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1 PERONA-MALIK TYPE NONLINEAR DIFFUSION

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create
a scale space representation that consists of gradually simplified images where some
image features such as edges are maintained or even enhanced. The earliest nonlinear
diffusion model proposed in image processing is the so-called anisotropic diffusion1

by Perona and Malik [4].
In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) ≥ 0, and
lims→∞ g(s) = 0. As a consequence, the diffusivities become variable in both space
and time. The Perona-Malik equation is

(1)
∂u
∂t

= ∇ · (g(|∇u|)∇u)

with homogeneous Neumann boundary conditions and the initial condition u0(x) =
f (x), f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s2/λ2 ,(2)

g(s) = e−
s2

λ2(3)
∗erkut@cs.hacettepe.edu.tr
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued dif-

fusivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [6], will be summarized
in Section 3.
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1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

where λ corresponds to a contrast parameter. These functions share similar character-
istics, and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it
clearly demonstrates the role of the contrast parameter λ and the main behavior of the
equation [7]. For 1D case, the Perona-Malik equation is as follows:

(4)
∂u
∂t

=
∂

∂x
(g(|ux|)ux)︸ ︷︷ ︸

Φ(ux)

= Φ′(ux)uxx

with g(|ux|) = 1
1+|ux |2/λ2 or g(|ux|) = e−

|ux |2
λ2 .

Figure 1 shows the diffusivity functions and the corresponding flux functions for
linear diffusion and Perona-Malik type nonlinear diffusion. One can easily observe
that for linear diffusion the diffusivity is constant (g(s) = 1), which results in a lin-
early increasing flux function. As a result, all points, including the discontinuities, are
smoothed equally. For Perona-Malik, the diffusivity is variable and decreases as |ux|
increases. It is evident that the decay in diffusivity is particularly rapid after the con-
trast parameter λ. This leads to two different behaviors in the diffusion process. Since
∂u
∂t = Φ′(ux)uxx, for the points where |ux| < λ, Φ′(ux) > 0 which corresponds
to lost in the material. For the points where |ux| > λ, on the contrary, Φ′(ux) < 0
which generates an enhancement in the material. Hence, although the diffusivity is al-
ways nonnegative, one can observe both forward and backward diffusions during the
smoothing process, and the contrast parameter λ separates the regions of forward dif-
fusion from the regions of backward diffusion.
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Figure 1: Diffusivities and the corresponding flux functions for linear diffusion (plotted
in dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For
Perona-Malik diffusivity g(s) = 1

1+s2/λ2 is used with λ = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations
where |∇u|2 is large. As |∇u|2 can be interpreted as a measure of edge likelihood,
this means that the amount of smoothing is low along image edges. In particular, the
contrast parameter λ specifies a measure that determines which edge points are to be
preserved or blurred during the diffusion process. Even edges can be sharpened due to
the local backward diffusion behavior as discussed for the 1D case. Since the backward
diffusion is a well-known ill-posed process, this may cause an instability, the so-called
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(a) (b) (c)

Figure 2: The staircasing effect. (a) Original noisy image. (b) Perona-Malik diffusion.
(c) Regularized Perona-Malik diffusion.

staircasing effect, where a piece-wise smooth region in the original image evolves into
many unintuitive piecewise constant regions. Figure 2 shows an example where this
instability occurs. The unintuitive regions such as the one at the woman’s face and
shoulder are clearly visible in Figure 2(b). A possible solution to this drawback is to
use regularized gradients in diffusivity computations [2] (Figure 2(c)).

Replacing the diffusivities g(|∇u|) with the regularized ones g(|∇uσ|) leads to
the following equation:

(5)
∂u
∂t

= ∇ · (g(|∇uσ|)∇u)

where uσ = Gσ ∗ u represents a Gaussian-smoothed version of the image. Taking the
equivalence of the Gaussian smoothing and the linear scale space into account, ∇uσ

can also be considered as the gradient computed at a specific scale σ > 0.

