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1 MUMFORD-SHAH (MS) FUNCTIONAL

The formulation of Mumford and Shah [6] is based on a functional minimization via
which a piecewise smooth approximation of a given image and an edge set are to be
recovered simultaneously. In this unified formulation, smoothing and edge detection
processes work jointly to partition an image into segments. The Mumford-Shah (MS)
model is:

(1) EMS(u, G) = b
Z

W

(u � f )2dx + a
Z

W\G

|ru|2dx + length(G)

where

• W ⇢ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on W,

• G ⇢ W is the edge set segmenting W,

• u is the piecewise smooth approximation of f ,

• a, b > 0 are the scale space parameters of the model.
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2. AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS FUNCTIONAL

The first term in EMS is the data fidelity term which forces u to be close to the
original image f . The next two terms are the generic priors that provide certain knowl-
edge about the solution. Specifically, the second term, the so-called regularization or
smoothness term, gives preference to piecewise smooth images by penalizing high gra-
dients. Since the integral is over W\G, this prior is turned off at image boundaries, and
thus it excludes image edges to be smoothed out. The third term is a penalty term on
total edge length which prevents the image to be split into many regions. Additionally,
it implicitly imposes smoothness of the boundaries.

Generally, the unknown edge set G of a lower dimension makes the minimization of
the MS model very difficult. Hence, in literature several approaches for approximating
the MS model are suggested [1, 4]. In the next section, the approximation proposed by
Ambrosio and Tortorelli [1] will be reviewed.

2 AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS
FUNCTIONAL

Ambrosio and Tortorelli [1] suggested an approximation for the MS model by follow-
ing the G convergence framework [2]. The basic idea is to introduce a smooth edge
indicator function v which is more convenient than using the characteristic function cG
as the edge indicator. The new function v depends on a parameter r, and as r ! 0,
v ! 1 � cG. That is, v(x) ⇡ 0 if x 2 G and v(x) ⇡ 1 otherwise. The result is the
functional

(2) EAT(u, v) =
Z

W

✓
b(u � f )2 + a(v2|ru|2) + 1

2

✓
r|rv|2 + (1 � v)2

r

◆◆
dx .

In the Ambrosio-Tortorelli (AT) model, the continuous function v encodes the
boundary information. The value of v at a point can be interpreted as a measure of
boundaryness where the low values indicate the edge points. That is, v ⇡ 0 along the
boundaries and grows rapidly away from them. Thus, the function v may be thought as
a blurred version of the edge set. The parameter r specifies the level of blurring (Fig-
ure 1), and as r ! 0, 1

2
R

W

⇣
r|rv|2 + (1�v)2

r

⌘
dx approximates the cardinality of the

edge set G.

! ⇢2

! ⇢1

edge point

⇢1 < ⇢2

Figure 1: An example 1D edge strength function (1 � v) for two different values of r.
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Piecewise smooth image u and the edge strength function v are simultaneously
computed via the solution of the following system of coupled PDEs:

∂u
∂t

= r · (v2ru)� b

a
(u � f );

∂u
∂n

����
∂W

= 0 ,(3)

∂v
∂t

= r2v � 2a|ru|2v
r

� (v � 1)
r2 ;

∂v
∂n

����
∂W

= 0(4)

where ∂W denotes the boundary of W and n denotes the outer unit normal vector to ∂W.

Notice that PDE for each variable can be interpreted as a biased diffusion equation
that minimizes a convex quadratic functional in which the other variable is kept fixed:

Keeping v fixed, Equation (3) minimizes a convex quadratic functional given by

(5)
Z

W

⇣
av2|ru|2 + b(u � f )2

⌘
dx .

The data fidelity term in Equation (3) provides a bias that forces u to be close to the
original image f . In the regularization term, the edge strength function v specifies the
boundary points and guides the smoothing accordingly. Since v ⇡ 0 along the bound-
aries, no smoothing is carried out at the boundary points, thus the edges are preserved.

Keeping u fixed, Equation (4) minimizes a convex quadratic functional given by

(6)
r

2

Z

W

 
|rv|2 + 1 + 2ar|ru|2

r2

✓
v � 1

1 + 2ar|ru|2

◆2
!

dx .

The reciprocal relationship between v and |ru|2 can be clearly observed in the above
functional. It asserts that the function v is nothing but a smoothing of 1

1+2ar|ru|2 with
a blurring radius proportional to r and reciprocal to |ru|. Ignoring the smoothness
term r|rv|2, which mildly forces some spatial organization by requiring the edges to
be smooth, and by letting r ! 0 [3, 9], v ⇡ 1

1+2ar|ru|2 .

