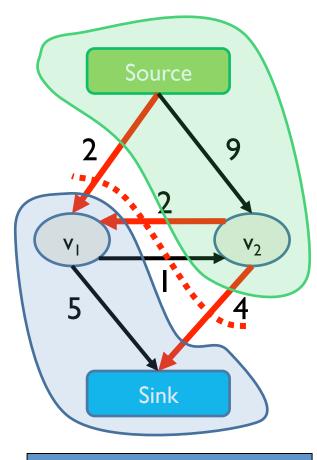
An st-cut (**S**,**T**) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

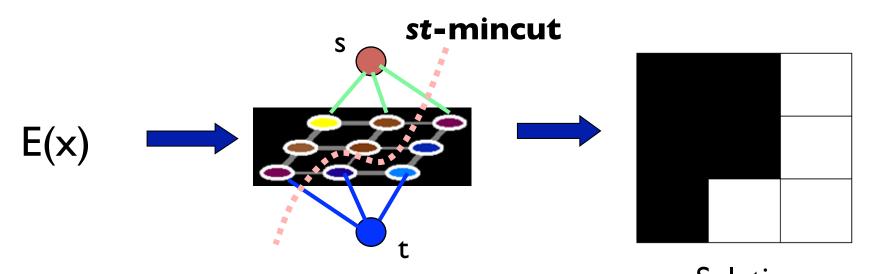
st-cut with the minimum cost



So how does this work?

Construct a graph such that:

- I. Any st-cut corresponds to an assignment of x
- 2. The cost of the cut is equal to the energy of x : E(x)



Solution [Hammer, 1965] [Kolmogorov and Zabih, 2002

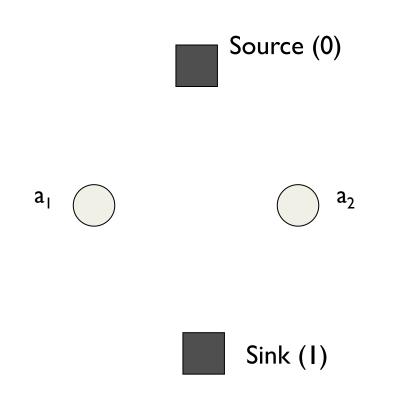
st-mincut and Energy Minimization

$$E(x) = \sum_{i} \theta_{i}(x_{i}) + \sum_{i,j} \theta_{ij}(x_{i},x_{j})$$
For all ij $\theta_{ij}(0,1) + \theta_{ij}(1,0) \ge \theta_{ij}(0,0) + \theta_{ij}(1,1)$

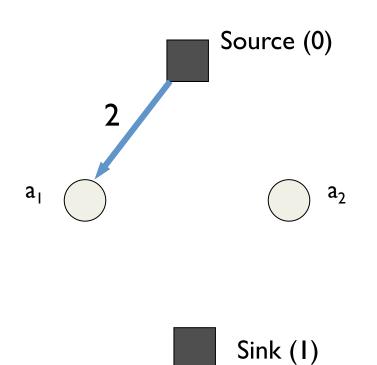
$$Equivalent (transformable)$$

$$E(x) = \sum_{i} c_{i}x_{i} + \sum_{i,j} c_{ij}x_{i}(1-x_{j}) c_{ij} \ge 0$$

 $E(a_1,a_2)$

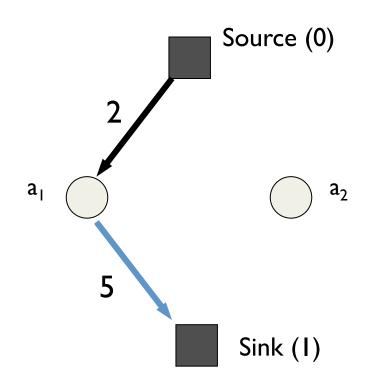


 $E(a_1,a_2) = 2a_1$

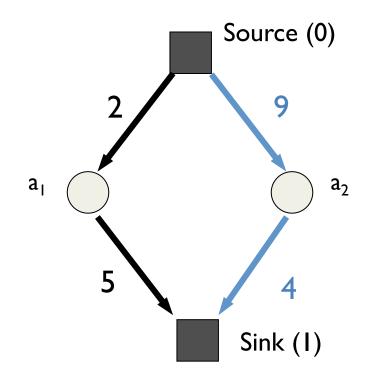


P. Kohli

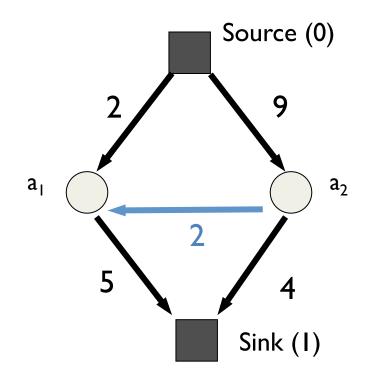
 $E(a_1,a_2) = 2a_1 + 5\bar{a}_1$

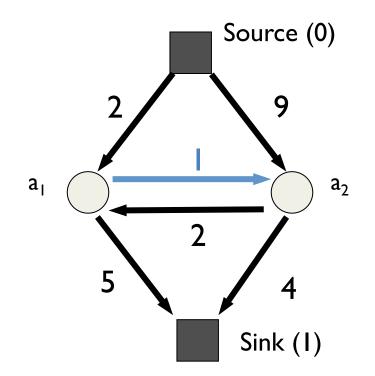


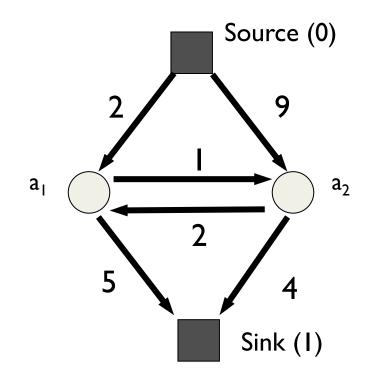
 $E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2$

