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Review - Signals

» A signal is composed of low and high frequency
components

low frequency components: smooth /
piecewise smooth

Neighboring pixels have similar brightness values

i
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You’re within a region

i high frequency components: oscillatory
Neighboring pixels have different brightness values
You're either at the edges or noise points

Review - Linear Diffusion

» Let f (x) denote a grayscale (noisy) input image and u(x, t) be
initialized with u(x,0) = u9(x) = f(x).
» The linear diffusion process can be defined by the equation:
ou

5 V- (Vu) =V-u

where V- denotes the divergence operator. Thus,
ou *u  2u

* a2 e

Heat equation: 0

Review - Linear Diffusion

(cont’d.)
au . . 2
g =V (Vu) = V-u

red: active areas
blue: inactive area

gray-level image
Intensity Diffusion

influence of the central pixel
<— on the other pixels
(red: high, blue: low)

Credit: S. Paris




Review - Linear Diffusion (cont’d.)

* As we move to coarser scales,
— Evolving images become more and more simplified

— Diffusion process removes the image structures at finer scales.
T=10

Review - Linear Diffusion and Gaussian Filtering

» Solution of the linear diffusion can be explicitly estimated as:

u(x, T) = (Gﬁ*f) (x)
X 2
= 572 (~307)

» Solution of the linear diffusion equation is equivalent to a
proper convolution of the input image with the Gaussian
kernel G,(x) with standard deviation ¢ = 2T

» The higher the value of T, the higher the value of o, and the
more smooth the image becomes.

Review - Numerical Implementation

+ Original model:
ou d*u  o*u

o o o

» Space discrete version:
dui,]'
;= Wiyttt i o — 4

» Space-time discrete version:

k+1 _ k
u- T =yt
ij i _ K

k k k k
A iyl T Wiy T U U — A

homogeneous Neumann boundary condition At < 0.25 is required for

along the image boundary numerical stability

Variational interpretation of heat diffusion

+ Cost functional: Eu] = / / |Vu|*dedy
Q
- //Q (uz +uy) dedy
» Euler-Lagrange: ‘5_E _ 8_E_£ OE _2 OF
ou ou  OJx \ Juy dy \ Ouy
U Ouy
= 2 or 2 dy

= —2(Ugz + Uyy)

» Heat diffusion: modifies temperature to decrease E quickly

Slide credit: I. Kokkinos




Today — Nonlinear (Diffusion) Filters

* Median filter

» use nonlinear PDEs to create a scale space
representation
— consists of gradually simplified images

— some image features such as edges are maintained or
even enhanced.

» Perona-Malik Type Nonlinear Diffusion (1990)
 Total Variation (TV) Regularization (1992)
» Weickert’s Edge Enhancing Diffusion (1994)

Median filters

* A Median Filter operates over a window by selecting the
median intensity in the window.

+ What advantage does a median filter have over a mean filter?
* |s a median filter a kind of convolution?

adapted from: S. Seitz

Median filter

10]15(20 e No new pixel values

2319027 introduced
NP [ l Sort
Median value 33131130

e Removes spikes: good
10 lim 30031 33 90 for impulse, salt & pepper

10[15[20] | Replace noise
2312727 e Non-linear filter
33(31(30

Slide credit: K. Grauman

Median filter

» . Median
9 fittered

Salt and

pepper
noise

' At | *k

) E 0 s 0o E] 00 0 1
Plots of a row of the image

Matlab: output im = medfilt2 (im, [h w]);

Slide credit: M. Hebert




Median filter

» What advantage does median filtering have over Gaussian
filtering?

» Robustness to outliers

» Median filter is edge preserving
filters have width 5 :

........ . INPUT
......... o MEDIAN
MEAN

Slide credit: K. Grauman

Perona-Malik Type Nonlinear Diffusion

+ earliest nonlinear diffusion model for image smoothing
« called anisotropic diffusion by Perona and Malik.
+ a scalar-valued diffusivity

+ ltis in fact an isotropic nonhomogeneous equation.

— A true example of anisotropic diffusion model:
Weickert’s Edge-enhancing diffusion (more later on)

Perona-Malik Type Nonlinear Diffusion

» The Perona-Malik equation is:

ou

o =V (g(|Vu])Vu)

with homogeneous Neumann boundary conditions and the
initial condition uO(x) = f (x), f denoting the input image.

» Constant diffusion coefficient of linear equation is replaced
with a smooth non-increasing diffusivity function g satisfying
- g(O) = 1!
- 9(s) =0,
- limg-.. 9(s) =0

» The diffusivities become variable in both space and time
(image dependent).

Perona-Malik Type Nonlinear Diffusion

* The Perona-Malik equation: ?)Ltl = V- (g(|Vu|)Vu)

« Two different choices for the diffusivity function:

1

A corresponds to a contrast parameter.

