BIL 717 Image Processing Mar. 25, 2015

Modern Image Smoothing

Acknowledgement: The slides on Rolling Guidance Filter are adapted from the slides prepared by Zhang et al. of The Chinese University of Hong Kong.

Erkut Erdem
Hacettepe University
Computer Vision Lab (HUCVL)

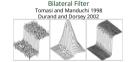
A little bit of (personal) history

Standard unified formulations (nonlinear filters) fail to capture some details, e.g. due to texture!

- ▶ mid 80's unified formulations a breakthrough!
 - methods that combine smoothing and edge detection (Geman & Geman'84, Mumford & Shah'89, Perona & Malik'90)

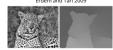
A little bit of history

▶ Gaussian Filtering / linear diffusion - the most widely used method


- mid 80's unified formulations a breakthrough!
 - methods that combine smoothing and edge detection (Geman & Geman'84, Mumford & Shah'89, Perona & Malik'90)

Some seminal works

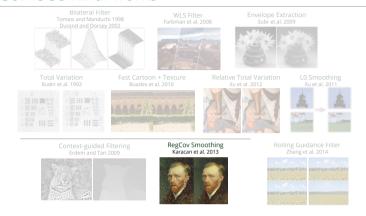
Total Variation
Rudin et al. 1992


Fast Cartoon + Texture
Buades et al. 2010

M. 1992 Buades et al. 2010

Relative Total Variation Xu et al. 2012

Context-guided Filtering Erdem and Tari 2009



Rolling Guidance Filter Zhang et al. 2014

Enang ce al. 2014	
isterista	HER BOY TOURNESS OF
isirininiriri Te berses	

Some seminal works

Structure-Texture Decomposition

Decomposing an image into structure and texture components

Context-guided filtering

- ► Contextual knowledge extracted from local image regions guides the regularization process.
 - ► E. Erdem, A. Sancar-Yilmaz, and S. Tari, "Mumford-Shah Regularizer with Spatial Coherence", In SSVM 2007
 - E. Erdem and S. Tari, "Mumford-Shah Regularizer with Contextual Feedback", JMIV 2009

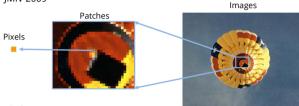
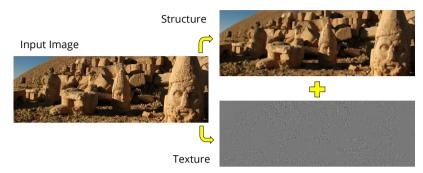


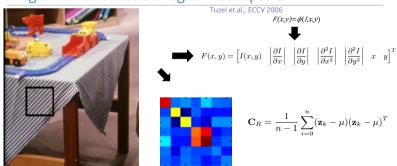
Image Credit: P. Milanfar

Structure-Texture Decomposition

Decomposing an image into structure and texture components

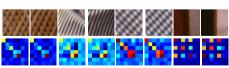

Structure-Texture Decomposition

▶ Decomposing an image into structure and texture components



Structure-Texture Decomposition

▶ Decomposing an image into structure and texture components


Region Covariances as Region Descriptors

Motivation

- Region covariances capture local structure and texture information.
- ▶ Similar regions have similar statistics.

RegCov Smoothing - Formulation

$$I = S + T$$

$$S(\mathbf{p}) = \frac{1}{Z_{\mathbf{p}}} \sum_{\mathbf{q} \in N(\mathbf{p}, r)} w_{\mathbf{p}\mathbf{q}} I(\mathbf{q})$$

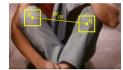
- Structure-texture decomposition via smoothing
- Smoothing as weighted averaging
- ▶ Different kernels (w_{na}) result in different types of filters.
- Three novel patch-based kernels for structure texture decomposition.
- L. Karacan, A. Erdem, E. Erdem, "Structure Preserving Image Smoothing via Region Covariances", ACM TOG 2013 (SIGGRAPH Asia 2013)

Model 2

- ▶ An alternative way is to use statistical similarity measures.
- ► A Mahalanobis-like distance measure to compare to image patches.

