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Review - Smoothing and Edge 
Detection


•  While eliminating noise via smoothing, we also lose 
some of the (important) image details.

–  Fine details

–  Image edges

–  etc.


•  What can we do to preserve such details?

–  Use edge information during denoising!

–  This requires a definition for image edges. 






•  Edge preserving image smoothing


Chicken-and-egg dilemma!




Today

•  Bilateral filtering

•  Non-local means denoising

•  LARK filter
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Notation and Definitions

•  Image = 2D array of pixels


•  Pixel = intensity (scalar) or color (3D vector)


•  Ip = value of image I at position: p = ( px , py ) 

•  F [ I ] = output of filter F applied to image I 

x 

y 



Strategy for Smoothing Images

•  Images are not smooth because !

adjacent pixels are different.


•  Smoothing = making adjacent pixels!

 
 
look more similar.


•  Smoothing strategy!

pixel ~ average of its neighbors
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Square Box Generates Defects 

•  Axis-aligned streaks

•  Blocky results
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output	
  



Strategy to Solve these Problems


•  Use an isotropic (i.e. circular) window.

•  Use a window with a smooth falloff.
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Gaussian Blur
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How to set σ
•  Depends on the application.


•  Common strategy: proportional to image 
size

– e.g. 2% of the image diagonal

– property: independent of image resolution




Properties of Gaussian Blur

•  Weights independent of spatial location


–  linear convolution


– well-known operation


– efficient computation (recursive algorithm, 
FFT…)




Properties of Gaussian Blur

•  Does smooth images

•  But smoothes too much:!

edges are blurred.

– Only spatial distance matters

– No edge term
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Blur Comes from !
Averaging across Edges
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Bilateral Filter!
No Averaging across Edges
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* 
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   output	
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Bilateral Filter Definition:!
an Additional Edge Term
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Illustration a 1D Image

•  1D image = line of pixels


•  Better visualized as a plot
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Gaussian Blur and Bilateral Filter


space	
   range	
  
normaliza8on	
  

Gaussian	
  blur	
  

( ) ( )∑
∈

−−=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs σσ

Bilateral	
  filter	
  
[Aurich	
  95,	
  Smith	
  97,	
  Tomasi	
  98]	
  

space	
  

space	
  
range	
  

p 

p 

q 

q 

( )∑
∈

−=
S

IGIGB
q

qp qp ||||][ σ



q
p

Bilateral Filter on a Height Field


output	
   input	
  

( ) ( )∑
∈

−−=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs σσ

p

reproduced	
  
from	
  [Durand	
  02]	
  



Space and Range Parameters


•  space σs : spatial extent of the kernel, size of 
the considered neighborhood.


•  range σr : “minimum” amplitude of an edge
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Influence of Pixels
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Exploring the Parameter Space 
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Varying the Range Parameter 
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How to Set the Parameters

Depends on the application. For instance:




•  space parameter: proportional to image size

–  e.g., 2% of image diagonal


•  range parameter: proportional to edge amplitude

–  e.g., mean or median of image gradients


•  independent of resolution and exposure




Bilateral Filter Crosses Thin Lines

•  Bilateral filter averages across !


features thinner than ~2σs  
•  Desirable for smoothing: more pixels = more robust

•  Different from diffusion that stops at thin lines


close-­‐up	
   kernel	
  



Iterating the Bilateral Filter


•  Generate more piecewise-flat images

•  Often not needed in computational photo.
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Bilateral Filtering Color Images
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Hard to Compute

•  Nonlinear


•  Complex, spatially varying kernels

–  Cannot be precomputed, no FFT…


•  Brute-force implementation is slow > 10min
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Additional Reading: S. Paris and F. Durand, A Fast Approximation 
of the Bilateral Filter using a Signal Processing Approach, In Proc. 
ECCV, 2006




Basic denoising
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Basic denoising
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Denoising

•  Small spatial sigma (e.g. 7x7 window)

•  Adapt range sigma to noise level 

•  Maybe not best denoising method, but best 

simplicity/quality tradeoff

–  No need for acceleration (small kernel)

–  But the denoising feature in e.g. Photoshop is better




Goal: Understand how does bilateral 
filter relates with other methods
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New Idea:!
NL-Means Filter (Buades 2005)


•  Same goals: ‘Smooth within Similar 
Regions’


•  KEY INSIGHT: Generalize, extend‘Similarity’

– Bilateral: !

