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Introduction 
Blind Deconvolution 
Non-blind Deconvolution 

blur [bl3:(r)] 
•  Long exposure 
•  Moving objects 
•  Camera motion 

–  panning shot 

blur [bl3:(r)] 
•  Often degrades image/video 

quality severely 
•  Unavoidable under dim light 

circumstances 



Various Kinds of Blurs 

Camera shake (Camera motion blur) 

Out of focus (Defocus blur) Combinations (vibration & motion, …) 

Object movement (Object motion blur) 

Camera Motion Blur 
•  Caused by camera shakes during 

exposure time 
–  Motion can be represented as a 

camera trajectory 

Object Motion Blur 
•  Caused by object motions during exposure time 

Defocus Blur 
•  Caused by the limited depth of field of a camera 



Optical Lens Blur  
•  Caused by lens aberration 

Deblurring? 
•  Remove blur and restore a latent sharp image 

from a given blurred image find its latent sharp image 

Deblurring: Old Problem! 
•  Trott, T., “The Effect of Motion of Resolution”, 

Photogrammetric Engineering, Vol. 26, pp. 819-827, 1960. 
•  Slepian, D., “Restoration of Photographs Blurred by Image Motion”, 

Bell System Tech., Vol. 46, No. 10, pp. 2353-2362, 1967. 

Why is it important? 
•  Image/video in our daily lives 

–  Sometimes a retake is difficult! 



Why is it important? 
•  Strong demand for high quality deblurring 

CCTV, car black box Medical 
imaging 

Aerial/satellite 
photography 

Robot vision 

Deblurring 

from a given blurred image find its latent sharp image 

Commonly Used Blur Model 

=     * 

Blurred image Latent sharp image 
Blur kernel 

or Point Spread 
Function (PSF) 

Convolution 
operator 

Blind Deconvolution 

=     * 

Blurred image Latent sharp image 
Blur kernel 

or Point Spread 
Function (PSF) 

Convolution 
operator 



Non-blind Deconvolution 

=     * 

Blurred image Latent sharp image 
Blur kernel 

or Point Spread 
Function (PSF) 

Convolution 
operator 

Uniform vs. Non-uniform Blur 
Uniform blur 
•  Every pixel is blurred in the 

same way 
•  Convolution based blur 

model 

Uniform vs. Non-uniform Blur 
Non-uniform blur 
•  Spatially-varying blur 
•  Pixels are blurred differently 
•  More faithful to real camera 

shakes 

Most Blurs Are Non-Uniform 

Camera shake (Camera motion blur) 

Out of focus (Defocus blur) Combinations (vibration & motion, …) 

Object movement (Object motion blur) 



Introduction 

Blind Deconvolution 
Non-blind Deconvolution 

Introduction 

Blind Deconvolution 
Non-blind Deconvolution 

•  Introduction 
•  Recent popular 

approaches 
•  Non-uniform blur 

Blind Deconvolution (Uniform Blur) 

=     * 

Blurred image Latent sharp image 
Blur kernel 

or Point Spread 
Function (PSF) 

Convolution 
operator 

Key challenge: Ill-posedness! 

Blurred 
image

Possible solutions
•  Infinite number of 

solutions satisfy the blur 
model 

•  Analogous to 
100={"2×50@4×25@3×33.333
…   

* 
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Key challenge: Ill-posedness!

Blurred 
image

Possible solutions
• Infinite number of solutions 

satisfy the blur model

• Analogous to

100 = ቐ
2 × 50
4 × 25

3 × 33.333…

*

*

*

=
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•  Parametric blur kernels 
–  [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], … 
–  Directional blur kernels defined by (length, angle) 

In The Past… 

*      ! 