Considering this approximation and the relation between variational regularization
and diffusion equations, Equation (3) can be interpreted as a Perona-Malik type nonlin-
ear diffusion at a specific scale. Replacing v in Equation (3) with 1/(1 + 2ar|ru|2)
yields

(7)
∂u
∂t

= r · (g(|ru|)ru)� b

a
(u � f )

where g(|ru|) =
⇣

1
1+|ru|2/l2

⌘2
with l2 = 1/ (2ar). Thus,

p
1/ (2ar) can be seen

as a contrast parameter.

Since the parameters a and b define the relative importance of the regularization
term, the scale is determined by the ratio a/b. Keeping the value of a fixed, decreasing
the value of b results in more simplified results (Figure 2(b)-(c)). Moreover, the scale
space parameters a and b also define the detail level in segmentation. With the ratio
a/b fixed, the level of detail increases with the increasing a (Figure 2(b)-(d)).
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2. AMBROSIO-TORTORELLI (AT) APPROXIMATION OF THE MS FUNCTIONAL

(a)

(b)

(c)

(d)

Figure 2: Example segmentation results (u and 1� v). (a) Source image. (b)-(d) Corre-
sponding segmentations obtained with the parameters (b) a = 1, b = 0.01, r = 0.01,
(c) a = 1, b = 0.001, r = 0.01, and (d) a = 4, b = 0.04, r = 0.01, respectively.
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Numerical Implementation

Equations (3) and (4) can be simultaneously solved for u and v using standard nu-
merical discretization techniques such as finite differences. The coupled system is first
discretized with respect to spatial variables. This leads to the following space-discrete
system of equations:

dui,j

dt
= v2

i+ 1
2 ,j ·

�
ui+1,j � ui,j

�
� v2

i� 1
2 ,j ·

�
ui,j � ui�1,j

�

+ v2
i,j+ 1

2
·
�
ui,j+1 � ui,j

�
� v2

i,j� 1
2
·
�
ui,j � ui,j�1

�

� b

a

�
ui,j � fi,j

�
,(8)

dvi,j

dt
= vi+1,j + vi�1,j + vi,j+1 + vi,j�1 � 4vi,j

�
2a|rui,j|2vi,j

r
�
�
vi,j � 1

�

r2 .(9)

As in the discretization of the Perona-Malik equation, the diffusivities represented
by the edge strength function v at mid-pixel points can be computed by taking averages
over neighboring pixels:

(10) vi± 1
2 ,j =

vi±1,j + vi,j

2
, vi,j± 1

2
=

vi,j±1 + vi,j

2
.

The time derivatives in Equations (8) and (9) can be discretized using forward dif-
ferences, where regularization terms and the bias terms on the right hand side of each
equation are evaluated at times k and k + 1, respectively.

uk+1
i,j � uk

i,j

Dt
=

⇣
vk

i+ 1
2 ,j

⌘2
· uk

i+1,j +
⇣

vk
i� 1

2 ,j

⌘2
· uk

i�1,j

+
⇣

vk
i,j+ 1

2

⌘2
· uk

i,j+1 +
⇣

vk
i,j� 1

2

⌘2
· uk

i,j�1

�
✓⇣

vk
i+ 1

2 ,j

⌘2
+
⇣

vk
i� 1

2 ,j

⌘2
+
⇣

vk
i,j+ 1

2

⌘2
+
⇣

vk
i,j� 1

2

⌘2
◆
· uk

i,j

� b

a

⇣
uk+1

i,j � fi,j

⌘
,(11)

vk+1
i,j � vk

i,j

Dt
= vk

i+1,j + vk
i�1,j + vk

i,j+1 + vk
i,j�1 � 4vk

i,j

�
a

✓⇣
uk

i+1,j � uk
i�1,j

⌘2
+
⇣

uk
i,j+1 � uk

i,j�1

⌘2
◆

vk+1
i,j

2r
�

⇣
vk+1

i,j � 1
⌘

r2(12)

where Dt denotes the time step.
Although the suggested scheme is neither fully explicit nor fully implicit, it still al-

lows us to compute uk+1 and vk+1 by using forward recursion as in an explicit scheme.
A numerical stopping criteria for the iterative scheme can be defined in the sense that
the rate of change of u is less than a threshold (Algorithm 1).
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3. A COMMON FRAMEWORK FOR CURVE EVOLUTION, SEGMENTATION AND
ANISOTROPIC DIFFUSION