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(\mu_{\mathbf{p}} - \mu_{\mathbf{q}})\mathbf{C}^{-1}(\mu_{\mathbf{p}} - \mu_{\mathbf{q}})^{T}}$$

$$\mathbf{C} = \mathbf{C_p} + \mathbf{C_q}$$


Resulting kernel
$$w_{f pq} \propto \exp\left(-rac{d({f p},{f q})^2}{2\sigma^2}
ight)$$

Model 1

▶ Depends on sigma-points representation of covariance matrices (Hong et al.,CVPR'09)

$$\mathbf{C} = \mathbf{L}\mathbf{L}^T$$
 Cholesky Decomposition $\mathcal{S} = \{\mathbf{s}_i\}$ Sigma Points

$$\mathbf{s}_i = \left\{ \begin{array}{cc} \alpha \sqrt{d} \mathbf{L}_i & \text{if } 1 \leq i \leq d \\ -\alpha \sqrt{d} \mathbf{L}_i & \text{if } d+1 \leq i \leq 2d \end{array} \right.$$

Final representation

$$\Psi(\mathbf{C}) = (\mu, \mathbf{s}_1, \dots, \mathbf{s}_d, \mathbf{s}_{d+1}, \dots, \mathbf{s}_{2d})^T$$

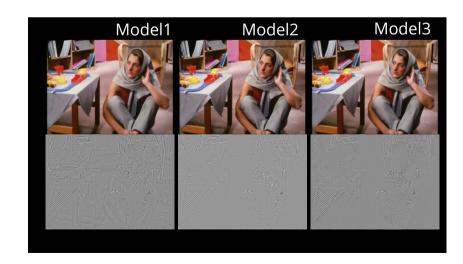
Resulting kernel function

$$w_{\mathbf{pq}} \propto \exp\left(-\frac{\|\Psi(\mathbf{C_p}) - \Psi(\mathbf{C_q})\|^2}{2\sigma^2}\right)$$

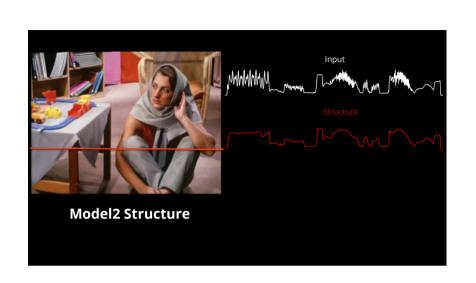
Model 3

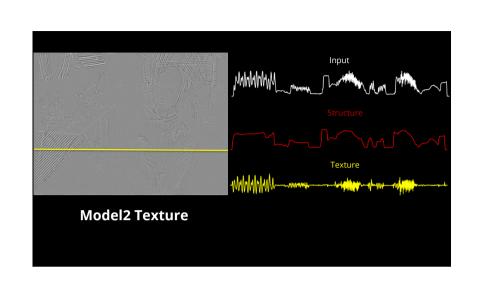
resulted from a discussion with Rahul Narain (Berkeley University)

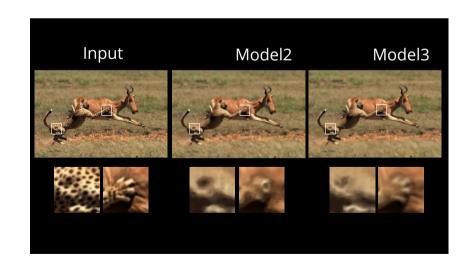

- ▶ We use Kullback-Leibler(KL)-Divergence measure from probability
- ▶ A KL-Divergence form is used to calculate statistical distance between two multivariate normal distribution

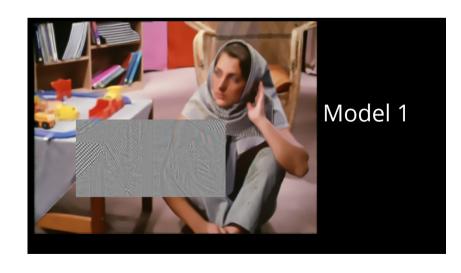

$$\begin{split} d_{KL}(\mathbf{p},\mathbf{q}) &= \frac{1}{2} \Bigg(tr(\mathbf{C_q}^{-1}\mathbf{C_p}) + (\mu_p - \mu_q)^T \mathbf{C_q}^{-1} (\mu_p - \mu_q) - k - ln\Big(\frac{\det \mathbf{C_p}}{\det \mathbf{C_q}}\Big) \Bigg) \end{split}$$
 Resulting kernel
$$w_{pq} \propto \frac{d_{KL}(\mathbf{p},\mathbf{q})}{2\sigma^2}$$