In The Past… 
•  But real camera shakes are much more complex 

In The Past… 
•  Parametric blur kernels 

–  Very restrictive assumption 
–  Often failed, poor quality 

Blurred image Latent sharp image 
* Images from [Yitzhaky et al. 1998] 

Nowadays… 
•  Some successful approaches have been introduced… 

–  [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008], 
[Cho and Lee, SIGGRAPH Asia 2009], … 

–  More realistic blur kernels 
–  Better quality 
–  More robust 

•  Commercial software 
–  Photoshop CC Shake reduction 



Introduction 

Blind Deconvolution 
Non-blind Deconvolution 

•  Introduction 

•  Recent popular 
approaches 

•  Non-uniform blur 

Recent Popular Approaches 
Maximum Posterior (MAP) based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 

Recent Popular Approaches 
Maximum Posterior (MAP) 
based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 

•  [Shan et al. SIGGRAPH 2008], 
[Krishnan et al. CVPR 2011], 
[Xu et al. CVPR 2013], … 

•  Seek the most probable solution, 
which maximizes a posterior 
distribution 

•  Easy to understand 
•  Convergence problem 

Recent Popular Approaches 
Maximum Posterior (MAP) based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 
 

•  [Fergus et al. SIGGRAPH 2006], 
[Levin et al. CVPR 2009], 
[Levin et al. CVPR 2011], … 

•  Not seek for one most probable 
solution, but consider all possible 
solutions 

•  Theoretically more robust 
•  Slow 



Recent Popular Approaches 
Maximum Posterior (MAP) based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 
 

•  [Cho & Lee. SIGGRAPH Asia 2009], 
[Xu et al. ECCV 2010], 
[Hirsch et al. ICCV 2011], … 

•  Explicitly try to recover sharp edges 
using heuristic image filters 

•  Fast 
•  Proven to be effective in practice, 

but hard to analyze because of 
heuristic steps 

Recent Popular Approaches 
Maximum Posterior (MAP) 
based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 
 

•  [Shan et al. SIGGRAPH 2008], 
[Krishnan et al. CVPR 2011], 
[Xu et al. CVPR 2013], … 

•  Seek the most probable solution, 
which maximizes a posterior 
distribution 

•  Easy to understand 
•  Convergence problem 

Maximize a joint posterior probability with respect to % and & 


 

 

MAP based Approaches 

Blur kernel % 
Latent image & Blurred image ( 

Posterior distribution 

p(k, l |b)
Bayes rule: 

MAP based Approaches 

Posterior distribution Likelihood Prior on & Prior on k  

Blur kernel % 
Latent image & Blurred image ( 

p(k, l |b)   ∝  p(b|l,k) p(l) p(k)



Negative log-posterior: 
 
 
 
 
 

MAP based Approaches 

Regularization 
on blur kernel % 

Data fitting term Regularization 
on latent image & 

Negative log-posterior:

MAP based Approaches

െ log  ݇, ݈ ܾ ֜ െ log  ܾ ݇, ݈ െ log  ݈ െ log  ݇
֜ ݇ כ ݈ െ ܾ ଶ + ߩ ݈ + ߩ ݇

Regularization on 
blur kernel ݇Data fitting term Regularization on 

latent image ݈

40

Negative log-posterior: 
 
 
 
 
 
Alternatingly minimize the energy function w.r.t. % and & 

MAP based Approaches 

Regularization 
on blur kernel % 

Data fitting term Regularization 
on latent image & 

Negative log-posterior:

MAP based Approaches

െ log  ݇, ݈ ܾ ֜ െ log  ܾ ݇, ݈ െ log  ݈ െ log  ݇
֜ ݇ כ ݈ െ ܾ ଶ + ߩ ݈ + ߩ ݇

Regularization on 
blur kernel ݇Data fitting term Regularization on 

latent image ݈

40

MAP based Approaches 

Input blurred 
image ( 

 

Latent image & 
estimation 

 
 
 
 
 
 

- maximizes 
posterior w.r.t. & 

Blur kernel % 
estimation 

 
 
 
 
 
 

- maximizes 
posterior w.r.t. % 

 

