BIL 717 Image Processing

Feb. 25, 2015

Linear Filtering Edge Detection

Erkut Erdem
Hacettepe University
Computer Vision Lab (HUCVL)

Today

- Linear Filtering
 - Review
 - Gauss filter
 - Linear diffusion
- Edge Detection
 - Review
 - Derivative filters
 - Laplacian of Gaussian
 - Canny edge detector

Today

- Linear Filtering
 - Review
 - Gauss filter
 - Linear diffusion
- Edge Detection
 - Review
 - Derivative filters
 - Laplacian of Gaussian
 - Canny edge detector

Filtering

- The name "filter" is borrowed from frequency domain processing
- Accept or reject certain frequency components
- Fourier (1807):
 Periodic functions could be represented as a weighted sum of sines and cosines

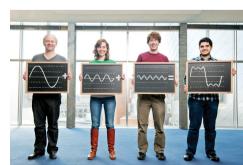
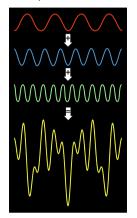


Image courtesy of Technology Review

Signals

A signal is composed of low and high frequency components



low frequency components: smooth / piecewise smooth

Neighboring pixels have similar brightness values You're within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values

You're either at the edges or noise points

Motivation: noise reduction

- Assume image is degraded with an additive model.
- Then,

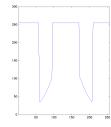
```
Observation = True signal + noise

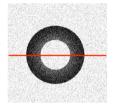
Observed image = Actual image + noise

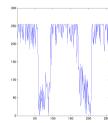
low-pass filters filters

smooth the image
```

Signals - Examples







Common types of noise

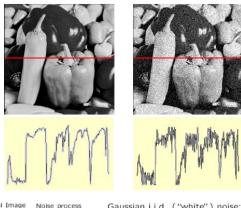
- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Salt and pepper noise

Impulse noise

Gaussian noise Slide credit: S. Seitz

Gaussian noise



 $f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$

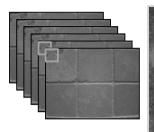
Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

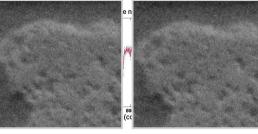
>> noise = randn(size(im)).*sigma;
>> output = im + noise;

What is the impact of the sigma?

Slide credit: M. Hebert

Motivation: noise reduction

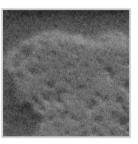




- · Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.

Adapted from: K. Grauman

Motivation: noise reduction



- Make multiple observations of the same static scene
- Take the average
- Even multiple images of the same static scene will not be identical.
- What if we can't make multiple observations?
 What if there's only one image?

Adapted from: K. Grauman

Image Filtering

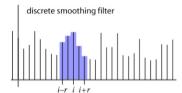
- <u>Idea:</u> Use the information coming from the neighboring pixels for processing
- Design a transformation function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.
- Various uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)

Adapted from: K. Grauman

Filtering

- · Processing done on a function
- can be executed in continuous form (e.g. analog circuit)
- but can also be executed using sampled representation
- Simple example: smoothing by averaging





Slide credit: S. Marschner

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors (spatial regularity in images)
 - Expect noise processes to be independent from pixel to pixel

Slide credit: S. Marschner, K. Grauman

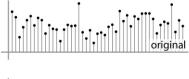
Linear filtering

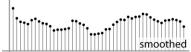
- Filtered value is the linear combination of neighboring pixel values.
- · Key properties
- linearity: filter(f + g) = filter(f) + filter(g)
- shift invariance: behavior invariant to shifting the input
 - · delaying an audio signal
 - · sliding an image around
- Can be modeled mathematically by convolution

Adapted from: S. Marschner

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:





Slide credit: S. Marschner

Discrete convolution

· Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

- every sample gets the same weight
- Convolution: same idea but with weighted average

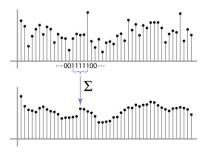
$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

- each sample gets its own weight (normally zero far away)
- This is all convolution is: it is a moving weighted average

Slide credit: S. Marschner

Convolution and filtering

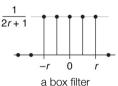
- Can express sliding average as convolution with a box filter
- $a_{\text{DOX}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$