Some example results of regularized Perona-Malik filtering with different diffusion
times are shown in Figure3 and Figure 4. It is evident from these images that the corre-
sponding smoothing process diminishes noise while retaining or even enhancing edges
since it considers a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation, gi,j = g(|∇ui,j|):

(6)

|∇ui,j| =

√(dui,j

dx

)2

+

(dui,j

dy

)2

≈

√(ui+1,j − ui−1,j

2

)2
+

(ui,j+1 − ui,j−1

2

)2
.

The Perona-Malik equation (Equation 1) is first discretized w.r.t. spatial variables.
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1. PERONA-MALIK TYPE NONLINEAR DIFFUSION

T = 0 T = 50 T = 100

T = 200 T = 400 T = 800

Figure 3: Reg. Perona-Malik results for different diffusion time (λ = 1, σ = 1).

T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 4: Reg. Perona-Malik results for different diffusion times (λ = 1, σ = 1).

This results in the following space-discrete equation:

∂u
∂t

=
∂

∂x
(g(|∇u|)ux) +

∂

∂y
(

g(|∇u|)uy
)

,

dui,j

dt
= gi+ 1

2 ,j ·
(
ui+1,j − ui,j

)
− gi− 1

2 ,j ·
(
ui,j − ui−1,j

)
+ gi,j+ 1

2
·
(
ui,j+1 − ui,j

)
− gi,j− 1

2
·
(
ui,j − ui,j−1

)
.(7)4
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Figure 5: Discretization grid used in (Equation 7).

This discretization scheme requires the diffusivities to be estimated at mid-pixel
points (Figure 5). They are simply computed by taking averages of the diffusivities
over neighboring pixels:

(8) gi± 1
2 ,j =

gi±1,j + gi,j

2
, gi,j± 1

2
=

gi,j±1 + gi,j

2
.

The time derivative in (Equation 7) can be discretized using forward difference.
This yields an iterative scheme with an explicit time discretization, where homoge-
neous Neumann boundary condition is imposed along the image boundary

uk+1
i,j − uk

i,j

∆t
= gk

i+ 1
2 ,j · u

k
i+1,j + gk

i− 1
2 ,j · u

k
i−1,j + gk

i,j+ 1
2
· uk

i,j+1 + gk
i,j− 1

2
· uk

i,j−1

−
(

gk
i+ 1

2 ,j + gk
i− 1

2 ,j + gk
i,j+ 1

2
+ gk

i,j− 1
2

)
· uk

i,j(9)

with ∆t denoting the time step. For the Perona-Malik diffusion, the stability require-
ment is again ∆t ≤ 0.25.

2 TOTAL VARIATION (TV) REGULARIZATION

Rudin et al. [5] formulated image restoration as minimization of the total variation
(TV) of a given image under certain assumptions on the noise. The Total Variation
(TV) regularization model is generally defined as:

(10) ETV(u) =
∫
Ω

(
1
2
(u− f )2 + α|∇u|

)
dx

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the restored version of g,
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2. TOTAL VARIATION (TV) REGULARIZATION

• α > 0 is a scalar.

The gradient descent equation for Equation (10) is defined by

(11)
∂u
∂t

= ∇ ·
(
∇u
|∇u|

)
− 1

α
(u− f );

∂u
∂n

∣∣∣∣
∂Ω

= 0 .

Since the value of α specifies the relative importance of the fidelity term, it can be
interpreted as a scale parameter that determines the level of smoothing. In Figure 6, the
role of this parameter is illustrated. The restored images are given in Figure 6(b)-(d).
As it can be clearly seen, level of smoothing increases with increasing α.

In the original formulation of Rudin et al., the observed image f was assumed to be
degraded by additive Gaussian noise with zero mean and known variance σ2. Hence,
in order to restore a given image, they propose to solve the constrained optimization
problem

(12) min
u

∫
Ω

|∇u|dx

subject to

(13)
∫
Ω

(u− f )2dx = σ2 .