Averages neighbors with similar intensities;


– NL-Means:  !
  Averages neighbors with similar neighborhoods!




NL-Means Method:!
Buades (2005)








•  For each and

   every pixel p: 




NL-Means Method:!
Buades (2005)





•  For each and

   every pixel p: !


– Define a small, simple fixed size neighborhood;




•  For each and
   every pixel p: ���

– Define a small, simple fixed size neighborhood;
–  Define vector Vp: a list of neighboring pixel values.

NL-Means Method:!
Buades (2005)
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NL-Means Method:!
Buades (2005)


‘Similar’ pixels p, q

à SMALL!

 vector distance;
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NL-Means Method:!
Buades (2005)


‘Dissimilar’ pixels  p, q

à LARGE!

 vector distance;
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NL-Means Method:!
Buades (2005)


‘Dissimilar’ pixels  p, q

à LARGE!

 vector distance;






Filter with this!
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NL-Means Method:!
Buades (2005)


p, q neighbors define

a vector distance;




Filter with this:!

No spatial term!
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NL-Means Method:!
Buades (2005)


pixels  p, q neighbors!
Set a vector distance;







Vector Distance to p sets !
weight for each pixel q
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NL-Means Method: Buades (2005)




NL-Means Method: Buades (2005)




NL-Means Method: Buades (2005)


•  Noisy!
source!
image:




NL-Means Method: Buades (2005)


•  Gaussian!
Filter


Low noise,

Low detail




NL-Means Method: Buades (2005)


•  Anisotropic!
Diffusion




(Note !

‘stairsteps’:!
~ piecewise!
constant)




NL-Means Method: Buades (2005)


•  Bilateral!
Filter




(better, but!

similar!
‘stairsteps’:!





NL-Means Method: Buades (2005)


•  NL-Means:







Sharp,

Low noise,

Few artifacts.!





NL-Means Method: Buades (2005)




NL-Means Method: Buades (2005)


http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




original


NL-Means Method: Buades (2005)


http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




noisy


NL-Means Method: Buades (2005)


http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




denoised


NL-Means Method: Buades (2005)


http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
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NL-Means Method: Buades (2005)


http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/




noisy


NL-Means Method: Buades (2005)


http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
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http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/


NL-Means Method: Buades (2005)
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From pixels to patches and to 
images


A�Modern�Paradigm:�Measuring�
Similarity�Between…

Images
Patches

Pixels

Pixels


Patches

Images


Similarities can be defined at different scales..




Pixelwise similarity metrics

•  To measure the similarity of two pixels, we can 

consider 

–  Spatial distance

–  Gray‐level distance


Defining�a�pointͲwise�measure

• To�measure�the�similarity�of�two�pixels,�consider
– Spatial distance

– GrayͲlevel distance
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Euclidean metrics

•  Natural ways to incorporate the two Δs:

–  Bilateral Kernel [Tomasi, Manduchi, ‘98] (pixelwise)

–  Non‐Local Means Kernel [Buades, et al. ‘05] (patchwise)


Euclidean�measures

• Natural�ways�to�incorporate�the�two�ȴs:
– Bilateral Kernel�[Tomasi,�Manduchi,�‘98]�(pointwise)
– NonͲLocal�Means Kernel�[Buades,�et�al.�‘05]�(patchwise)
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Bilateral Kernel (BL) [Tomasi et al. 
‘98]


Bilateral�Kernel�(BL)�[Tomasi et�al.�‘98]

Pixel similarity Spatial similarity

=

Pixels



Non‐local Means (NLM) [Buades et al. 
‘05]
NonͲlocal�Means�(NLM)��[Buades et�al.�‘05]