Slide credit: S. Marschner

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support
- usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
- this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0
- since for images we usually want to treat left and right the same



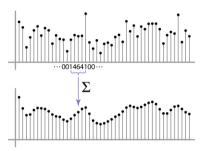
Slide credit: S. Marschner

Example: box and step

Slide credit: S. Marschner

Convolution and filtering

- · Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16



Slide credit: S. Marschner

Key properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Shift invariance: filter(shift(f)) = shift(filter(f))
 - same behavior regardless of pixel location, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

And in pseudocode...

```
\begin{split} & \textbf{function} \text{ convolve}(\text{sequence } a, \text{ sequence } b, \text{ int } r, \text{ int } i \text{ }) \\ & s = 0 \\ & \textbf{for } j = -r \text{ to } r \\ & s = s + a[j]b[i-j] \\ & \textbf{return } s \end{split}
```

Slide credit: S. Marschner

Properties in more detail

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b_1) * b_2) * b_3)
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: $a^*(b+c) = (a^*b) + (a^*c)$
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],a * e = a

Slide credit; S. Lazebnik

Slide credit: S. Lazebnik

Discrete filtering in 2D

• Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

- now the filter is a rectangle you slide around over a grid of numbers
- Usefulness of associativity
- often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
- this is equivalent to applying one filter: a * (b_1 * b_2 * b_3)

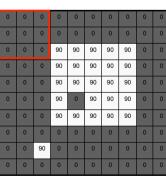
Slide credit: S. Marschner

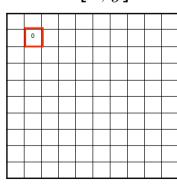
And in pseudocode...

 $\begin{aligned} & \textbf{function} \text{ convolve2d(filter2d } a, \text{ filter2d } b, \text{ int } i, \text{ int } j) \\ & s = 0 \\ & r = a. \text{radius} \\ & \textbf{for } i' = -r \text{ to } r \textbf{ do} \\ & \textbf{ for } j' = -r \text{ to } r \textbf{ do} \\ & s = s + a[i'][j']b[i-i'][j-j'] \\ & \textbf{return } s \end{aligned}$

Slide credit: S. Marschner

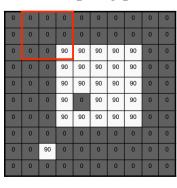
Moving Average In 2D

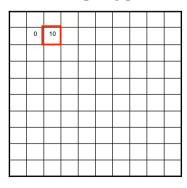




Slide credit: S. Seitz

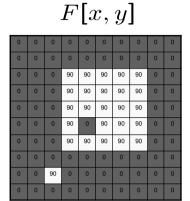
Moving Average In 2D

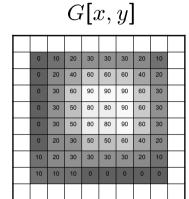




Slide credit: S. Seitz

Moving Average In 2D

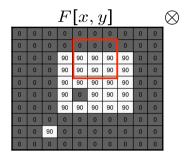


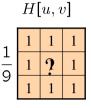


Slide credit: S. Seitz

Averaging filter

• What values belong in the kernel *H* for the moving average example?





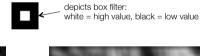
"box filter"

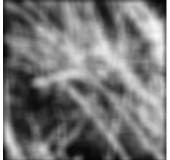
 $G = H \otimes F$

Slide credit: K. Grauman

G[x,y]

Smoothing by averaging



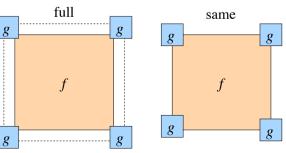


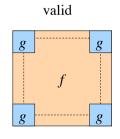
original filtered
What if the filter size was 5 x 5 instead of 3 x 3?

x 3?
Slide credit: K. Grauman

Boundary issues

- What is the size of the output?
- MATLAB: output size / "shape" options
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g





Slide credit: S. Lazebnik

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - · reflect across edge

Slide credit: S. Marschner

Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
F[x,y]									

Gaussian function: $h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$ H[u,v]

This kernel is an approximation of a 2d

• Removes high-frequency components from the image ("low-pass filter"). Slide credit: S. Seitz

Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):

 clip filter (black): imfilter(f, q, 0)

wrap around: imfilter(f, g, 'circular') copy edge: imfilter(f, q, 'replicate')

 reflect across edge: imfilter(f, q, 'symmetric')