When TV regularization is defined as a constrained optimization problem, 1
α can be

considered as a Lagrange multiplier, which has to be determined by taking the given
constraint into account.

TV regularization can be associated with a nonlinear diffusion filter, the so-called
TV flow [1, 3]. Ignoring the fidelity term in Equation (11) leads to the PDE

(14)
∂u
∂t

= ∇ · (g(|∇u|)∇u)

with u0 = f and the diffusivity function g(|∇u|) = 1
|∇u| . Notice that this diffusiv-

ity function has no additional contrast parameter as compared with the Perona-Malik
diffusivities. Figure 7 and Figure 8 depict TV scale space examples sampled at dif-
ferent diffusion times for two different images. It is evident from these images that the
corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

The evolution equation of u (11) can be discretized by using standard finite differences.
An important point is that the solution of TV regularization or equivalently TV flow
leads to singular diffusivities as shown in Equation (14). In numerical implementations
based on standard discretization, this leads to stability problems as the image gradient
tends to zero. A common solution to this problem is to add a small positive constant ε
to image gradients.

After ε-regularization, the space-discrete version of Equation (11) can be written
as:
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∂u
∂t

=
∂

∂x

(
ux√

|∇u|2 + ε2

)
+

∂

∂y

(
uy√

|∇u|2 + ε2

)
− 1

α
(u− f )

=
uxx

(
u2

y + ε2
)
− 2uxuyuxy + uyy

(
u2

x + ε2)(
u2

x + u2
y + ε2

) 3
2

− 1
α
(u− f ) ,

dui,j

dt
=

d2ui,j
dx2

(( dui,j
dy

)2
+ ε2

)
− 2

( dui,j
dx

) ( dui,j
dy

)( d2ui,j
dxdy

)
+

d2ui,j
dy2

(( dui,j
dx

)2
+ ε2

)
(( dui,j

dx

)2
+
( dui,j

dy

)2
+ ε2

) 3
2

− 1
α

(
ui,j − fi,j

)
(15)

where

(16)
d2ui,j

dxdy
≈

ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4
.

When explicit time discretization is employed, numerical solution to Equation (15)
can be computed by the following iterative scheme, where homogeneous Neumann
boundary condition is imposed along the image boundary:

uk+1
i,j − uk

i,j

∆t
=

(uk
i+1,j − uk

i−1,j

2

)2

+

(
uk

i,j+1 − uk
i,j−1

2

)2

+ ε2

−
3
2

·
[ (

uk
i+1,j − 2uk

i,j + uk
i−1,j

)(uk
i,j+1 − uk

i,j−1

2

)2

+ ε2


− 1

8

(
uk

i+1,j − uk
i−1,j

) (
uk

i,j+1 − uk
i,j−1

)
(

uk
i+1,j+1 − uk

i+1,j−1 − uk
i−1,j+1 + uk

i−1,j−1

)
+

(
uk

i,j+1 − 2uk
i,j + uk

i,j−1

)(uk
i+1,j − uk

i−1,j

2

)2

+ ε2

]

− 1
α

(
uk

i,j − fi,j

)
(17)

where ∆t denotes the time step. ε-regularization requires the stability condition ∆t ≤
0.25ε, and thus a sufficiently large number of iterations is needed for small values of ε.
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3. EDGE ENHANCING DIFFUSION

(a) (b)

Figure 6: Example TV restoration results. (a) Source image. (b)-(d) Corresponding
segmentations obtained with (b) α = 50, (c) α = 100, and (d) α = 200.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 7: TV flow results for different diffusion times.

3 EDGE ENHANCING DIFFUSION

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued
diffusivity function to guide the smoothing process as summarized in Section 1. The
diffusivities are reduced at the image locations where the magnitude of image gradi-
ent |∇u|2 is large, and as a result, the edges are preserved or even enhanced. In [6],
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T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 8: TV flow results for different diffusion times.