Patch similarity Spatial similarity

=

Æ Smoothing�effect

Patches

Smoothing effect




Beyond Euclidean metrics

•  Better similarity measures

•  More effective ways to combine the two Δs:

–  LARK Kernel [Takeda, et al. ‘07]

–  Beltrami Kernel [Sochen, et al.‘98]


Defining�a�better�measure

• More�effective�ways�to�combine�the�two�ȴs:
– LARK Kernel�[Takeda,�et�al.�‘07]

– Beltrami Kernel�[Sochen,�et�al.‘98]
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A�digression�to�NonͲparametric
Kernel�Regression

• The�data�fitting�problem

Given samples

The regression function

Zero-mean, i.i.d noise (No other assump.)

The number of samplesThe sampling position

• The particular form of        
may remain unspecified for now.
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Fig. 4. Comparison of the position of knots in (a) kernel regression and (b) classical B-spline methods.

The coefficients are the unknown parameters we want
to estimate. We refer the interested reader to [13, pp. 104–107]
which offers further examples and insights.

Following the notation used in the previous section, the
B-spline regression is expressed as the linear combination of
shifted spline functions

(8)

where the -order B-spline function is defined as a times
convolution of the zero-order B spline [18]

where

else
(9)

The scalar in (8), often referred to as the knot, defines the
center of a spline. Least squares is usually exploited to estimate
the B-spline coefficients .

The B-spline interpolation method bears some similarities to
the kernel regression method. One major difference between
these methods is in the number and position of the knots as illus-
trated in Fig. 4. While in the classical B-Spline method the knots
are located in equally spaced positions, in the case of kernel re-
gression the knots are implicitly located on the sample positions.
A related method, the nonuniform rational B-spline is also pro-
posed [22] to address this shortcoming of the classical B-Spline
method by irregularly positioning the knots with respect to the
underlying signal.

Cubic spline interpolation technique is one of the most pop-
ular members of the spline interpolation family which is based
on fitting a polynomial between any pair of consecutive data.
Assuming that the second derivative of the regression function
exists, cubic spline interpolator is defined as

(10)

where under the following boundary conditions:

(11)

all the coefficients ( s) can be uniquely defined [20].
Note that an estimated curve by cubic spline interpolation

passes through all data points which is ideal for the noiseless
data case. However, in most practical applications, data is
contaminated with noise and, therefore, such perfect fits are no
longer desirable. Consequently, a related method called spline
smoother has been proposed [18]. In the spline smoothing
method, the afore-mentioned hard conditions are replaced with
soft ones, by introducing them as Bayesian priors which pe-
nalize rather than constrain nonsmoothness in the interpolated
images. A popular implementation of the spline smoother [18]
is given by

(12)

where

and can be replaced by either (8) or any orthogonal se-
ries (e.g., [23]), and is the regularization parameter. Note that
assuming a continuous sample density function, the solution to
this minimization problem is equivalent to NWE (6), with the
following kernel function and smoothing parameter:

(13)

where is the density of samples [13], [24]. Therefore, spline
smoother is a special form of kernel regression.

In Section IV, we compare the performance of the spline
smoother with the proposed kernel regression method, and, later
in Section V, we give some intuitions for the outstanding per-
formance of the kernel regression methods.

Non‐parametric Kernel Regression

•  The data fitting problem


•  The particular !
form of z(x) !
may remain!
unspecified!
for now.




Locality in Kernel Regression

•  The data model!

!



•  Local representation (N-term Taylor series expansion)






•  Note that with a polynomial basis, we only need to 

estimate the first unknown β0 




• The�data�model

• Local�representation�(NͲterm�Taylor�expansion)

• Note
– With�a�polynomial�basis,�we�only�need�to�estimate�the�first�unknown,����

– Other�localized�representations�are�also�possible,�and�may�be�advantageous.

Locality�in�Kernel�Regression

Unknowns
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Fig. 1. (a) Interpolation of regularly sampled data. (b) Reconstruction from irregularly sampled data. (c) Denoising.