Slide credit: S. Marschner

Smoothing with a Gaussian

Slide credit: K. Grauman

Gaussian filters

- What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



Slide credit: K. Grauman

Matlab

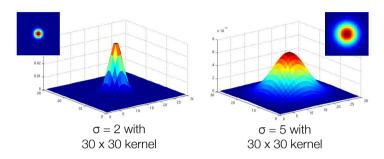
```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);

>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h); % correlation
>> imshow(outim);
```

outim
Slide credit: K. Grauman

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing



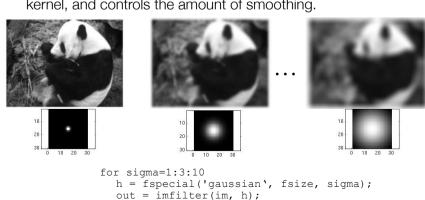
Slide credit: K. Grauman

Smoothing with a Gaussian

imshow(out);
pause;

end

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.



Slide credit: K. Grauman

Properties of smoothing filters

- Smoothing
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

Slide credit: K. Grauman

Linear Diffusion (cont'd.)

- Diffusion process as an evolution process.
- Artificial time variable *t* denotes the *diffusion time*
- Input image is smoothed at a constant rate in all directions.
 - $u^0(x)$: initial image,
 - -u(x, t): the evolving images under the governed equation representing the successively smoothed versions of the initial input image f(x).
- Diffusion process creates a *scale space* representation of the given image *f* , with *t* > 0 being the scale.

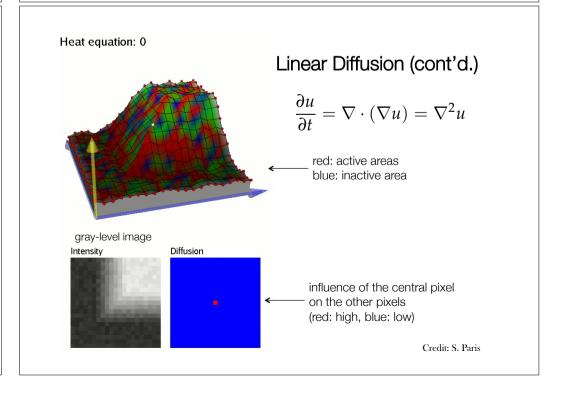
Linear Diffusion

- Let f(x) denote a grayscale (noisy) input image and u(x, t) be initialized with $u(x,0) = u^0(x) = f(x)$.
- The linear diffusion process can be defined by the equation:

$$\frac{\partial u}{\partial t} = \nabla \cdot (\nabla u) = \nabla^2 u$$

where $\nabla \cdot$ denotes the divergence operator. Thus,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$



Linear Diffusion (cont'd.)

- As we move to coarser scales.
 - Evolving images become more and more simplified
 - Diffusion process removes the image structures at finer scales.

Linear Diffusion and Gaussian Filtering

 The solution of the linear diffusion can be explicitly estimated as:

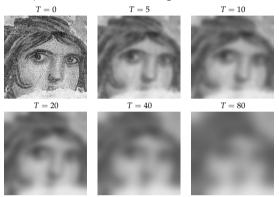
$$u(x,T) = \left(G_{\sqrt{2T}} * f\right)(x)$$

with
$$G_{\sigma}(x) = \frac{1}{2\pi\sigma^2} exp\left(-\frac{|x|^2}{2\sigma^2}\right)$$

- Solution of the linear diffusion equation is equivalent to a proper convolution of the input image with the Gaussian kernel $G_{\sigma}(x)$ with standard deviation $\sigma=\sqrt{2T}$
- The higher the value of T, the higher the value of σ , and the more smooth the image becomes.

Linear Diffusion (cont'd.)

- As we move to coarser scales.
 - Evolving images become more and more simplified
 - Diffusion process removes the image structures at finer scales.



Numerical Implementation

- Solving the linear diffusion equation requires discretization in both spatial and time coordinates.
- Central differences for the spatial derivatives:

$$\frac{d^2 u_{i,j}}{dx^2} \approx \frac{u_{i+h_x,j} - 2u_{i,j} + u_{i-h_x,j}}{h_x^2}$$
$$\frac{d^2 u_{i,j}}{dy^2} \approx \frac{u_{i,j+h_y} - 2u_{i,j} + u_{i,j-h_y}}{h_y^2}$$

where $u_{i,j}$ denotes the gray value or the brightness of the evolving image at pixel location (i, j).