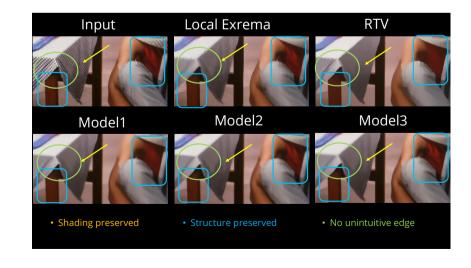
$$w_{pq} \propto \frac{d_{KL}(\mathbf{p}, \mathbf{q})}{2\sigma^2}$$

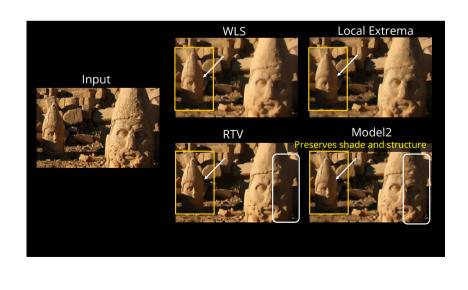

Smoothing Kernels

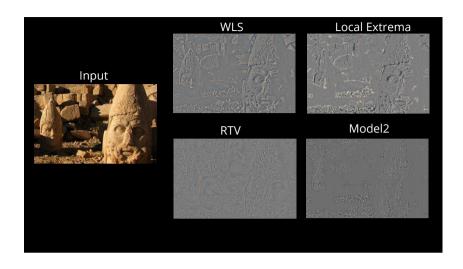


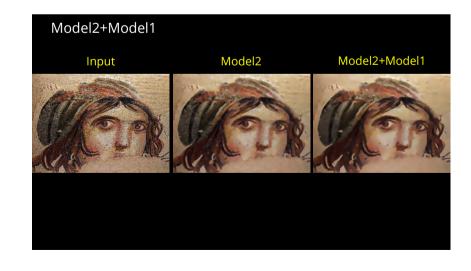


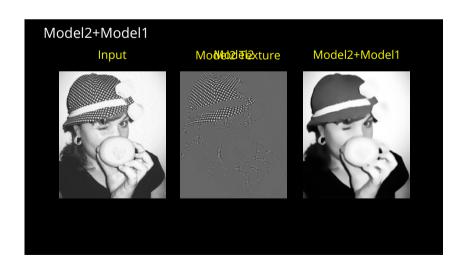












Detail Boosting

Image Composition

Inverse Halftoning

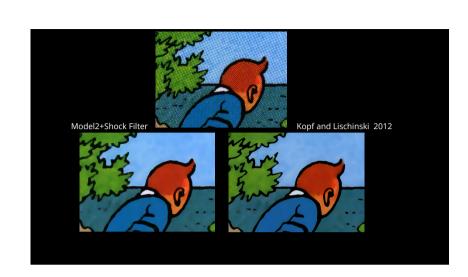
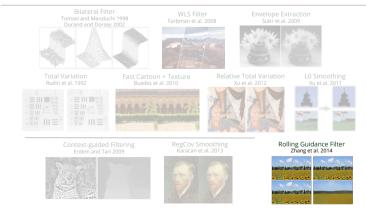
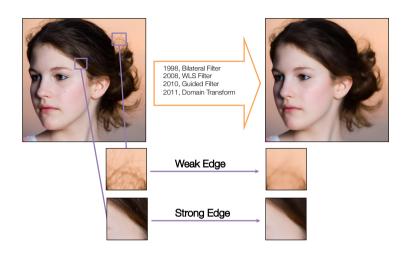
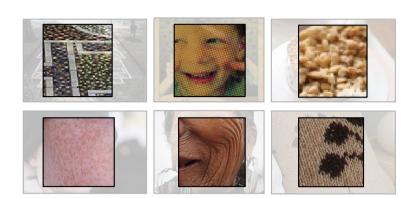


Image Retargeting




Where we are going


- Linear filtering
- Nonlinear filtering (unified formulations)
- ▶ Pixels to Patches (context is more important than content)
- New patch representations may reveal new smoothing behaviors
- ▶ Better the smoothing, better the applications!
- Clearly, we have a long way to go to solve the problem of image smoothing!