Fig. 2. Image fusion often yields us irregularly sampled data.

call here kernel regression—are not widely recognized or used
in the image and video processing literature. Indeed, in the
last decade, several concepts related to the general theory we
promote here have been rediscovered in different guises, and
presented under different names such as normalized convolu-
tion [5], [6], bilateral filter [7], [8], edge-directed interpolation
[9], and moving least squares [10]. Later in this paper, we shall
say more about some of these concepts and their relation to
the general regression theory. To simplify this introductory
presentation, we treat the 1-D case where the measured data
are given by

(1)

where is the (hitherto unspecified) regression function and
s are the independent and identically distributed zero mean

noise values (with otherwise no particular statistical distribu-
tion assumed). As such, kernel regression provides a rich mech-
anism for computing point-wise estimates of the function with
minimal assumptions about global signal or noise models.

While the specific form of may remain unspecified, if
we assume that it is locally smooth to some order , then in
order to estimate the value of the function at any point given
the data, we can rely on a generic local expansion of the function
about this point. Specifically, if is near the sample at , we
have the -term Taylor series

(2)

(3)

The above suggests that if we now think of the Taylor series
as a local representation of the regression function, estimating
the parameter can yield the desired (local) estimate of the

regression function based on the data.1 Indeed, the parameters
will provide localized information on the th deriva-

tives of the regression function. Naturally, since this approach
is based on local approximations, a logical step to take is to
estimate the parameters from the data while giving
the nearby samples higher weight than samples farther away. A
least-squares formulation capturing this idea is to solve the fol-
lowing optimization problem:

(4)

where is the kernel function which penalizes distance away
from the local position where the approximation is centered, and
the smoothing parameter (also called the “bandwidth”) con-
trols the strength of this penalty [3]. In particular, the function

is a symmetric function which attains its maximum at zero,
satisfying

(5)

where is some constant value.2 The choice of the particular
form of the function is open, and may be selected as a
Gaussian, exponential, or other forms which comply with the
above constraints. It is known [11] that for the case of classic
regression the choice of the kernel has only a small effect on
the accuracy of estimation, and, therefore, preference is given

1Indeed the local approximation can be built upon bases other than polyno-
mials [3].

2Basically, the only conditions needed for the regression framework are that
the kernel function be nonnegative, symmetric, and unimodal. For instance, un-
like the kernel density estimation problems [11], even if the kernel weights in
(6) do not sum up to one, the term in the denominator will normalize the final
result.



Locality in Kernel Regression

•  The data model!

!



•  Local representation (N-term Taylor series expansion)






•  Note that with a polynomial basis, we only need to 

estimate the first unknown β0 




• The�data�model

• Local�representation�(NͲterm�Taylor�expansion)

• Note
– With�a�polynomial�basis,�we�only�need�to�estimate�the�first�unknown,����

– Other�localized�representations�are�also�possible,�and�may�be�advantageous.

Locality�in�Kernel�Regression

Unknowns

• The�data�model

• Local�representation�(NͲterm�Taylor�expansion)

• Note
– With�a�polynomial�basis,�we�only�need�to�estimate�the�first�unknown,����

– Other�localized�representations�are�also�possible,�and�may�be�advantageous.

Locality�in�Kernel�Regression

Unknowns



Finding the unknowns via 
optimization


•  We have a local representation with respect to each 
sample:


•  Estimate the parameters              from the data while 
giving the nearby samples higher weight than samples 
farther away.


Optimization�Problem

• We�have�a�local�representation�with�respect�to�each�sample:

• Optimization
N+1 terms

This term give 
the estimated 

pixel value z(x).

The regression 
order

The choice of the 
kernel function is 

open, e.g. Gaussian.
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Fig. 1. (a) Interpolation of regularly sampled data. (b) Reconstruction from irregularly sampled data. (c) Denoising.