Output & 

MAP based Approaches 
•  Chan and Wong, TIP 1998 

–  Total variation based priors for estimating a parametric blur kernel 
•  Shan et al. SIGGRAPH 2008 

–  First MAP based method to estimate a nonparametric blur kernel 
•  Krishnan et al. CVPR 2011 

–  Normalized sparsity measure, a novel prior on latent images 
•  Xu et al. CVPR 2013 

–  L0 norm based prior on latent images 



Shan et al. SIGGRAPH 2008 
•  Carefully designed likelihood & priors 

Natural image 
statistics 

based prior on 
& 

Likelihood based on  
intensities & derivatives 

Kernel statistics 
based prior on % 

Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

 ݇, ݈ ܾ ן  ܾ ݈, ݇  ݈  ݇
Natural image 

statistics based 
prior on ݈

Likelihood based on  
intensities & derivatives

Kernel statistics 
based prior on ݇
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Shan et al. SIGGRAPH 2008 
•  A few minutes for a small image 
•  High-quality results 

Shan et al. SIGGRAPH 2008 
•  Convergence problem 

–  Often converge to the no-blur solution [Levin et al. CVPR 2009] 
–  Natural image priors prefer blurry images 

Shan et al. SIGGRAPH 2008 Fergus et al. SIGGRAPH 
2006 

(variational Bayesian based) 
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Error ratio = 2 

Recent Popular Approaches 
Maximum Posterior (MAP) based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 
 

•  [Fergus et al. SIGGRAPH 2006], 
[Levin et al. CVPR 2009], 
[Levin et al. CVPR 2011], … 

•  Not seek for one most probable 
solution, but consider all possible 
solutions 

•  Theoretically more robust 
•  Slow 



Variational Bayesian 
•  MAP 

–  Find the most probable 
solution 

–  May converge to a 
wrong solution 

•  Variational Bayesian 
–  Approximate the 

underlying distribution 
and find the mean 

–  More stable 
–  Slower 

Variational  
Bayes 

Maximum  
a-Posteriori (MAP) 

Pixel intensity 

Sc
or

e 

MAP v.s. Variational Bayes 

Variational Bayesian 
•  Fergus et al. SIGGRAPH 2006 

–  First approach to handle non-parametric blur kernels 
•  Levin et al. CVPR 2009 

–  Show that variational Bayesian approaches can perform more robustly 
than MAP based approaches 

•  Levin et al. CVPR 2010 
–  EM based efficient approximation to variational Bayesian approach 

Fergus et al. SIGGRAPH 2006 
•  Posterior distribution 

Fergus et al. SIGGRAPH 2006
• Posterior distribution

 ݇, ݈ b ן  ܾ ݇, ݈  ݈  ݇
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Fergus et al. SIGGRAPH 2006 
–  Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence 

–  cf) MAP based approach: 

Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ  ݇, ݈ ܾ
approximate distributions for blur kernel ݇, 

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin,  ݇, ݈ b
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Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ  ݇, ݈ ܾ
approximate distributions for blur kernel ݇, 

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin,  ݇, ݈ b
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Fergus et al. SIGGRAPH 2006 
•  First method to estimate a nonparametric blur kernel 
•  Complex optimization 
•  Slow: more than an hour for a small image 

Recent Popular Approaches 
Maximum Posterior (MAP) based 
 
Variational Bayesian based 
 
Edge Prediction based 
 
Which one is better? 
 