Some seminal works

An Important Steam: Edge Preserving

Many tiny contents are strong

What better characters them?

Scale!

Scale in Computer Vision

Scale

Hierarchical

Scale-invariant

Pyramid

Scale-space

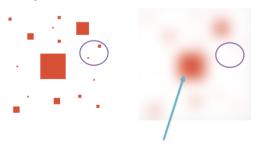
Multi-scale

Large-scale

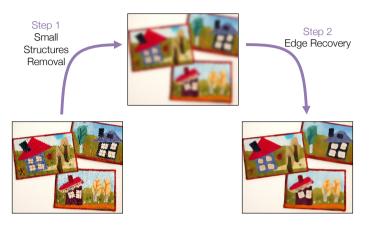
- Segmentation
- Object Detection
- Saliency Detection
- Feature Extraction
- · Video Analysis
- Edge Detection
- Optical Flow & Stereo
- Scene Understanding
- Action Recognition
- ...

Scale + Image filter = ?

Scale-Aware Filtering Small Scale * Large Scale *

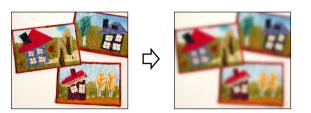

Interesting Fact

Rolling Guidance Filter (RGF) has only 1 line of code

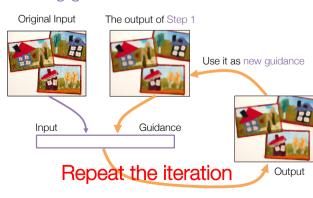

```
1 Mat rollingGuidanceFilter(Mat im, float scale, int iter){
2     Mat res = im.mul(0);
3     while(iter--) res = bilateralFilter(im,res,scale,SIGMA_R);
4     return res;
5 }
```

Main Idea

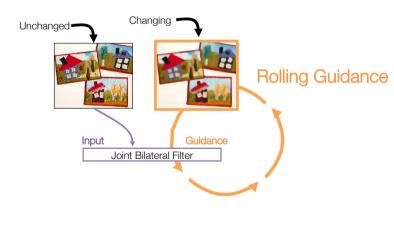
- Scale Space Theory [Lindeberg, 1994]:
 - An object of size t, will be largely smoothed away with Gaussian filter of variance t2.