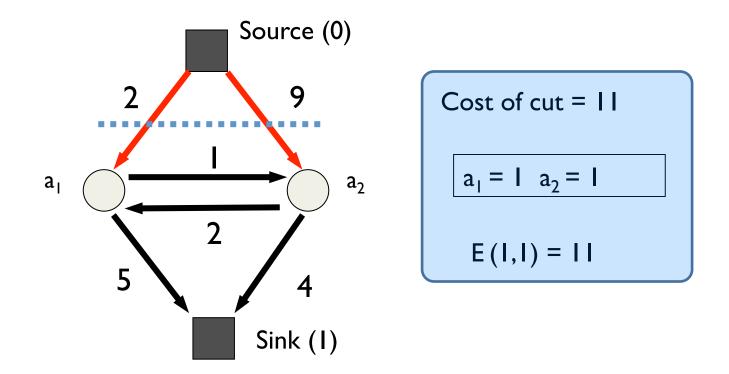


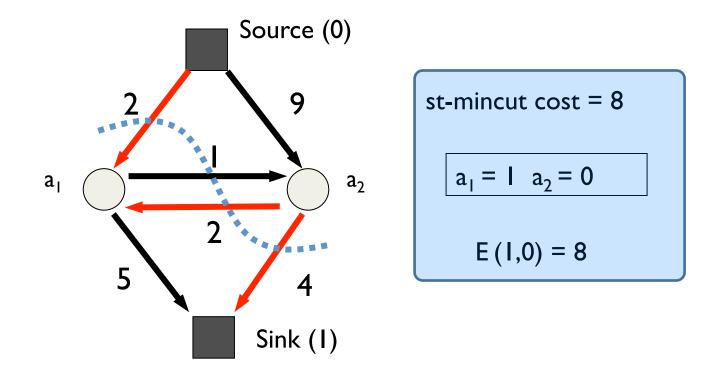
 $E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2$





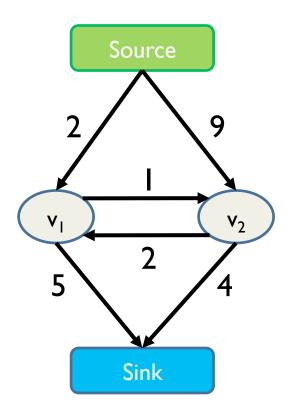






How to compute the st-mincut?

Solve the dual maximum flow problem



Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity

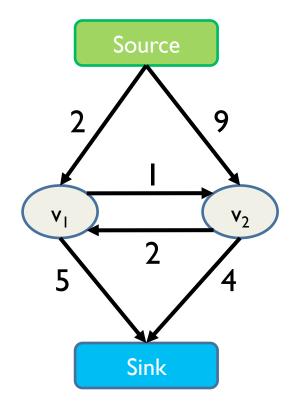
Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

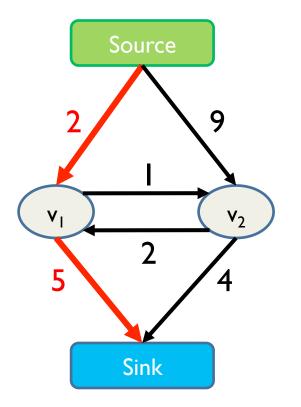
Assuming non-negative capacity

Flow = 0



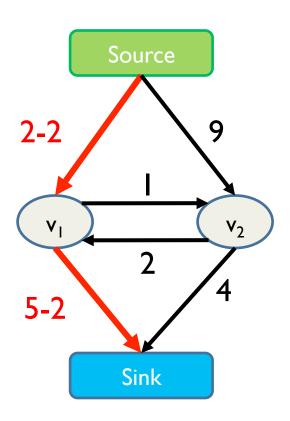
Flow = 0

Augmenting Path Based Algorithms



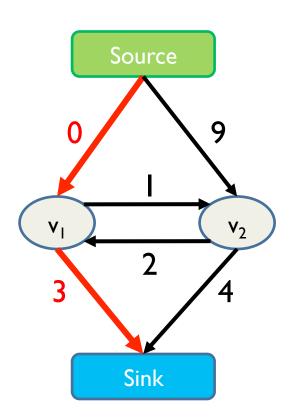
I. Find path from source to sink with positive capacity

Flow = 0 + 2



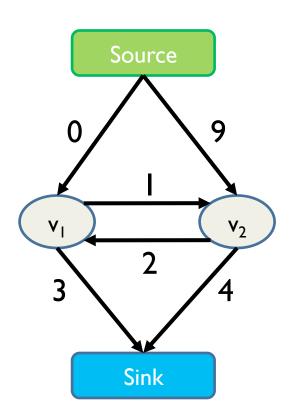
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path

Flow = 2



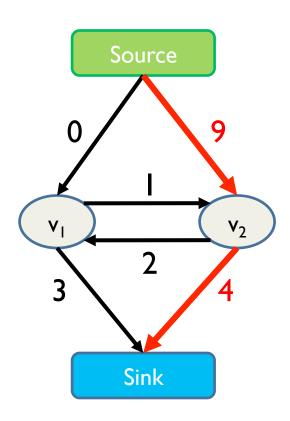
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path

Flow = 2



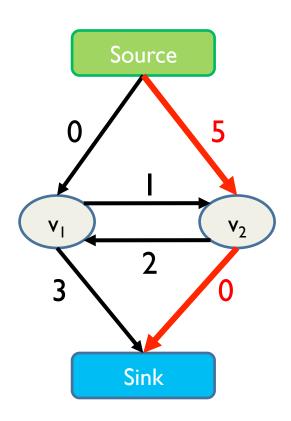
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 2



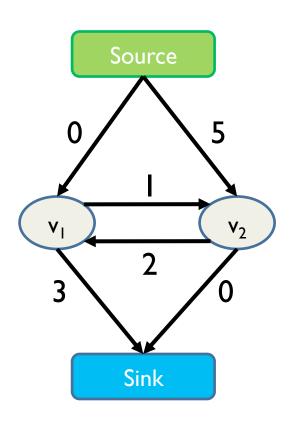
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 2 + 4