Algorithm 1 Minimization of the Ambrosio-Tortorelli Model
1: Initialize the variables with u0 = f , v0 = 1

1+2ar|ru0|2
2: for k = 0 to kmax do

3: Solve Equation (11) for uk+1

4: if |uk+1 � uk| < e|uk| then

5: stop iterations
6: end if

7: Solve Equation (12) for vk+1

8: end for

3 A COMMON FRAMEWORK FOR CURVE EVOLUTION,
SEGMENTATION AND ANISOTROPIC DIFFUSION

The key idea of the Ambrosio-Tortorelli approximation of the Mumford-Shah func-
tional (Section 2) is to utilize a continuous edge strength function v. The value of v
approaches to 0 at the object boundaries and grows rapidly as image gradients become
small. In [9], Shah suggested a modification to the Ambrosio-Tortorelli model Equa-
tion (2), where the quadratic cost functions in both the data fidelity and the smoothing
terms are replaced with L1-functions. The modified energy is:

(13) ES(u, v) =
Z

W

✓
b |u � f |+ a v2|ru|+ 1

2

✓
r|rv|2 + (1 � v)2

r

◆◆
dx .

As r ! 0, this energy functional converges to the following functional:

(14) ES2(u, G) =
b

a

Z

W

|u � f |dx +
Z

W\G

|ru|dx +
Z

G

Ju

1 + aJu
ds

with Ju = |u+ � u�| indicating the jump in u across G. u+ and u� denote inten-
sity values on two sides of G, respectively, and thus each boundary point is weighted
according to its level of contrast.

Minimizing ES corresponds to the gradient descent equations:

∂u
∂t

= 2rv ·ru + v|ru| curv(u)� b

av
|ru| (u � f )

|u � f | ;
∂u
∂n

����
∂W

= 0 ,(15)

∂v
∂t

= r2v � 2a|ru|v
r

� (v � 1)
r2 ;

∂v
∂n

����
∂W

= 0(16)

with curv(u) = r ·
⇣

ru
|ru|

⌘
.

The Equation (16) is very similar to the evolution equation of v Equation (4) in the
AT model; only |ru|2 is replaced with |ru|. The determining factor of the model is
the new evolution equation of u Equation (15). Replacing L2-norms in both the data
fidelity and the smoothness terms by their L1-norms generates shocks in u and thus
object boundaries are recovered as actual discontinuities. As it can be clearly seen
from Figure 3, the suggested smoothing process of u gives rise to more cartoon-like,
piecewise constant images (these results are obtained by using a half-quadratic approx-
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imation of Shah’s modified energy proposed in [5]). However, the robust norms utilized
attract the image towards the cartoon limit and catch unintuitive regions such as the one
at the man’s right shoulder and the ones on the floor. It is important to remark that the
effect of the scale space parameters a and b on segmentation results is similar com-
pared to the one in AT model (cf. Figure 2). The amount of smoothing is determined
by the ratio a/b, and increasing the value of a while keeping a/b fixed leads to more
detailed segmentations.

One of the underlying assumptions of the original MS model and AT approxima-
tion is that the filtered image varies from the observed image by Gaussian noise. Hence,
when a source image is corrupted by impulse noise, the corresponding smoothing pro-
cess produces inadequate results. However, replacing the L2-norm with the L1 in the
modified model yields to a robust data fidelity term that can cope with impulse noise.
For example, consider the noisy image given in Figure 4(a), which is degraded with
5% salt and pepper noise. Figure 4(b) and (c) depict the outcomes of the AT approxi-
mation and the modified model, respectively. As they demonstrate, the modified model
eliminates the impulse noise during smoothing, however, noise still present in the AT
result.

4 ACTIVE CONTOURS WITHOUT EDGES

Chan and Vese [4] proposed an approximation for the MS segmentation model by
following the level-set based curve evolution formulation [7, 8]. Level sets provide an
implicit contour representation where an evolving curve is represented with the zero-
level line of a level set function (Figure 5). The basic aim of Chan and Vese (CV) model
is to partition a given image into two regions that are likely to correspond object and
background regions by embedding the object boundary by the zero-level curve of a 3D
level set function.

Let f be a level set function. Then, the Chan-Vese functional is

ECV(c1, c2, f) = l1

Z

W

( f � c1)
2H(f)dx + l2

Z

W

( f � c2)
2(1 � H(f))dx

+ µ
Z

W

|rH(f)|dx(17)

where l1, l2 > 0 and µ � 0 are fixed parameters. The length parameter µ can be
interpreted as a scale parameter since it determines the relative importance of the length
term. The possibility of detecting smaller objects/regions increases with decreasing µ.