•  [Cho et al. SIGGRAPH Asia 2009], 
[Xu et al. ECCV 2010], 
[Hirsch et al. ICCV 2011], … 

•  Explicitly try to recover sharp edges 
using heuristic image filters 

•  Fast 
•  Proven to be effective in practice, 

but hard to analyze because of 
heuristic steps 

Edge Prediction based Approaches 
•  Joshi et al. CVPR 2008 

–  Proposed sharp edge prediction to estimate blur kernels 
–  No iterative estimation 
–  Limited to small scale blur kernels 

•  Cho & Lee, SIGGRAPH Asia 2009 
–  Proposed sharp edge prediction to estimate large blur kernels 
–  Iterative framework 
–  State-of-the-art results & very fast 

•  Cho et al. CVPR 2010 
–  Applied Radon transform to estimate a blur kernel from blurry edge profiles 
–  Small scale blur kernels 

•  Xu et al. ECCV 2010 
–  Proposed a prediction scheme based on structure scales as well as gradient magnitudes 

•  Hirsch et al. ICCV 2011 
–  Applied a prediction scheme to estimate spatially-varying camera shakes 

Cho & Lee, SIGGRAPH Asia 2009 
•  Key idea: blur can be estimated from a few edges 
" No need to restore every detail for kernel estimation 

Blurred image Latent image with only a few 
edges and no texture 



Cho & Lee, SIGGRAPH Asia 2009 

Input 
 

Simple 
deconvolution 

Fast 
Kernel 

Estimation 

Output Prediction 

Quickly restore important edges 
using simple image filters 

Cho & Lee, SIGGRAPH Asia 2009 

Input 
 

Simple 
deconvolution 

Fast 
Kernel 

Estimation 

Output Prediction 

Quickly restore important edges 
using simple image filters 

Quickly restore important edges 
using simple image filters 

Do not need complex priors for the latent image and the blur kernel 
" Significantly reduce the computation time 

Cho & Lee, SIGGRAPH Asia 2009 

Fast but low quality deconvolution Prediction 

Updated kernel Previous kernel 

Cho & Lee, SIGGRAPH Asia 2009 
Prediction 

Simple & fast image filtering operations 

Thresholding 
gradients

Bilateral filtering & 
Shock filtering

Fast but low-quality 
deconvolution 

 


Visualized by Poisson 
image reconstruction 



Cho & Lee, SIGGRAPH Asia 2009 

Blurry input Deblurring result Blur kernel 

•  State of the art results 
•  A few seconds 
•  1Mpix image 
•  in C++ 

Xu & Jia, ECCV 2010 
•  Extended edge prediction to handle blur larger than image 

structures 

Blurred image Fergus et al. 
SIGGRAPH 2006 

Shan et al. 
SIGGRAPH 2008 

For this complex 
scene, most methods 
fail to estimate a 
correct blur kernel. 
Why? 

Xu & Jia, ECCV 2010 

Blur > structures 
•  Hard to tell which 

blur is caused by 
which edge 

•  Most method fails 

Blur < structures 
•  Each blurry pixel is 

caused by one edge 
•  Easy to figure out the 

original sharp 
structure 

Xu & Jia, ECCV 2010 

Structure scale 
aware gradient 

thresholding

Smoothing & 
Shock filtering

Deconvolution

Visualized by Poisson 
image reconstruction 



Xu & Jia, ECCV 2010 

Blurred image Fergus et al. 
SIGGRAPH 2006 

Shan et al. 
SIGGRAPH 2008 

Xu & Jia, ECCV 2010 

Recent Popular Approaches 
Maximum Posterior (MAP) based 
 
Variational Bayesian based 
 
Edge Prediction based 
 

Which one is better? 

Benchmarks 
•  Many different methods… 
•  Which one is the best? 

–  Quality 
–  Speed 

•  Different works report different benchmark results 
–  Depending on test data 
–  Levin et al. CVPR 2009, 2010 
–  Köhler et al. ECCV 2012 

Benchmarks 
•  Levin et al. CVPR 2009 

–  Provide a dataset 
•  32 test images 
•  4 clear images (255x255) 
•  8 blur kernels (10x10 ~ 25x25) 
•  One of the most widely used 

datasets 
–  Evaluate blind deconvolution 

methods using the dataset 



Benchmarks 
•  Levin et al. CVPR 2009 

–  Counted the number of 
successful results 
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Error ratio = 2 