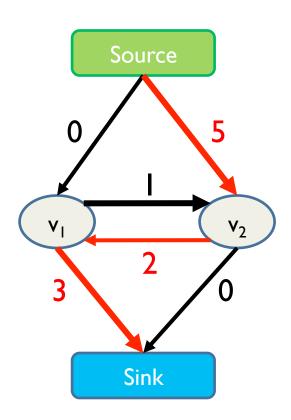
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 6



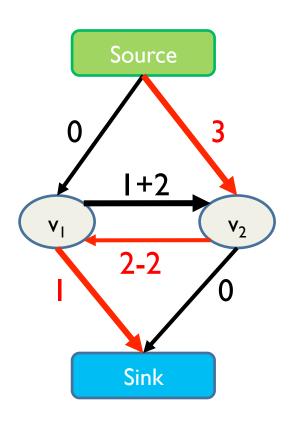
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 6



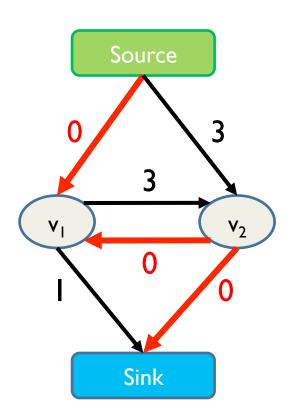
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 6 + 2



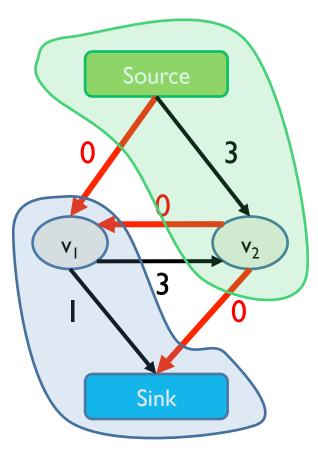
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 8

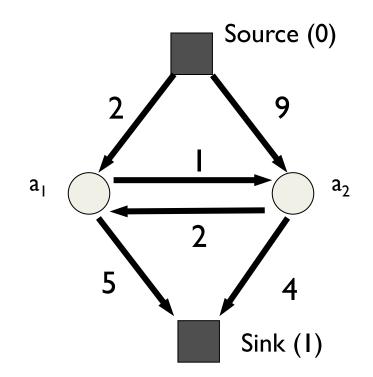


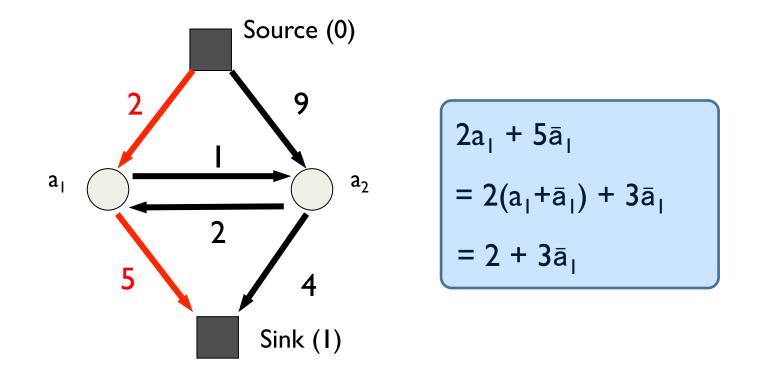
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

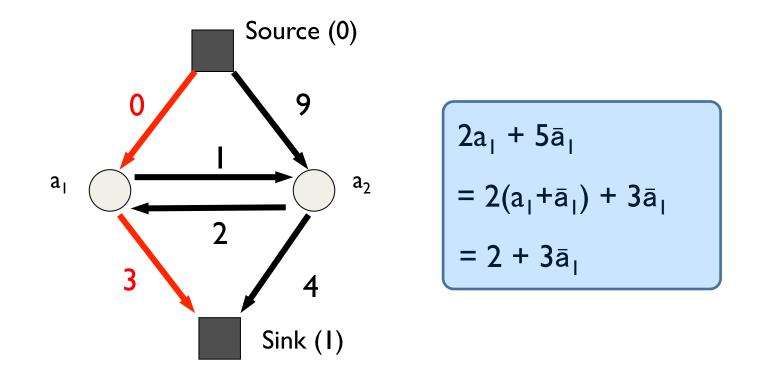
Flow = 8



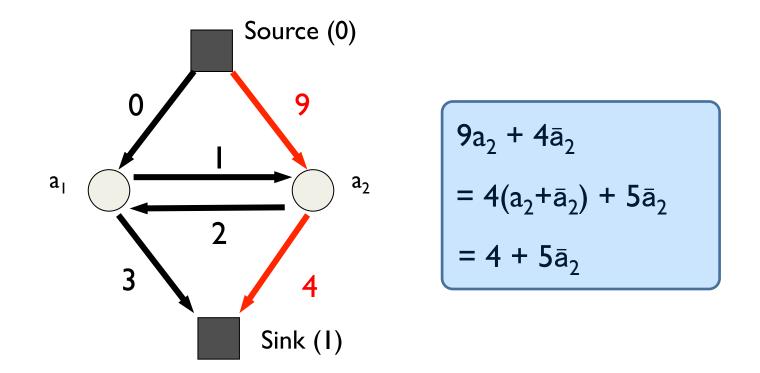
- I. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found