Fig. 2. Image fusion often yields us irregularly sampled data.

call here kernel regression—are not widely recognized or used
in the image and video processing literature. Indeed, in the
last decade, several concepts related to the general theory we
promote here have been rediscovered in different guises, and
presented under different names such as normalized convolu-
tion [5], [6], bilateral filter [7], [8], edge-directed interpolation
[9], and moving least squares [10]. Later in this paper, we shall
say more about some of these concepts and their relation to
the general regression theory. To simplify this introductory
presentation, we treat the 1-D case where the measured data
are given by

(1)

where is the (hitherto unspecified) regression function and
s are the independent and identically distributed zero mean

noise values (with otherwise no particular statistical distribu-
tion assumed). As such, kernel regression provides a rich mech-
anism for computing point-wise estimates of the function with
minimal assumptions about global signal or noise models.

While the specific form of may remain unspecified, if
we assume that it is locally smooth to some order , then in
order to estimate the value of the function at any point given
the data, we can rely on a generic local expansion of the function
about this point. Specifically, if is near the sample at , we
have the -term Taylor series

(2)

(3)

The above suggests that if we now think of the Taylor series
as a local representation of the regression function, estimating
the parameter can yield the desired (local) estimate of the

regression function based on the data.1 Indeed, the parameters
will provide localized information on the th deriva-

tives of the regression function. Naturally, since this approach
is based on local approximations, a logical step to take is to
estimate the parameters from the data while giving
the nearby samples higher weight than samples farther away. A
least-squares formulation capturing this idea is to solve the fol-
lowing optimization problem:

(4)

where is the kernel function which penalizes distance away
from the local position where the approximation is centered, and
the smoothing parameter (also called the “bandwidth”) con-
trols the strength of this penalty [3]. In particular, the function

is a symmetric function which attains its maximum at zero,
satisfying

(5)

where is some constant value.2 The choice of the particular
form of the function is open, and may be selected as a
Gaussian, exponential, or other forms which comply with the
above constraints. It is known [11] that for the case of classic
regression the choice of the kernel has only a small effect on
the accuracy of estimation, and, therefore, preference is given

1Indeed the local approximation can be built upon bases other than polyno-
mials [3].

2Basically, the only conditions needed for the regression framework are that
the kernel function be nonnegative, symmetric, and unimodal. For instance, un-
like the kernel density estimation problems [11], even if the kernel weights in
(6) do not sum up to one, the term in the denominator will normalize the final
result.
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Fig. 1. (a) Interpolation of regularly sampled data. (b) Reconstruction from irregularly sampled data. (c) Denoising.

Fig. 2. Image fusion often yields us irregularly sampled data.

call here kernel regression—are not widely recognized or used
in the image and video processing literature. Indeed, in the
last decade, several concepts related to the general theory we
promote here have been rediscovered in different guises, and
presented under different names such as normalized convolu-
tion [5], [6], bilateral filter [7], [8], edge-directed interpolation
[9], and moving least squares [10]. Later in this paper, we shall
say more about some of these concepts and their relation to
the general regression theory. To simplify this introductory
presentation, we treat the 1-D case where the measured data
are given by

(1)

where is the (hitherto unspecified) regression function and
s are the independent and identically distributed zero mean

noise values (with otherwise no particular statistical distribu-
tion assumed). As such, kernel regression provides a rich mech-
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(3)
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regression function based on the data.1 Indeed, the parameters
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tives of the regression function. Naturally, since this approach
is based on local approximations, a logical step to take is to
estimate the parameters from the data while giving
the nearby samples higher weight than samples farther away. A
least-squares formulation capturing this idea is to solve the fol-
lowing optimization problem:

(4)

where is the kernel function which penalizes distance away
from the local position where the approximation is centered, and
the smoothing parameter (also called the “bandwidth”) con-
trols the strength of this penalty [3]. In particular, the function

is a symmetric function which attains its maximum at zero,
satisfying

(5)

where is some constant value.2 The choice of the particular
form of the function is open, and may be selected as a
Gaussian, exponential, or other forms which comply with the
above constraints. It is known [11] that for the case of classic
regression the choice of the kernel has only a small effect on
the accuracy of estimation, and, therefore, preference is given

1Indeed the local approximation can be built upon bases other than polyno-
mials [3].