RGF: A scale-aware Filter


Step 1: Small Structures Removal

Gaussian Filter



Step 2: Edge Recovery

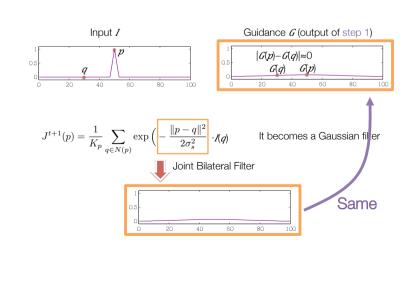
A rolling guidance

Rolling Guidance

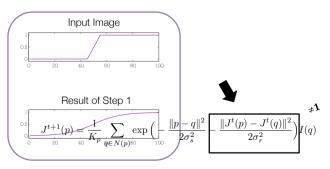
Guidance for the 1st iteration


Guidance for the 2nd iteration

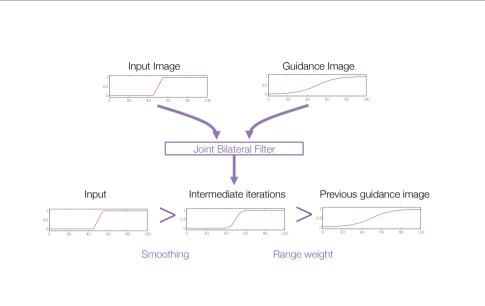
Guidance for the 3rd iteration

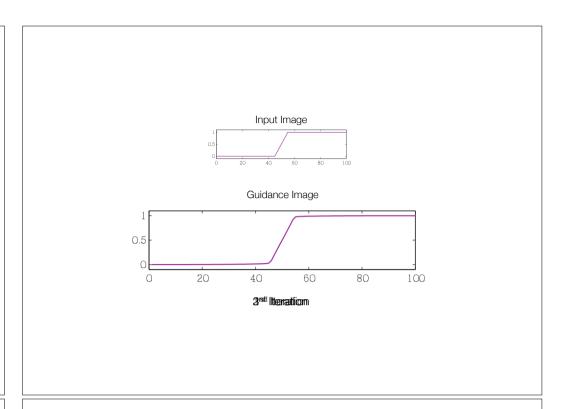


Guidance for the 5th iteration



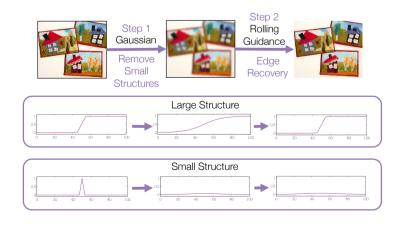
Why does rolling guidance work?


Small Structure



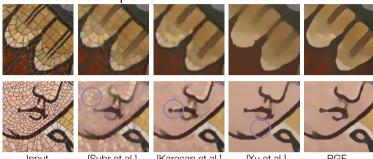
Large Structure

Due to this range weight It generates sharper results than Gaussian!


Large Structure

Take-home message

Rolling guidance recovers an edge as long as it still exists in the blurred image after Gaussian smoothing.


Rolling Guidance Filter

Comparison

Result Comparison

• Result comparison with related work

Performance Comparison

• Performance comparison with related works

2013]

seconds

For 4 Megapixel Image

Performance Comparison

• Performance comparison

Algorithms	Time (seconds/Megapixel)
Local Extrema [Subr et al., 2009]	95
RTV [Xu et al., 2012]	14
Region Covariance [Karacan et al., 2013]	240
RGF	0.05 (Real-time)

Results & Application

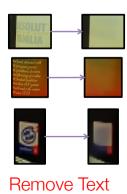
Texture Removal

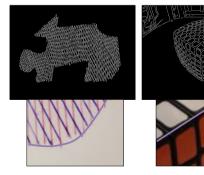
Texture Removal

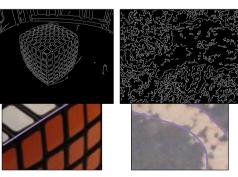
Texture Removal

Halftone Image

Halftone Image






Small Text Removal

Virtual Edge Detection

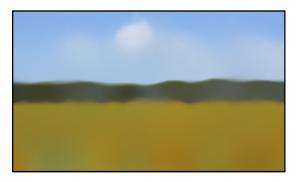
Virtual Edge Detection

Natural Images

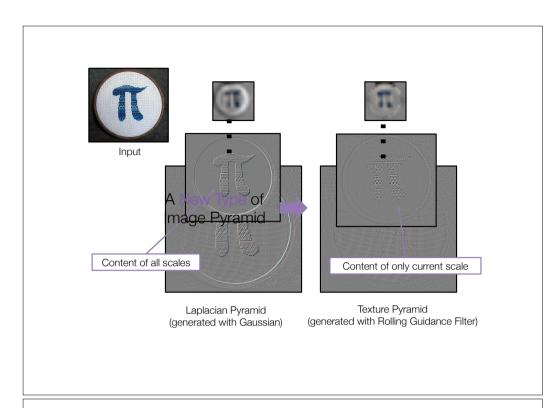
- Usable for
 - Segmentation
 - Saliency
 - Scene understanding
 - Background subtraction
 - Layer separation
 - Outlier removal
 - ...

Input

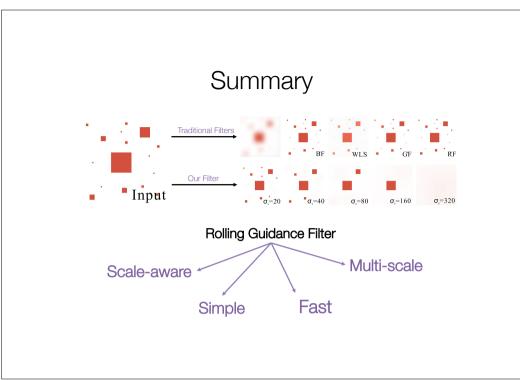
Boundary Detection


Filtered Input

Boundary Detection



Multi-Scale Filtering


 $\sigma s = 30$

 σs determine the scale.

Limitations

- Sharp corners could be rounded
 - It is because sharp corner presents high frequency change.
 - In other words, sharp corners are small-scale structures.