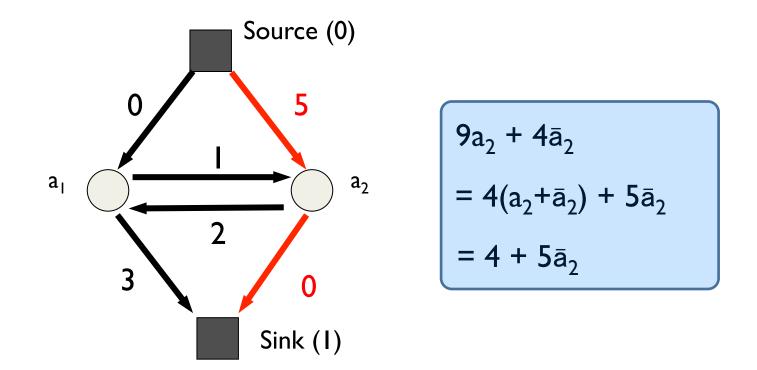


 $E(a_1,a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

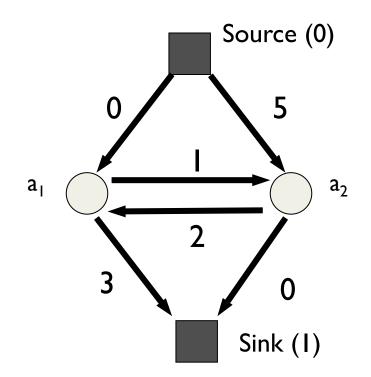


P. Kohli

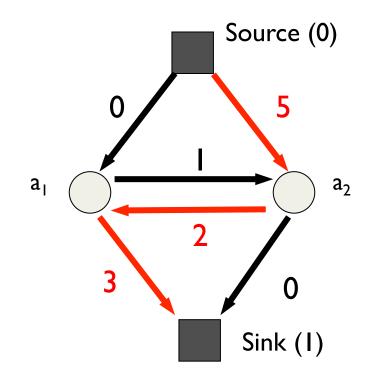
 $E(a_1,a_2) = 2 + 3\bar{a}_1 + 5a_2 + 4 + 2a_1\bar{a}_2 + \bar{a}_1a_2$



 $E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

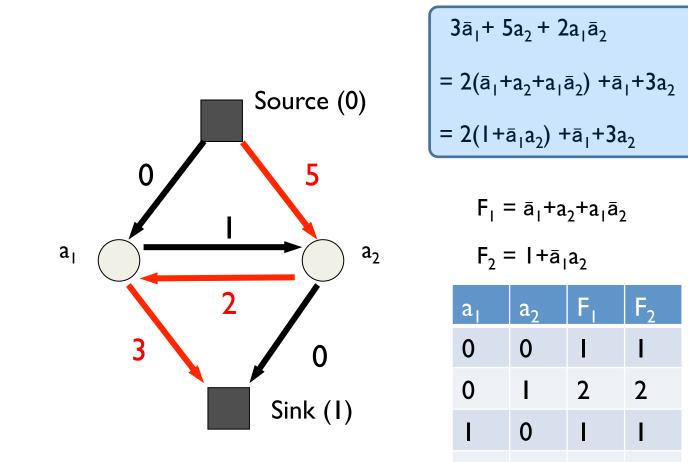


 $E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$



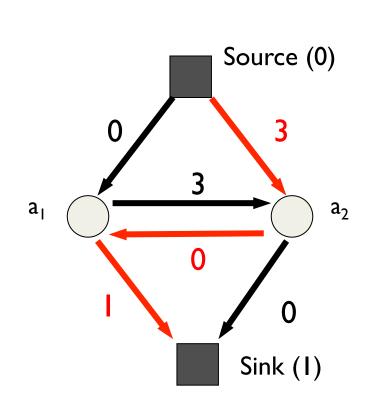
P. Kohli

 $E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$



I

 $E(a_1,a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2$



$3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2$
$= 2(\bar{a}_1 + a_2 + a_1 \bar{a}_2) + \bar{a}_1 + 3a_2$
$= 2(1 + \bar{a}_1 a_2) + \bar{a}_1 + 3 a_2$

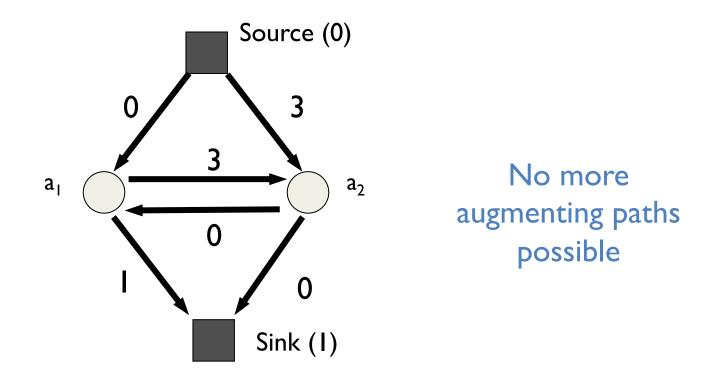
$$\mathbf{F}_{1} = \bar{\mathbf{a}}_{1} + \mathbf{a}_{2} + \mathbf{a}_{1} \bar{\mathbf{a}}_{2}$$