What is the effect of the parameter A?




1D Analysis of Perona-Malik Diffusion

* 1D version to demonstrate the role of the contrast parameter
» For 1D case, the Perona-Malik equation is as follows:

Jou 0 oy
% ox (&(Jux|)ux) = @ (1x ) thxx
D(uy)

with 8(1xl) = ez or glludl) =

1D Analysis of Perona-Malik Diffusion

+ Diffusivities and the corresponding flux functions for the linear
diffusion (plotted in dashed line) and the Perona-Malik type
nonlinear diffusion (plotted in solid line).

diffusivity functions flux functions
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1D Analysis of Perona-Malik Diffusion

diffusivity functions flux functions
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 For linear diffusion the diffusivity is constant (g(s) = 1), which
results in a linearly increasing flux function.

» For linear diffusion all points, including the discontinuities, are
smoothed equally.

_ 1
T+s2/A2

1D Analysis of Perona-Malik Diffusion

diffusivity functions flux functions
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0.8 1+s2/A2

g(s) =
A=3
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« Diffusivity is variable and decreases as |u,| increases.

» Decay in diffusivity is particularly rapid after the contrast
parameter A.

« Two different behaviors in the diffusion process




1D Analysis of Perona-Malik Diffusion

diffusivity functions flux functions

g(s) = 1+5%//\2
A=3

00 2 lambda 4 s 6 8 10 00 2 lambda 4 6 8 10
M — P (uy)u
oF x)Hxx
 For the points where |ux| < A, ®'(ux) > 0 we have lost in
the material.

* For the points where|uy| > A , on the contrary, ®'(u,) < 0
which generates an enhancement in the material.

1D Analysis of Perona-Malik Diffusion

diffusivity functions flux functions

g<s>:m
A=3

GO 2 lambda 4 6 8 10 G0 2 lambda 4 6 8 10
s

aa_? — @l(ux)uxx

+ Diffusivity is always nonnegative, but forward and backward
diffusions are observed during the smoothing.

» Contrast parameter A\ separates the regions of forward
diffusion from the regions of backward diffusion.

Perona-Malik Type Nonlinear Diffusion

* In 2D case, diffusivities are reduced at the image locations
where |Vul? is large ([Vul? : a measure of edge likelihood)

+ Amount of smoothing is low along image edges.

» Contrast parameter A specifies a measure that determines
which edge points are to be preserved or blurred during the
diffusion process.

» Even edges can be sharpened due to the local backward
diffusion behavior as discussed for the 1D case.

 Since the backward diffusion is a well-known ill-posed
process, this may cause an instability, the so-called
staircasing effect.

Perona Malik: 0
Perona-Malik (cont’d.)

W=V (5(IVu)Va)

red: active areas
blue: inactive area

gray-level image
Intensity Diffusion

influence of the central pixel
<— on the other pixels
(red: high, blue: low)

Credit: S. Paris




Staircasing Effect

* Due to backward diffusion, a piece-wise smooth region in
the original image evolves into many unintuitive piecewise
constant regions.

Original noisy image Perona-Malik Diffusion

 Solution: Use pre-filtered (regularized) gradients in diffusivity
computations

Regularized Perona-Malik Model

 Replacing the diffusivities g(|Vul|) with the regularized ones
g(|Vu,]) leads to the following equation:

Jdu

5 = V- (Ve Vu)

where gy = Gy *u represents a Gaussian-smoothed
version of the image.

Original noisy image Perona-Malik Diffusion Regularized Perona-Malik
Diffusion

Regularized Perona-Malik (cont’d.)

Perona Malik: 0 Prefiltered Perona Malik: 0

i

Intensity Diffusion Intensity Diffusion

Credit: S. Paris

Regularized Perona-Malik Model

* Smoothing process diminishes noise while retaining or

enhancing edges
T=0 T =50 T =100




Regularized Perona-Malik Model

* Smoothing process diminishes noise while retaining or
enhancing edges
T=0 T =100 ) T =200

A=10=1

Numerical Implementation

» Central differences is used to approximate the gradient
magnitude at a pixel (i, j) in the diffusivity estimation,

ij = 8(|Vuyj|)

dul-,]- 2 dui,]‘ 2
'V“W"\/< i)+ ()
o o] (M =M1\ (g = i)
AW ) (et

Numerical Implementation

+ Original model:
ou
=V (g(|Vu)) V)

» Space discrete version:

ou 0 0

5 = a(g(quDux)Jr@(g(qul)uy)

du..

d_;J B gH—%] (ulJFl] uij) gl—ll (u” lel])

Numerical Implementation

» Space discrete version:

du; ;
b = Sy () gy (i~ wi)

+ Gy (g — i) =g - (i — uijo1)

» This discretization scheme requires the diffusivities to be
estimated at mid-pixel points.