Benchmarks 
•  Cho & Lee, SIGGRAPH Asia 2009 

–  Comparison based on 
Levin et al.’s dataset 

–  Slightly different 
parameter settings 
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Benchmarks 
•  Köhler et al. ECCV 2012 

–  Record and analyze real camera motions 
•  Recorded 6D camera shakes in the 3D 

space using markers 
•  Played back camera shakes using a robot 

arm 
–  Provide a benchmark dataset based on 

real camera shakes 
–  Provide benchmark results for recent 

state-of-the-art methods 

Benchmarks 
•  Köhler et al. ECCV 2012 

–  Dataset 
•  48 test images 
•  4 sharp images 
•  12 non-uniform camera shakes 



Benchmarks 
•  Köhler et al. ECCV 2012 

PS
N

R 
(d

B)
 

MAP Edge prediction 

20 

22 

24 

26 

28 

30 

1 2 3 4 5 6 

Variational 
Bayesian 

Benchmarks 
•  Benchmark results depend on 

–  Implementation details & tricks 
–  Benchmark datasets 
–  Parameters used in benchmarks 

•  But, in general, more recent one shows better quality 

•  Speed? 
–  Edge prediction > MAP >> Variational Bayesian 

Introduction 

Blind Deconvolution 
Non-blind Deconvolution 
Advanced Issues 

•  Introduction 
•  Recent popular 

approaches 

•  Non-uniform blur 

Convolution based Blur Model 
•  Uniform and spatially invariant blur 



Real Camera Shakes: Spatially Variant! Uniform Blur Model Assumes 

x & y translational 
camera shakes Planar scene 

Real Camera Shakes 

6D real camera motion 

Different depths 

Real Blurred Image 

Clean 

Severe artifacts 

Non-uniformly blurred image 

Uniform deblurring result 



Pixel-wise Blur Model 
•  Dai and Wu, CVPR 2008 

–  Estimate blur kernels for every pixel from a single image 
–  Severely ill-posed 
–  Parametric blur kernels 

Pixel-wise Blur Model 
•  Tai et al. CVPR 2008 

–  Hybrid camera to capture hi-res image & low-res video 
–  Estimate per-pixel blur kernels using low-res video 

time 

Hi-res. 
image 

Low-res. 
video 

Patch-wise Blur Model 
•  Sorel and Sroubek, ICIP 2009 

–  Estimate per-patch blur kernels from a blurred image and an 
underexposed noisy image 

Patch-wise Blur Model 
•  Hirsch et al. CVPR 2010 

–  Efficient filter flow (EFF) framework 
–  More accurate approximation than the naïve patch-wise blur model 

•  Harmeling et al. NIPS 2010 
–  Estimate per-patch blur kernels based on EFF from a single image 



Patch-wise Blur Model 
•  Approximation 

–  More patches ! more accurate 
•  Computationally efficient 

–  Patch-wise uniform blur 
–  FFTs can be used 

•  Physically implausible blurs 
–  Adjacent blur kernels cannot be 

very different from each other 

Benchmark [Köhler et al. ECCV 2012] 
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Uniform blur 
methods 

Spatially-varying 
blur methods 

Due to high 
dimensionality, spatially-
varying blur methods are 
less stable. 

Summary 
•  Different blur models 

•  More realistic than uniform blur model 
•  Still approximations 

–  Real camera motions: 6 DoF + more (zoom-in, depth, etc…) 
•  High dimensionality 

–  Less stable & slower than uniform blur model 

Patch based 
Efficient but no global 

constraint 

Projective Motion Path 
Globally consistent but inefficient 

Hybrid 
Efficient & globally consistent 

Remaining Challenges 
•  All methods still fail quite often 
•  Noise 
•  Outliers 
•  Non-uniform blur 
•  Limited amount of edges 
•  Speed… 
•  Etc… 

Failure example of Photoshop Shake Reduction 



Introduction 
Blind Deconvolution 

Non-blind Deconvolution 

Introduction 
Blind Deconvolution 

Non-blind 
Deconvolution 

•  Introduction 
•  Natural image 

statistics 
•  High-order natural 

image statistics 
•  Ringing artifacts 
•  Outliers 

Non-blind Deconvolution (Uniform Blur) 