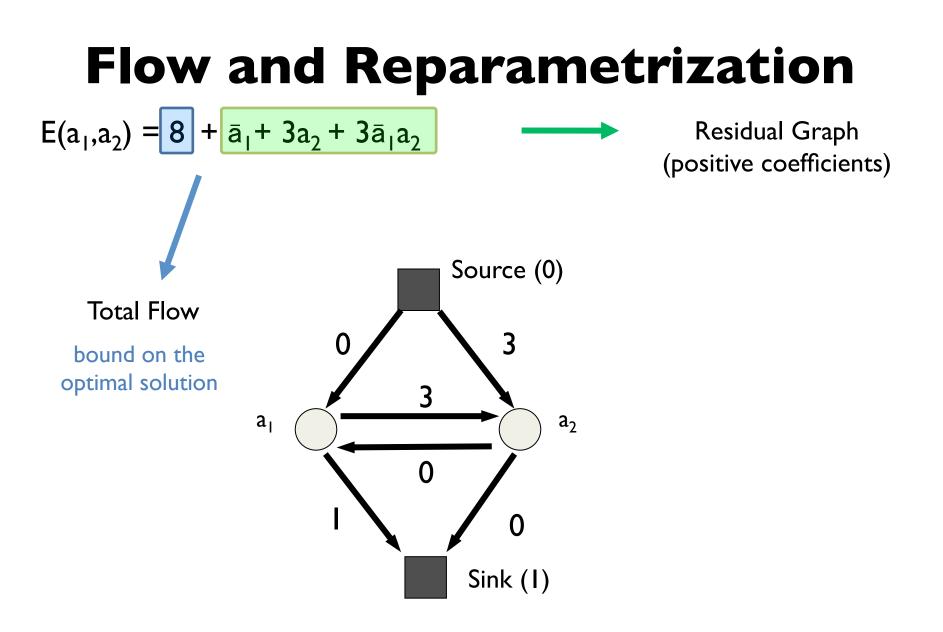
$$F_2 = I + \bar{a}_1 a_2$$

a _l	a ₂	F	F ₂
0	0	I	I
0	Ι	2	2
I	0	I	I
I	I	I	I

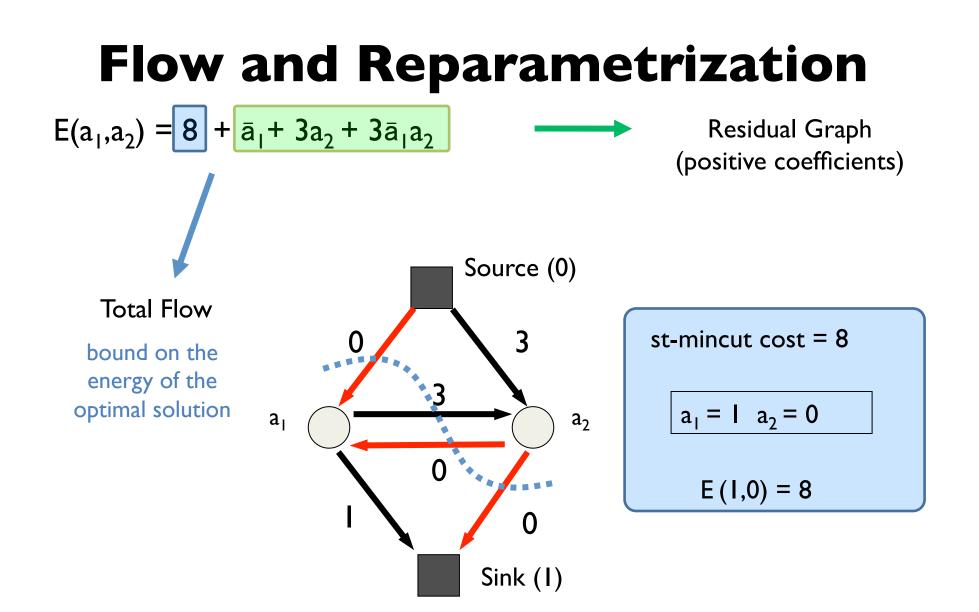
P. Kohli

 $E(a_1,a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2$





Tight Bound >> Inference of the optimal solution becomes trivial P. Kohli



Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity (m ~ O(n))
- Dual search tree augmenting path algorithm [Boykov and Kolmogorov PAMI 2004]
 - Finds approximate shortest augmenting paths efficiently
 - High worst-case time complexity
 - Empirically outperforms other algorithms on vision problems

Code for Image Segmentation

$$E(\mathbf{x}) = \sum_{i} c_{i} \mathbf{x}_{i} + \sum_{i,j} d_{ij} |\mathbf{x}_{i} - \mathbf{x}_{j}|$$

$$E: \{0, I\}^{n} \to \mathbb{R}$$

$$0 \to fg$$

$$I \to bg$$

n = number of pixels

How to minimize E(x)?

Global Minimum (x*)

P. Kohli

Graph *g;

```
For all pixels p
```

```
/* Add a node to the graph */
nodeID(p) = g->add_node();
```