2Basically, the only conditions needed for the regression framework are that
the kernel function be nonnegative, symmetric, and unimodal. For instance, un-
like the kernel density estimation problems [11], even if the kernel weights in
(6) do not sum up to one, the term in the denominator will normalize the final
result.



Optimization�Problem

• We�have�a�local�representation�with�respect�to�each�sample:

• Optimization
N+1 terms

This term give 
the estimated 

pixel value z(x).

The regression 
order

The choice of the 
kernel function is 

open, e.g. Gaussian.

Finding the unknowns via 
optimization


•  We have a local representation with respect to each sample:


•  Optimization 


Optimization�Problem

• We�have�a�local�representation�with�respect�to�each�sample:

• Optimization
N+1 terms

This term give 
the estimated 

pixel value z(x).

The regression 
order

The choice of the 
kernel function is 

open, e.g. Gaussian.



To�summarize……

Uses distance x-xi

Classic Kernel:�Locally�Linear Filter:

DataͲAdaptive Kernel:�Locally�NonͲLinear Filter:

Uses x-xi and y-yi

Defining Data-Adaptive Kernels

•  Classic Kernel: Locally Linear Filter: 


•  Data‐Adaptive Kernel: !
Locally Non‐Linear Filter: 




Recall - Beyond Euclidean metrics


•  Better similarity measures

•  More effective ways to combine the two Δs:

–  LARK Kernel [Takeda, et al. ‘07]

–  Beltrami Kernel [Sochen, et al.‘98]
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Gradient�vector�field

Local�covariance�matrices

“Structure�tensor”

Locally�Adaptive�Regression�Kernel:�LARK

LARK�Kernels



Gradient�Covariance�Matrix�
and�Local�Geometry

Gradient matrix over a local patch:

Capturing�locally�dominant�orientations
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Gradient Covariance Matrix and 
Local Geometry


Gradient matrix over a local patch:


Capturing locally dominant orientations 




Image�as�a�Surface�Embedded�in�the�
Euclidean�3Ͳspace

Arclength on�the�surface�

Chain�rule

Riemannian�metric
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Image as a Surface Embedded in 
the Euclidean 3‐space 




(Dense) LARK Kernels as !
Visual Descriptors [Seo and Milanfar ‘10]


Measure the similarity of pixels using the metric
implied by the local structure of the image 

H.�J.�Seo,�and�P.�Milanfar,�"TrainingͲfree,�Generic�Object�Detection�using�Locally�Adaptive�
Regression�Kernels", Accepted�in�Trans.�on�Pattern�Analysis�and�Machine�Intelligence

(Dense)�LARK�Kernels�as�
Visual�Descriptors
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A Variant Better‐suited for Restoration!
[Takeda et al. ’07]


[*]�H.�Takeda,�S.�Farsiu,�P.�Milanfar,�“Kernel�Regression�for�Image�Processing�and�Reconstruction”,
IEEE�Transactions�on�Image�Processing,�Vol.�16,�No.�2,�pp.�349Ͳ366,�February�2007

A�Variant�BetterͲsuited�for�Restoration

LARK LSK�[*]

=

Measures�“edginess”LARK                    Edge strength                      LSK
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Adaptive Sharpening/Denoising !



Adaptive�Sharpening/Denoising

• Sharpening the�LARK�Kernel�
Laplacian operator

“Sharpness”
parameter

•  Sharpening the LARK Kernel 




LARK‐based Simultaneous 
Sharpening/Deblurring/Denoising


•  Net effect:

– aggressive denoising in “flat” areas

– Selective denoising and sharpening in “edgy” 

areas
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Sharpening/Deblurring/Denoising

• Net�effect:�
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– Selective�denoising and�sharpening�in�“edgy” areas�

LARKͲbased
filter

Locally�adaptive�denoise/deblur filters
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