=     * 

Blurred image Latent sharp image 
Blur kernel Convolution 

operator 

Non-blind Deconvolution 
•  Key component in many deblurring systems 

–  For example, in MAP based blind deconvolution: 

Input blurred 
image ( 

 

Latent image & 
estimation 

 
 
 
 
 
 

Blur kernel % 
estimation 

 
 
 
 
 

Output & 

Non-blind deconvolution 
There can be additional final 

non-blind deconvolution for the 
final output 



Non-blind Deconvolution 
#  Wiener filter 
#  Richardson-Lucy deconvolution 
#  Rudin et al. Physica 1992 
#  Bar et al. IJCV 2006 
#  Levin et al. SIGGRAPH 2007 
#  Shan et al. SIGGRAPH 2008 
#  Yuan et al. SIGGRAPH 2008 
#  Harmeling et al. ICIP 2010 
#  Etc… 

Ill-Posed Problem 
•  Even if we know the true blur kernel, we cannot restore the latent 

image perfectly, because: 

•  Loss of high-freq info & noise ≈ denoising & super-resolution 

= * +

Blur destroys 
High-freq info Noise 

Ill-Posed Problem 
•  Deconvolution amplifies noise 

as well as sharpens edges 
•  Ringing artifacts 

–  Inaccurate blur kernels, 
outliers cause ringing 
artifacts 

Classical Methods 
•  Popular methods 

–  Wiener filtering 
–  Richardson-Lucy deconvolution 
–  Constrained least squares 

•  Matlab Image Processing Toolbox 
–  deconvwnr, deconvlucy, deconvreg 

•  Simple assumption on noise and 
latent images 

–  Simple & fast 
–  Prone to noise & artifacts 



Introduction 
Blind Deconvolution 

Non-blind 
Deconvolution 

•  Introduction 

•  Natural image 
statistics 

•  High-order natural 
image statistics 

•  Ringing artifacts 
•  Outliers 

Natural Image Statistics 
•  Non-blind deconvolution: ill-posed problem 
•  We need to assume something on the latent image to constrain the 

problem. 

= * +

Natural Image Statistics 
•  Natural images have a heavy-tailed distribution on gradient 

magnitudes 
–  Mostly zero & a few edges 
–  Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008, 

Krishnan & Fergus, NIPS 2009 

Natural Image Statistics 
•  Levin et al. SIGGRAPH 2007 

–  Propose a parametric model for natural image priors based on image 
gradients 
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x x 

Gaussian: -x2 

Laplacian: -|x| 
-|x|0.5 

-|x|0.25 

Derivative histogram from a 
natural image 

Parametric models 

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on image 
gradients

Lo
g 

pr
ob

xx

Gaussian: -x2

Laplacian: -|x|
-|x|0.5

-|x|0.25

Derivative histogram from a 
natural image

Parametric models

Proposed prior

log ݔ = െ

ݔߘ ఈ

where:
• image :ݔ
• ߙ ,model parameter :ߙ < 1

120



Natural Image Statistics 
•  Levin et al. SIGGRAPH 2007 
 

_ 2

+

_ +
2

? 

? 

High  

Low  
Equal convolution error 

* 

* 

Data term Prior 

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

݈ = argmin ݇ כ ݈ െ ܾ ଶ + ߣ σ ݈ߘ ఈ ߙ < 1

_ 2
+

_ +
2

?

?