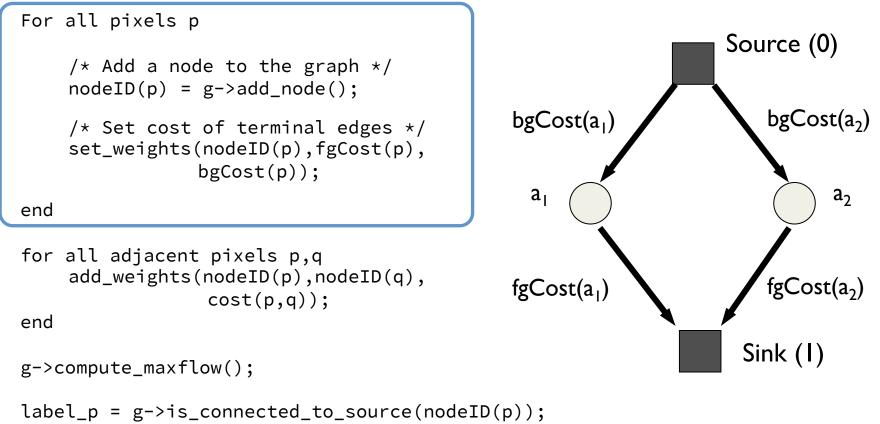
end

end

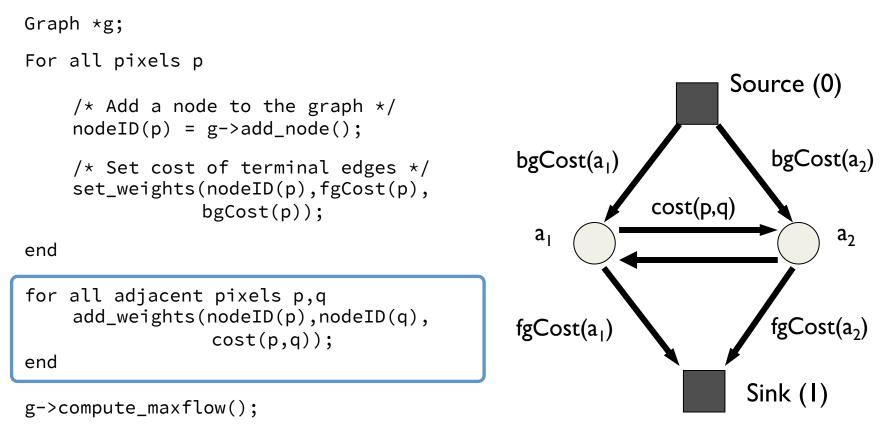
```
g->compute_maxflow();
```

```
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```

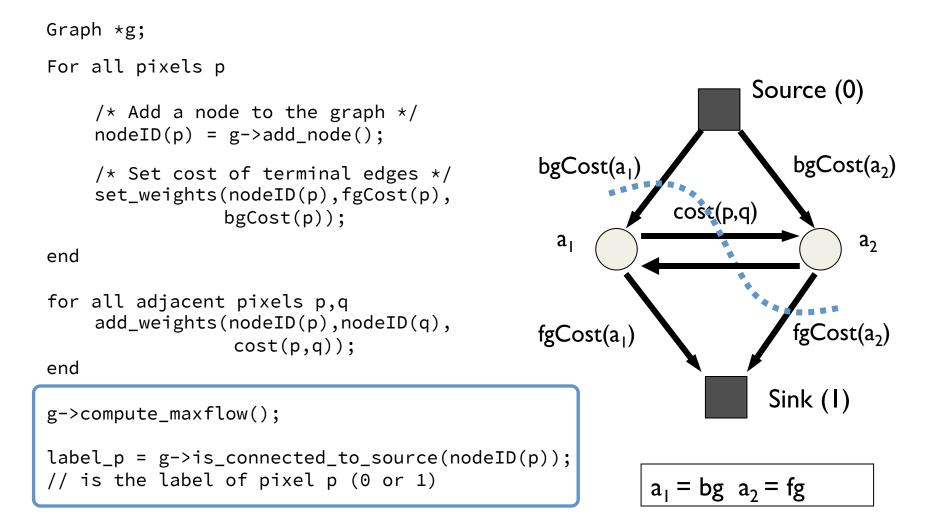

Graph *g;



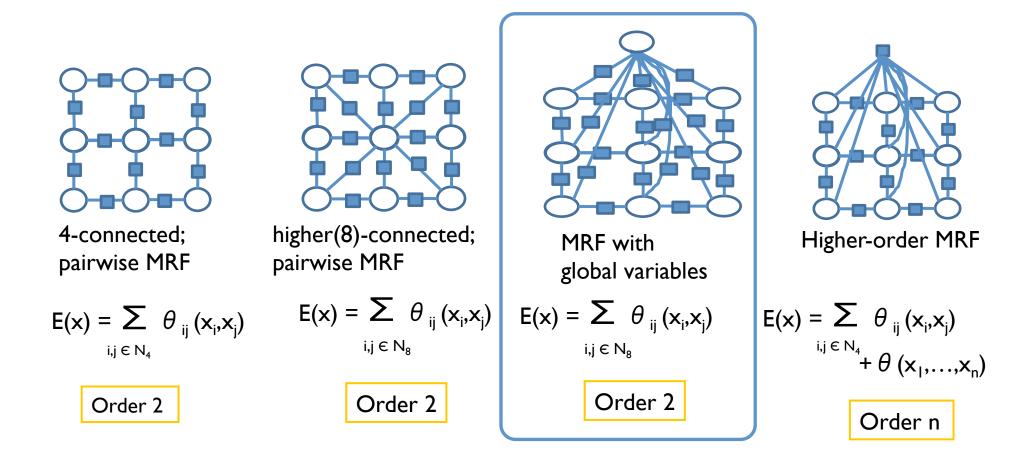
```
// is the label of pixel p (0 or 1)
```



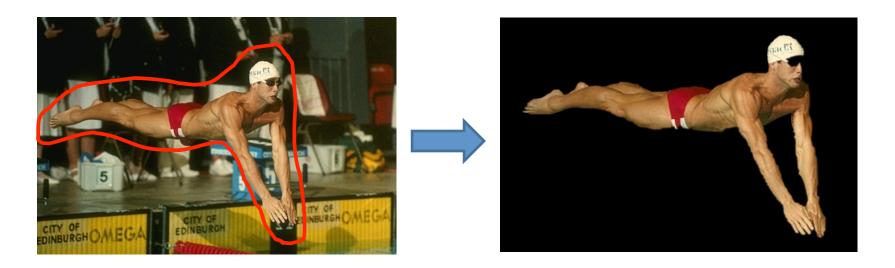
```
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```



Random Fields in Vision



GrabCut segmentation



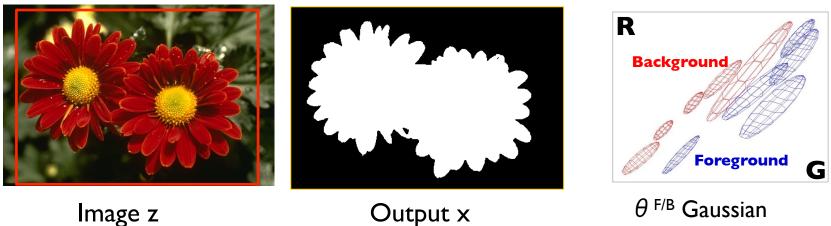
User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.

MRF with global potential GrabCut model [Rother et. al. '04]

$$\mathsf{E}(\mathsf{x}, \theta^{\mathsf{F}}, \theta^{\mathsf{B}}) = \sum_{i} \mathsf{F}_{i}(\theta^{\mathsf{F}})\mathsf{x}_{i} + \mathsf{B}_{i}(\theta^{\mathsf{B}})(\mathsf{I}-\mathsf{x}_{i}) + \sum_{i,j \in \mathsf{N}} |\mathsf{x}_{i}-\mathsf{x}_{j}|$$

 $F_{i} = -\log \Pr(z_{i} | \theta^{F}) \qquad B_{i} = -\log \Pr(z_{i} | \theta^{B})$



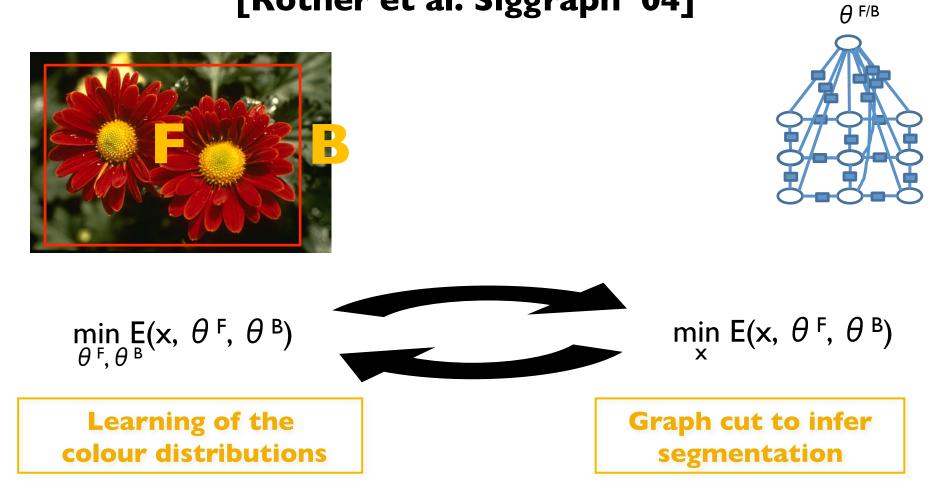
Mixture models

Problem: for unknown x, θ^{F} , θ^{B} the optimization is NP-hard! [Vicente et al. '09]