Weickert suggested an alternative approach that additionally takes direction of the im-
age gradients into account. The suggested model is an anisotropic nonlinear diffusion
model with better edge enhancing capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

(18)
∂u
∂t

= ∇ · (D(∇u)∇u)

where u is the smoothed image that is initialized with the input image f (that is
u0(x) = f (x)), and D represents a matrix-valued diffusion tensor that describes the
smoothing directions and the corresponding diffusivities. One can easily observe that
for linear diffusion the diffusion tensor can be defined as D(∇u) = I, which results
in a constant diffusion coefficient for all image points in all directions. Similarly, for
Perona-Malik type nonlinear diffusion, D(∇u) = g(|∇uσ|)I. Such a choice reduces
the amount of smoothing at image edges, but in an equal amount in all directions. In
actual anisotropic setting, the diffusion tensor D is defined as a function of the structure
tensor given by

(19) J(∇u) = ∇u∇uT =

[
u2

x uxuy
uxuy u2

y

]
.

The structure tensor J(∇u) can be interpreted as an image feature describing the
local orientation information. It has an orthonormal basis of eigenvectors v1 and v2
with v1 ‖ ∇u and v2 ⊥ ∇u, and the corresponding eigenvalues λ1 = |∇u|2 and
λ2 = 0. It is important to note that noise significantly affects the tensor estimation.
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3. EDGE ENHANCING DIFFUSION

T = 0 T = 50 T = 100

T = 200 T = 400 T = 800

Figure 9: Edge enhancing diffusion results for different diffusion times (λ = 2, σ = 1).

Thus the given image u is usually convolved with a Gaussian kernel Gσ with a relatively
small standard deviation σ as a presmoothing step and the structure tensor is computed
accordingly by using ∇uσ = ∇(Gσ ∗ u) instead of ∇u.

The main idea behind edge enhancing diffusion is to use the structure tensor as
an image/edge descriptor to construct a diffusion tensor that reduces the amount of
smoothing across the edges while smoothing is still carried out along the edges. In
order to perform this, Weickert proposed to utilize same orthonormal basis of eigen-
vectors v1 ‖ ∇uσ and v2 ⊥ ∇uσ estimated from the structure tensor J(∇uσ) with the
following choice of eigenvalues satisfying λ1(|∇uσ |)

λ2(|∇uσ |) → 0 for |∇uσ| → ∞

λ1(|∇uσ|) =

{
1 if |∇uσ| = 0
1− exp

(
− 3.31488

(|∇uσ |/λ)8

)
otherwise,

(20)

λ2(|∇uσ|) = 1(21)

where λ denotes the contrast parameter.
Such a choice preserves and enhances image edges by reducing the diffusivity λ1

perpendicular to edges for sufficiently large values of |∇uσ|. Specifically, the diffusion
tensor is given by the formula

(22)

D =

[
(uσ)x − (uσ)y
(uσ)y (uσ)x

]
·
[

λ1(|∇uσ|) 0
0 λ2(|∇uσ|)

]
·
[

(uσ)x − (uσ)y
(uσ)y (uσ)x

]−1

.

Figure 9 and Figure 10 illustrate example results of edge enhancing diffusion filter
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T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 10: Edge enhancing diffusion results for different diffusion times (λ = 1.8,
σ = 1).

for different diffusion times. As it can be clearly seen from these images, the corre-
sponding smoothing process diminishes noise and fine image details while retaining
and even enhancing edges as in the Perona-Malik type nonlinear diffusion. On the
other hand, the corners become more rounded in the anisotropic model compared to
the Perona-Malik filter (cf. Figure 3 and Figure 4) since edge enhancing diffusion al-
lows smoothing along edges while preventing smoothing across them. As discussed
in [7], this causes a slight shrinking effect in the image structures, which eliminates
fine or thin structures better than the Perona-Malik model. Thus, through this process
one can capture semantically more correct image regions.
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