High 

Low 
Equal convolution error

*

*

Data term Prior
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Natural Image Statistics 
•  Levin et al. SIGGRAPH 2007 

Input Richardson-Lucy Gaussian prior 

“spread” gradients 

Sparse prior 

“localizes” gradients 

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients



݈ߘ ଶ 


݈ߘ .଼
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Introduction 
Blind Deconvolution 

Non-blind 
Deconvolution 

•  Introduction 
•  Natural image 

statistics 

•  High-order 
natural image 
statistics 

•  Ringing artifacts 
•  Outliers 

High-order Natural Image Priors 
•  Patches, large neighborhoods, … 
•  Effective for various kinds of image restoration problems 

–  Denoising, inpainting, super-resolution, deblurring, … 



High-order Natural Image Priors 
•  Schmidt et al. CVPR 2011 

–  Fields of Experts 
•  Zoran & Weiss, ICCV 2011 

–  Trained Gaussian mixture model for natural image patches 
•  Schuler et al. CVPR 2013 

–  Trained Multi-layer perceptron to remove artifacts and to restore sharp 
patches 

•  Schmidt et al. CVPR 2013 
–  Trained regression tree fields for 5x5 neighborhoods 

High-order Natural Image Priors 
•  Zoran & Weiss, ICCV 2011 

–  Gaussian Mixture Model (GMM) learned from natural images 

Natural images Collected patches GMM 

Collect 
patches K-means 

High-order Natural Image Priors 
•  Zoran & Weiss, ICCV 2011 

–  Given a patch, we can compute its likelihood based on the GMM. 
–  Deconvolution can be done by solving: 
arg min┬&  {‖%∗&−(‖↑2 −.∑0↑▒log 2(&↓0 )  }   

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the GMM.

– Deconvolution can be done by solving:

argmin ݇ כ ݈ െ ܾ ଶ െ ߣ

log ݈

Log-likelihood of a patch ݈ at ݅-th pixel 

based on GMM
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High-order Natural Image Priors 
•  Zoran & Weiss, ICCV 2011 

Denoising Deblurring 

Blurred image Krishnan & Fergus 
PSNR: 26.38 

Zoran & Weiss 
PSNR: 27.70 



Introduction 
Blind Deconvolution 

Non-blind 
Deconvolution 

•  Introduction 
•  Natural image 

statistics 
•  High-order natural 

image statistics 

•  Ringing artifacts 
•  Outliers 

Ringing Artifacts 
•  Wave-like artifacts around strong edges 
•  Caused by 

–  Inaccurate blur kernels 
–  Nonlinear response curve 
–  Etc… 

Ringing Artifacts 
•  Noise 

–  High-freq 
–  Independent and identical 

distribution 
–  Priors on image gradients 

work well 

•  Ringing 
–  Mid-freq 
–  Spatial correlation 
–  Priors on image gradients are 

not very effective 

Ringing Artifacts 
•  Yuan et al. SIGGRAPH 2007 

–  Residual deconvolution & de-ringing 
•  Yuan et al. SIGGRAPH 2008 

–  Multi-scale deconvolution framework based on residual deconvolution 

Blurred image Richardson-Lucy Yuan et al. SIGGRAPH 2008 



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008] 

Blurred image Guide image Residual deconvolution result 
with less ringing artifacts 

•  Relatively accurate edges, but less details 
•  Obtained from a deconvolution result from a smaller scale 

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008] 

*-

Deconvolution 

+

Blurred image Guide image Residual blur 

Guide image Detail layer Result 

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008] 
•  Residual deconvolution 

Blurred image Deblurred image 

Residual blur Detail layer = 
deblurred residual 

Guide image 
+ detail layer 

Severe ringing 

Less ringing 

Guide image 

Progressive Inter-scale & Intra-scale 
Deconvolution [Yuan et al. SIGGRAPH 2008] 
•  Progressive inter-scale & intra-scale deconvolution 



Blurred image Richardson-Lucy TV regularization 

Levin et al. SIGGRAPH 
2007 

Wavelet regularization Yuan et al. SIGGRAPH 
2008 

Introduction 
Blind Deconvolution 

Non-blind 
Deconvolution 

•  Introduction 
•  Natural image 

statistics 
•  High-order natural 

image statistics 
•  Ringing artifacts 

•  Outliers 

Outliers 
•  A main source of severe ringing artifacts 

Blurred image with outliers Deblurring result 
[Levin et al. SIGGRAPH 2007] 

Outliers 
•  Saturated pixels caused by limited dynamic range of sensors 

Incoming light to 
sensors 

Ca
m

er
a 

re
sp

on
se

 

Dynamic 
range  

of a camera 

Information 
loss! 