 θ F/B

GrabCut: Iterated Graph Cuts

[Rother et al. Siggraph '04]



Most systems with global variables work like that e.g. [ObjCut Kumar et. al. '05, PoseCut Bray et al. '06, LayoutCRF Winn et al. '06]

C. Rother

GrabCut: Iterated Graph Cuts

- I. Define graph
 - usually 4-connected or 8-connected
- 2. Define unary potentials
 - Color histogram or mixture of Gaussians for background and foreground $\oint \frac{P(c(x);\theta_{foreg})}{P(c(x);\theta_{foreg})}$

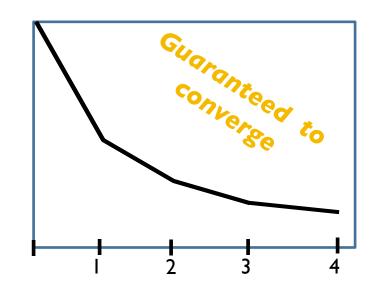
$$unary_potential(x) = -\log \left| \frac{-(c(x))}{P(c(x))} \right|$$

$$c(x); \theta_{background}$$

- 3. Define pairwise potentials $edge_potential(x, y) = k_1 + k_2 \exp\left\{\frac{-\|c(x) c(y)\|^2}{2\sigma^2}\right\}$
- 4. Apply graph cuts
- 5. Return to 2, using current labels to compute foreground, background models

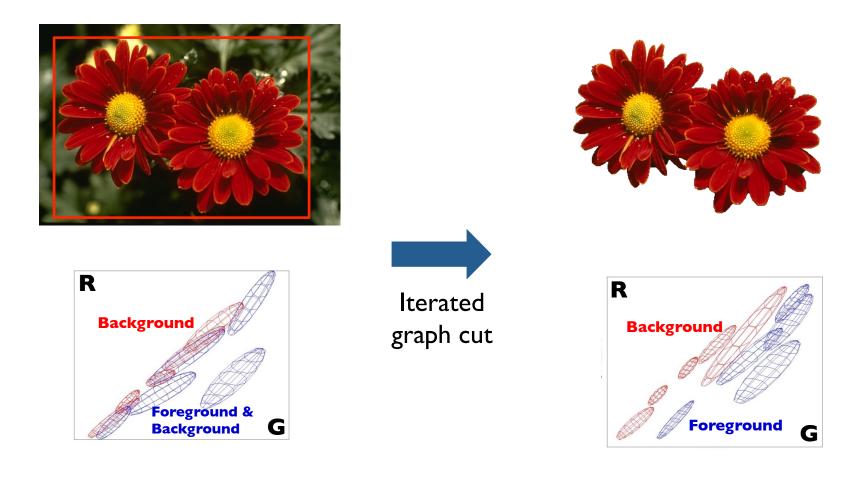
GrabCut: Iterated Graph Cuts

Result

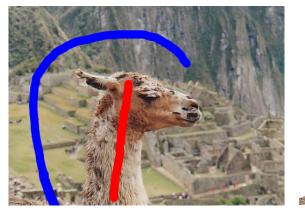


Energy after each Iteration

Colour Model



Optimizing over θ 's help



Input

no iteration [Boykov&Jolly '01]

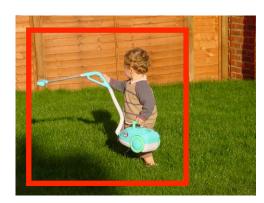
after convergence [GrabCut '04]

Input

C. Rother

What is easy or hard about these cases for graphcut-based segmentation?

Easier examples



D. Hoiem

More difficult Examples

Fine structure

Camouflage & Low Contrast

Initial Rectangle

Harder Case

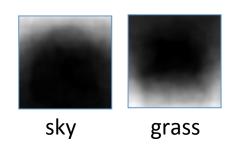
Initial Result

Semantic Segmentation **Joint Object recognition & segmentation**

$$\mathbf{E}(\mathbf{x}, \boldsymbol{\omega}) = \sum_{\mathbf{i}} \theta_{i}(\boldsymbol{\omega}, \mathbf{x}_{i}) + \sum_{\mathbf{i}} \theta_{i}(\mathbf{x}_{i}) + \sum_{\mathbf{i}} \theta_{i}(\mathbf{x}_{$$

 $x_i \in \{1, ..., K\}$ for K object classes

Location

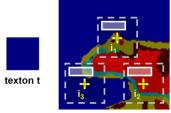


Class (boosted textons)

(a) Input image



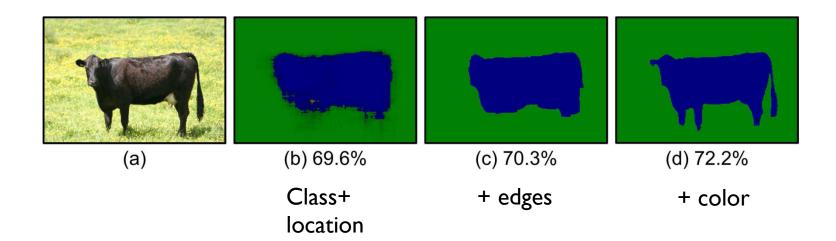
(b) Texton map



[TextonBoost; Shotton et al, '06]