Ui =T 22y = ) —1
+ computed by taking averages
of the diffusivities over neighboring 8iff-d
ixels: e
P 8isl) = g’il]fhg’] i 8ot ma 1
Qi1
g 81t 8ig i
,/.:‘:l _
K 2 Ui+l Uijt1 Uitilj+1




Numerical Implementation

» Space discrete version:

du; ;
S = &y (i i) =8y (i~ i)

+ &ijpn (i —wig) =& 1 (i —wija)

» Space-time discrete version:

k+1_ ok

7”1‘,]‘ ul,] f— k . uk ; + k *
At Sivyj Hit1j T 8ig

k k k k k

(3i+%,]' 8yt T8 )y

ij—1

k k k k k
Ui1j T8y Hijr T8 1 i

homogeneous Neumann boundary At < 0.25 is required for
condition along the image boundary numerical stability

Extension to vectorial images

« Extension of nonlinear diffusion to vectorial images:

w = (U, U, ..., uyN)

ou _
5 = div (g([[Vul) Vu)
generalization
811@ . ) .
5 div (¢(||IVu ||)Vu;),i=1,..,N

where:  ||Vu|| =

5
> Ivul®
i=1

Slide credit: I. Kokkinos

Perona-Malik results for color images

—

Slide credit: I. Kokkinos

Total Variation (TV) Regularization

» Rudin et al. (1992): image restoration as minimization of the
total variation (TV) of a given image.

» The Total Variation (TV) regularization model is generally
defined as:

Ery(u) :({ (%(u —f)? +1x|Vu|) dx

- Q c R?is connected, bounded, open subset representing the image
domain,

— fis animage defined on Q,
— uis the smooth approximation of f,
- a>0isascalar.




Total Variation (TV) Regularization

» The Total Variation (TV) regularization model:

Erv() = [ (30 17+ alvul) dx

0
» The gradient descent equation for Equation (10) is defined

by:
u Vu 1 ou
5= (m) 2o &

* The value of a specifies the relative importance of the fidelity
term.

=0
20

+ |t can be interpreted as a scale parameter that determines
the level of smoothing.

Sample TV Restoration results

x =50 « =100 x =200

* The value of a specifies the relative importance of the fidelity
term and thus the level of smoothing.

TV Regularization

» Observed image f was assumed to be degraded by additive
Gaussian noise with zero mean and known variance o2.

» To restore a given image, solve the following constrained
optimization problem:

rnuin/ |Vu|dx
0
subject to

/(u — )?dx = o?

(9]

1 . o
* , can be considered as a Lagrange multiplier.

TV Regularization and TV Flow
» TV regularization can be associated with a nonlinear diffusion
filter, the so-called TV flow.

 Ignoring the fidelity term in the TV regularization model
leads to the PDE:

W~V (3(IVu) V)

with u® = f and the diffusivity function ¢(|Vu|) = |Vlu|

» Notice that this diffusivity function has no additional contrast
parameter as compared with the Perona-Malik diffusivities.




Sample TV Flow results

» Corresponding smoothing process yields segmentation-like,
piecewise constant images.

T=25

Sample TV Flow results

» Corresponding smoothing process yields segmentation-like,

piecewise constant images.
T=0 T=25

T =100 T =200 T = 400

Numerical Implementation

» The evolution equation can be discretized by using
standard finite differences.

» The solution of TV regularization or equivalently TV flow
leads to singular diffusivities.

* In numerical implementations based on standard
discretization, this leads to stability problems as the image
gradient tends to zero.

* A common solution to this problem is to add a small
positive constant € to image gradients.

» More accurate numerical implementations are suggested.

Numerical Implementation
» Space discrete version:
w2 N2 ) g
ot ox \ \/[VuZ+e2) 9y \ /[Vul? + €2 o
Uy (uf + €2> — ity lyly + Uyy (u2 4 €2) 1

) (u%+u§+€2>% e




Numerical Implementation

» Space discrete version:

du; i dui i\ 2 du;j du;j du; ; d2u; i duj i\ 2
i i 2\ _ i ij ij i ij 2
du;; Pr << dy) +e 2(dx><dy) wdy | T e <dx) +e

dt ((d;;j>2+<d;?j)2+€2>g
- %(”i,]’ = fij)