• We take $h_x = h_y = 1$ for a regular grid.

Numerical Implementation (cont'd.)

• Original model:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

• Space discrete version:

$$\frac{du_{i,j}}{dt} = u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}$$

• Space-time discrete version:

$$\frac{u_{i,j}^{k+1} - u_{i,j}^k}{\Delta t} = u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k$$

homogeneous Neumann boundary condition along the image boundary

 $\Delta t \le 0.25$ is required for numerical stability

Tikhonov energy functional

$$E(u) = \int_{\Omega} \left((u - f)^2 + \alpha |\nabla u|^2 \right) dx$$

$$\text{data fidelity regularization}$$

$$\text{term} \text{term}$$

- $\Omega \subset \mathbb{R}^2$ is connected, bounded, open subset representing the image domain,
- f is an image defined on Ω ,
- *u* is the smooth approximation of *f* ,
- $\alpha > 0$ is the scale parameter.

Variational Regularization

- Variational regularization models formulate smoothing process as a functional minimization via which a noise-free approximation of a given image is to be estimated.
- With an additive model, f(x) = u(x) + n(x)
 - f(x): original image
 - u(x): smoothed image
 - n(x): noise component
- An example: Tikhonov energy functional

$$E(u) = \int_{\Omega} \left((u - f)^2 + \alpha |\nabla u|^2 \right) dx$$

Variational Regularization and Diffusion Equations

- A strong relation between variational regularization methods and diffusion equations.
- The minimizing function *u* of the Tikhonov energy functional formally satisfies the Euler-Lagrange equation:

$$(u - f) - \alpha \nabla^2 u = 0$$

with the Neumann boundary condition $\left. \frac{\partial u}{\partial n} \right|_{\partial \Omega} = 0$

• can be rewritten as:

$$\frac{u - u^0}{\alpha} = \nabla^2 u \quad \text{with} \quad u^0 = f$$

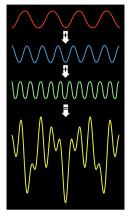
implicit time discretization of the linear diffusion equation with a single time step $(T = \alpha)$

Today

- Linear Filtering
 - Review
 - Gauss filter
 - Linear diffusion
- Edge Detection
 - Review
 - Derivative filters
 - Laplacian of Gaussian
 - Canny edge detector

Signals and Images

A signal is composed of low and high frequency components



low frequency components: smooth /

Neighboring pixels have similar brightness values You're within a region

high frequency components: oscillatory

Neighboring pixels have different brightness values You're either at the edges or noise points

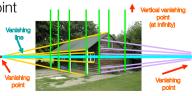
Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Why do we care about edges?

• Extract information, recognize objects

· Recover geometry and viewpoint



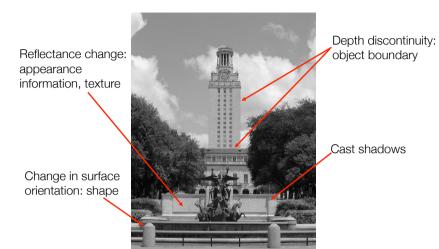
Source: J. Hays

Slide credit: D. Lowe

Closeup of edges

Slide credit: D. Hoiem

What causes an edge?

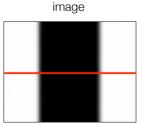


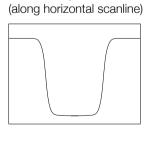
Slide credit: K. Grauman

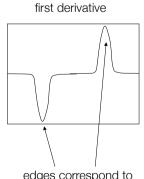
Characterizing edges

 An edge is a place of rapid change in the image intensity function

intensity function







edges correspond to extrema of derivative

Slide credit: K. Grauman

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

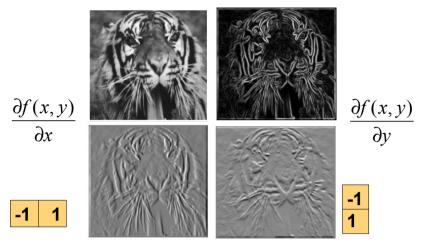
For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Slide credit: K. Grauman

Partial derivatives of an image



Which shows changes with respect to x?