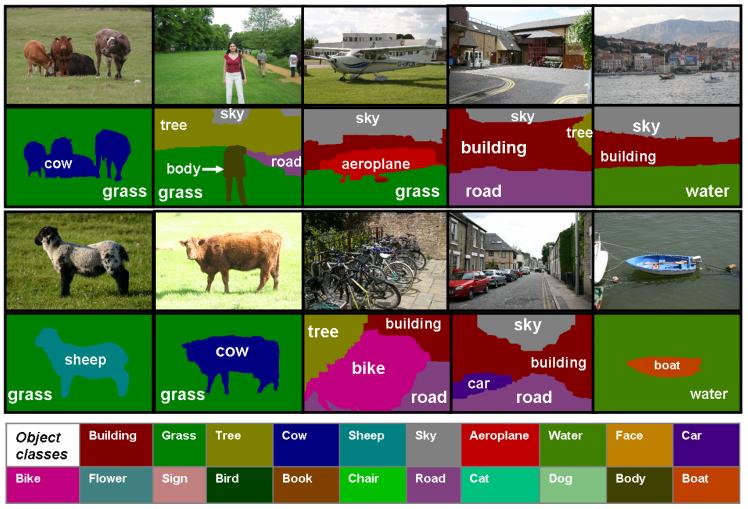
(c) Feature pair = (r,t) (d) Superimposed rectangles

Semantic Segmentation Joint Object recognition & segmentation



Semantic Segmentation Joint Object recognition & segmentation

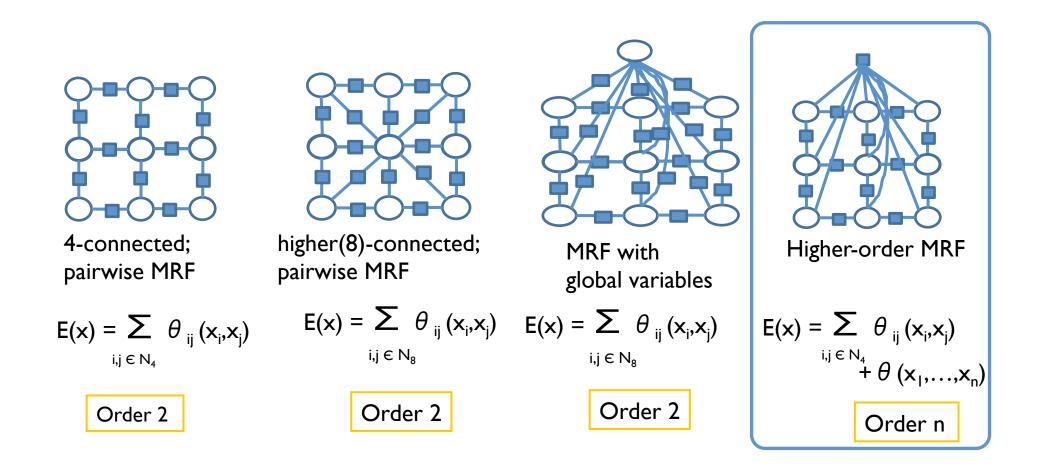
Good results ...



[TextonBoost; Shotton et al, '06]

C. Rother

Random Fields in Vision



Why Higher-order Functions?

In general $\theta(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \neq \theta(\mathbf{x}_1, \mathbf{x}_2) + \theta(\mathbf{x}_1, \mathbf{x}_3) + \theta(\mathbf{x}_2, \mathbf{x}_3)$

Reasons for higher-order RFs:

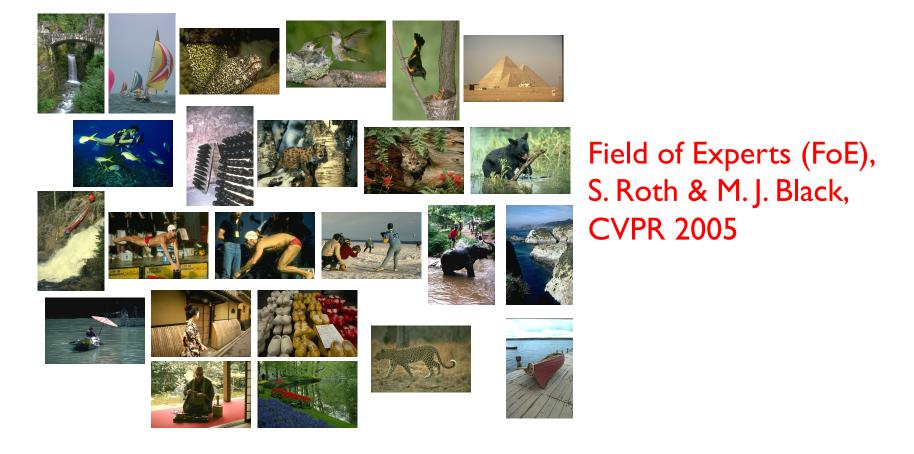
- 1. Even better image(texture) models:
 - Field-of Expert [FoE, Roth et al. '05]
 - Curvature [Woodford et al. '08]

2. Use **global** Priors:

- **Connectivity** [Vicente et al. '08, Nowozin et al. '09]
- Better encoding label statistics [Woodford et al. '09]
- Convert global variables to global factors [Vicente et al. '09]

Modeling the Potentials

• Could the potentials (image priors) be learned from natural images?



De-noising with Field-of-Experts

[Roth and Black '05, Ishikawa '09]

Ζ

 $E(X) = \sum_{i} (z_i - x_i)^2 / 2\sigma^2 + \sum_{c} \sum_{k} \alpha_k (I + 0.5(J_k x_c)^2)$ Unary liklihood FoE prior

Х

 x_c set of nxn patches (here 2x2) J_k set of filters:

non-convex optimization problem

How to handle continuous labels in discrete MRF? From [Ishikawa PAMI '09, Roth et al '05]

C. Rother

De-noising with Field-of-Experts [Roth and Black '05, Ishikawa '09]

original image

noisy image, σ=20

denoised using gradient ascent

PSNR 22.49dB SSIM 0.528 PSNR 27.60dB SSIM 0.810

- Very sharp discontinuities. No blurring across boundaries.
- Noise is removed quite well nonetheless.