: 2
With  d®u;; w0 — i1 — Wio1 1+ Uio1j1

Numerical Implementation

» Space-time discrete version:
2

3

k+1 k k k k k 2 T2
Wi Ui Uity — Uiia,j Uijpr — Hij 5
—_— = — | +t| —5—— ) +e€

At 2 2
k k 2
ut. o —uf.
k k k ij+1 ij—1 2

1/ k k k
-3 (ui+1,j - ui—l,j) (“i,j+1 - ui,j—l)

k k k k
<”i+l,j+1 — Uity Mg T lli—l,j—l)

~ koo gk o\
dxdy 4 " (uii]erl B 21,[?[]- n u§j71> <<u1+1,] - %1,}) i €2>
1
- ()

homogeneous Neumann boundary At < 0.25¢ is required for

condition along the image boundary numerical stability
Structure Tensor Structure Tensor
» Structure tensor J(Vu) is described by: 2

N Y J(Vu) = VuvuT = [ u”jl ”f;y }
X%y y

2
[(Vi) = VuvuT = [ e Hy }
Uxlly Uy

» Structure tensor J(Vu) can be interpreted as an image feature
describing the local orientation information.

+ It has an orthonormal basis of eigenvectors v, and v, with
vy || vuand v, L Vu, and

* The corresponding eigenvalues A, = |[Vul? and A, = 0.

J(Vu) = VuvuT

Images are taken from Brox et al., 2004




Structure Tensor

« aka second moment matrix

Distribution of gradients  Linear Edge

Slide credit: I. Kokkinos

Structure Tensor

« aka second moment matrix
Distribution of gradients  Linear Edge lj

Slide credit: I. Kokkinos

Linear Structure Tensor

* Noise significantly affects the tensor estimation.

» Given image u is usually convolved with a Gaussian kernel G,
with a relatively small standard deviation o

» Linear structure tensor is computed accordingly by using
Vu, = V(G, = u) instead of Vu.

J(Vu) = VuVuT J, with p=3

Images are taken from Brox et al., 2004

Structure Tensor

Distribution of gradients  Linear Edge l] Comer -.
, T ear oE

J = Z (VGo xu)" (VGy * u)
m/’y/

Slide credit: I. Kokkinos




Structure Tensor

J=Y (VGy*u)" (VG, *u)

+ Eigenvectors w,, w.:
directions of maximal and
minimal variation of u

» FEigenvalues: amounts of
minimal and maximal
variation u

Slide credit: I. Kokkinos

Edge Enhancing Diffusion

* Proposed by Weickert (1994)

* an anisotropic nonlinear diffusion model with better edge
enhancing capabilities than the Perona-Malik model

« can be described by the equation:

Jou
— =V - (D(Vu)Vu)
ot

where

— u is the smoothed image,

— fis the input image (L°(x) = f(x)),

— D represents a matrix-valued diffusion tensor that describes the

smoothing directions and the corresponding diffusivities

Edge Enhancing Diffusion

du _ V- (D(Vu)Vu)
ot
« For linear diffusion the diffusion tensor can be defined as

D(Vu) = I with | denoting the identity matrix.

— This results in a constant diffusion coefficient for all image points in all
directions.

« For Perona-Malik type nonlinear diffusion, D(Vu) = g(|Vug|)/.

— Such a choice reduces the amount of smoothing at image edges,
but in an equal amount in all directions.

* In actual anisotropic setting, the diffusion tensor D is defined
as a function of the structure tensor J(Vu).

Edge Enhancing Diffusion

» use the structure tensor as an image/edge descriptor to
construct a diffusion tensor that
— reduces the amount of smoothing across the edges
— while smoothing is still carried out along the edges

* Use the same orthonormal basis of eigenvectors v, || Vu,
and v, 1L Vu, estimated from the structure tensor J(Vu,)
with the following choice of eigenvalues satisfying

M (| Vue|)
A2 ([Viuel)

— (0 for |Vuy| — oo




Edge Enhancing Diffusion

» Suggested eigenvalues are
(I ue)) 1 if [Vus| =0
u = .
! 7 1—exp (—%) otherwise,
M(|Vug]) = 1

where \ denotes the contrast parameter.

+ preserves and enhances edges by reducing the diffusivity A,
perpendicular to edges for sufficiently large values of [Vu,|.

» Specifically, the diffusion tensor is given by the formula:

(o), —(uo>yHA1<|wg|> 0 Hwa)x —<ua>y]1

=1 o), (o), 0 A(Vue) || (we), (o),

Sample Results of Edge Enhancing Diffusion

* Smoothing process diminishes noise and fine image details
while retaining and enhancing edges as in the Perona-Malik

type nonlinear diffusion.
T=0

Sample Results of Edge Enhancing Diffusion

» Corners become more rounded in the anisotropic model
compared to the Perona-Malik filter.

* Smoothing along
edges and not
across them

* causes a slight
shrinking
effect in the image
structures

e eliminates fine or
thin structures

A=18 0c=1)