The model represents the segmented image with the variables c1, c2 and H(f),
where H(f) denotes the Heaviside function of the level set function f defined by

(18) H(z) =
⇢

1 if z � 0
0 if z < 0 .

The Heaviside function of the level set function, H(f), specifies object and back-
ground regions in the observed image f , while the last term in (17),

R
W |rH(f)|,

expresses the length of the object boundary. On top of that, the scalars c1 and c2 de-
note the average gray values of object and background regions indicated by f � 0
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4. ACTIVE CONTOURS WITHOUT EDGES

(a)

(b)

(c)

(d)

Figure 3: Example segmentation results (u and 1 � v). (a) Source image. (b)-(d) Cor-
responding segmentations obtained with parameters (b) a = 1, b = 0.01, r = 0.01,
(c) a = 1, b = 0.001, r = 0.01, and (d) a = 4, b = 0.04, r = 0.01.
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(a) (b) (c)

Figure 4: Segmentation of a noisy image degraded with 5% salt and pepper noise.
(a) Source image. (b) Reconstruction using AT model. (c) Reconstruction using Shah’s
modified functional (both results are obtained with a = 1, b = 0.01, r = 0.01).

Figure 5: A curve can be represented as the zero-level line of a level set function (image
taken from [4]).

and f < 0, respectively. Thus, the CV model can be seen as a two-phase piecewise
constant approximation of the MS model, which can theoretically be obtained by let-
ting the weight a of the smoothness term tend to infinity, and forcing a two-region
segmentation.

To segment a given image, the functional (17) needs to be minimized with respect
to c1, c2, and f. Keeping f fixed, the average gray values c1 and c2 can be easily
estimated by

c1 =

R
W f (x)H(f(x))dxR

W H(f(x))dx
,(19)

c2 =

R
W f (x)(1 � H(f(x)))dxR

W(1 � H(f(x)))dx
.(20)

Keeping c1 and c2 fixed and using the calculus of variations for the functional (17),
the gradient descent equation for the evolution of f is derived as

(21)
∂f

∂t
= d(f)


µ r ·

✓
rf

|rf|

◆
� l1( f � c1)

2 + l2( f � c2)
2
�

.
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In Figure 6, we illustrate segmentation of a sample noisy image which contains
several objects of different shapes and sizes. We initialiaze the level set function f with
f0 = �

p
(x � 100)2 + (y � 100)2 + 90. As the zero-level line of the evolving level

set function f is attracted to object boundaries, a more accurate piecewise constant
approximations of the original image f is recovered. Although some of the objects
in the image have holes, they can be automatically detected by the CV model without
considering additional curves since the level set formulation allows change of topology.

Numerical Implementation

In the numerical approximation of the CV model, generally, a regularized Heaviside
function is used. For the remainder of this thesis, the following regularization is con-
sidered:

H#(z) =
1
2

✓
1 +

2
p

arctan
⇣ z

#

⌘◆
,(22)

d#(z) =
dH#(z)

dz
=

1
p

#

#2 + z2 .(23)

The evolution equation of f (21) can be discretized by using standard finite differ-
ences as

fk+1
i,j � fk

i,j

Dt
= d(fk

i,j)

2

4µDx
� ·

0

@
Dx
+fk+1

i,jq
(Dx

+fk
i,j)

2 + (fk
i,j+1 � fk

i,j�1)
2/4

1

A

+ µDy
� ·

0

@
Dy
+fk+1

i,jq
(fk

i+1,j � fk
i�1,j)

2/4 + (Dy
+fk

i,j)
2

1

A

� l1

⇣
fi,j � c1(f

k)
⌘2

+ l2

⇣
fi,j � c2(f

k)
⌘2
�

(24)

where (i, j) denotes the pixel position, Dt is the time step, and forward and backward
differences are defined as

Dx
�fi,j = fi,j � fi�1,j, Dx

+fi,j = fi+1,j � fi,j,

Dy
�fi,j = fi,j � fi,j�1, Dy

+fi,j = fi,j+1 � fi,j.

The minimization procedure is summarized in Algorithm 2. Keeping f fixed, first
the average gray values of object and background regions c1 and c2 are estimated. Next,
the level set function f is evolved according to (24). A numerical stopping criteria can
be defined in the sense that the rate of change of f or the overall energy (17) is less
than a threshold.
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