Blurred image [Levin et al. 2007] 



Outliers 
•  Hot pixels, dead pixels, compression artifacts, etc… 

Hot pixel 
Blurred image with outliers [Levin et al. 2007] 

Outlier Handling 

Latent image 
& 

Blurred image 
( 

Gaussian noise 
7 

Motion blur 
%∗& 

Outlier Handling
• Most common blur model:

ܾ = ݇ כ ݈ + ݊
Equivalent to

Latent image
݈

Blurred image
ܾ

Gaussian noise 
݊

Motion blur
݇ כ ݈

small amount of Gaussian noise
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Outlier Handling Outlier Handling
• An energy function derived from this model:

ܧ ݈ = ݇ כ ݈ െ ܾ ଶ + (݈)ߩ

• More robust norms to outliers

– …ଵ-norm, other robust statisticsܮ

ܧ ݈ = ݇ כ ݈ െ ܾ ଵ + (݈)ߩ
– Bar et al. IJCV 2006, Xu et al. ECCV 2010, …

 :ଶ-norm based data termܮ

known to be vulnerable to 

outliers

Regularization term on 

a latent image ݈
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Outlier Handling 
•  8↑1 -norm based data term 

–  Simple & efficient 
–  Effective on salt & pepper noise 
–  Not effective on saturated pixels 

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146



Cho et al. ICCV 2011 
•  More accurate blur model reflecting outliers 

Blurred 
image 
( 

Noise 
& outliers 
9(%∗&)+:  

Clipping 


9(%∗&) 
Motion blur 


%∗& 

Latent image

& 

Cho et al. ICCV 2011
• More accurate blur model reflecting outliers

Blurred 
image
ܾ

Noise
& outliers

ܿ ݇ כ ݈ + 

Clipping

ܿ(݇ כ ݈)
Motion blur

݇ כ ݈
Latent image

݈

(ݑ)ܿ = ቐ
ݑ if ݑ א DynamicRange

LowerBound if ݑ < LowerBound
UpperBound if ݑ > UpperBound
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Cho et al. ICCV 2011 
•  Classification mask 

Blurred image (  Classification mask ;  

Cho et al. ICCV 2011
• Classification mask

Blurred image ܾ Classification mask ݉

݉ ݔ = ቊ1 if (ݔ)ܾ is an inlier
0 if ܾ ݔ is an outlier
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Cho et al. ICCV 2011 
•  MAP estimation 

Given ( & %, find the most probable & 

Classification 
mask ;  

Cho et al. ICCV 2011
• MAP estimation

Given ܾ & ݇, find the most probable ݈

= argmax



אெ

 ܾ ݉, ݇, ݈ ,݇|݉) (݈)(݈

݈ெ = argmax

(݇,ܾ|݈)

Classification 
mask ݉
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Cho et al. ICCV 2011 
•  EM based optimization 

M-step updates & 
(Deconvolution using inliers) 

 

E-step computes <[;] 
(Outlier detection) 



Blurred image 

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011] 

[Levin et al. 2007] Blurred image Blurred image 

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011] 

[Levin et al. 2007] Blurred image 

Summary & Remaining Challenges 
•  Ill-posed problem - Noise & blur 
•  Noise 

–  High-freq & unstructured 
–  Natural image priors 

•  Ringing 
–  Mid-freq & structured 
–  More difficult to handle 

•  Outliers 
–  Cause severe ringing artifacts 
–  More accurate blur model 

•  Speed 
–  More complex model ! Slower 

•  Many source codes are available on the authors’ website 