Slide credit: K. Grauman

Image gradient

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Slide credit: S. Seitz

Assorted finite difference filters

>> My = fspecial('sobel');
>> outim = imfilter(double(im), My);
>> imagesc(outim);
>> colormap gray;

Slide credit: K. Grauman

Original Image

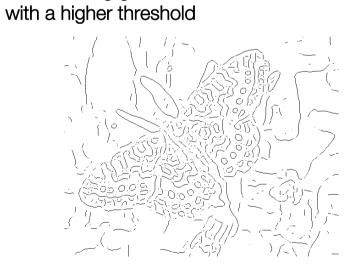
Slide credit: K. Grauman

Gradient magnitude image



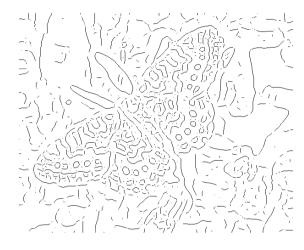
Slide credit: K. Grauman

Thresholding gradient



Slide credit: K. Grauman

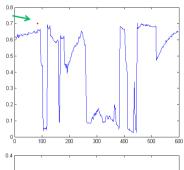
Thresholding gradient with a lower threshold

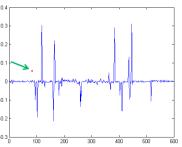


Slide credit: K. Grauman

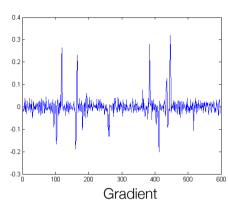
Intensity profile

Slide credit: D. Hoiem





With a little Gaussian noise



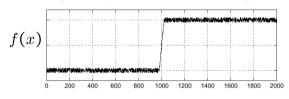
Slide credit: D. Hoiem

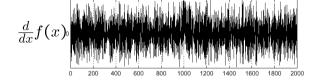
Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

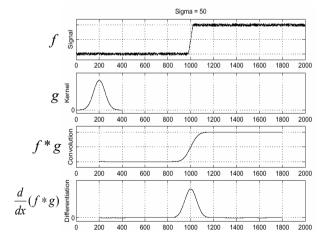




Where is the edge?

Slide credit: S. Seitz

Solution: smooth first



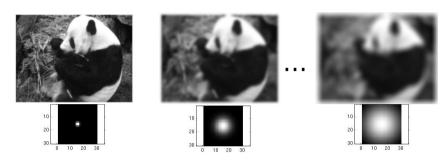
• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Slide credit: S. Seitz

Slide credit: D. Forsyth

Smoothing with a Gaussian

Recall: parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.



Slide credit: K. Grauman

So, what scale to choose?

It depends what we're looking for.

Effect of σ on derivatives

 $\sigma = 1$ pixel

 $\sigma = 3$ pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

Slide credit: K. Grauman

Smoothing and Edge Detection

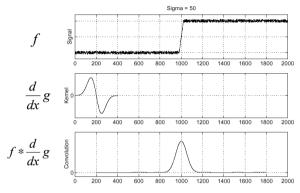
- While eliminating noise via smoothing, we also lose some of the (important) image details.
 - Fine details
 - Image edges
 - etc.
- What can we do to preserve such details?
 - Use edge information during denoising!
 - This requires a definition for image edges.

Chicken-and-egg dilemma!

• Edge preserving image smoothing (Next week's topic!)

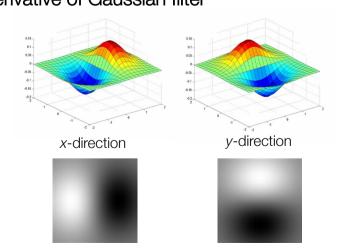
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:
- This saves us one operation: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$



Slide credit: S. Seitz

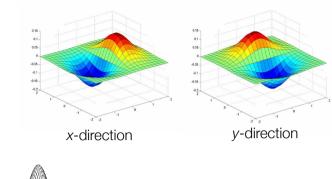
Derivative of Gaussian filter

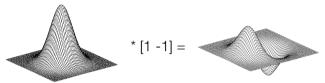


• Which one finds horizontal/vertical edges?

Slide credit: S. Lazebnik

Derivative of Gaussian filter





Slide credit: S. Lazebnik

Smoothing vs. derivative filters

· Smoothing filters

- Gaussian: remove "high-frequency" components; "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - · One: constant regions are not affected by the filter

Derivative filters

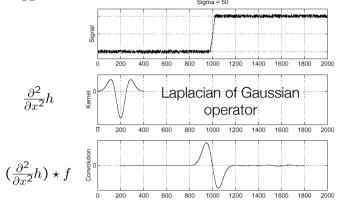
- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

Slide credit: S. Lazebnik

Laplacian of Gaussian

 $\frac{\partial^2}{\partial x^2}h$

Consider $\frac{\partial^2}{\partial x^2}(h \star f)$

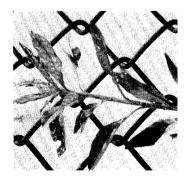


Where is the edge?

Zero-crossings of bottom graph

Slide credit: K. Grauman

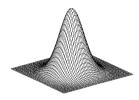
Laplacian of Gaussian



original image

Source: D. Marr and E. Hildreth (1980)

2D edge detection filters



Laplacian of Gaussian

Gaussian $h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$ derivative of Gaussian $\frac{\partial}{\partial x}h_{\sigma}(u,v)$

• The Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Slide credit: K. Grauman

Laplacian of Gaussian

convolution with $\nabla^2 h_{\sigma}(u,v)$

Source: D. Marr and E. Hildreth (1980)

Laplacian of Gaussian

convolution with

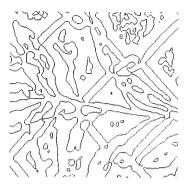
 $\nabla^2 h_\sigma(u,v)$ (pos. values – white, neg. values – black)

Source: D. Marr and E. Hildreth (1980)

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- · Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Laplacian of Gaussian



zero-crossings

Source: D. Marr and E. Hildreth (1980)

The Canny edge detector

original image (Lena)

Slide credit: K. Grauman

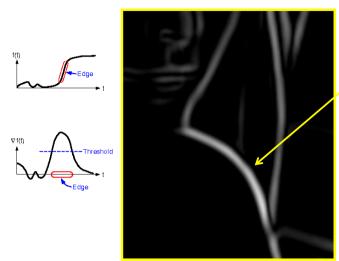
Slide credit: L. Fei-Fei

The Canny edge detector

thresholding

Slide credit: K. Grauman

The Canny edge detector



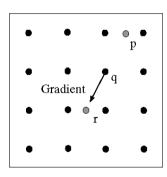
How to turn these thick regions of the gradient into curves?

Slide credit: K. Grauman

Slide credit: K. Grauman

Non-maximum suppression





Check if pixel is local maximum along gradient direction, select single max across width of the edge

- requires checking interpolated pixels p and r

Slide credit: K. Grauman

The Canny Edge Detector

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels

Slide credit: J. Hays

Hysteresis thresholding

original image

high threshold (strong edges) Slide credit: L. Fei-Fei

low threshold (weak edges)

hysteresis threshold

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use **hysteresis**
 - use a high threshold to start edge curves and a low threshold to continue them.

Slide credit: S. Seitz

Hysteresis thresholding

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

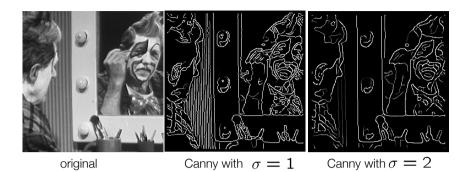
Slide credit: L. Fei-Fei

Recap: Canny edge detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, 'canny');

Slide credit: D. Lowe, L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)



The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Slide credit: S. Seitz

Low-level edges vs. perceived contours

Slide credit: K. Grauman

Shadows

hadows

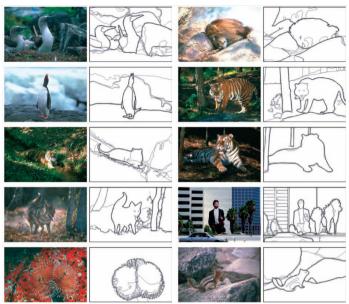
Edge detection is just the beginning...

image human segmentation gradient magnitude

 Berkeley segmentation database: http://www.eecs.berkelev.edu/Research/Projects/CS/vision/grouping/segbenc

Source: S. Lazebnik

Learn from humans which combination of features is most indicative of a "good" contour? [D. Martin et al. PAMI 2004]



Slide credit: K. Grauman

Human-marked segment boundaries