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Noise Removal?

Remove
Additive
Noise

Important: (i) Practical application; (i) A convenient platform
(being the simplest inverse problem) for testing basic ideas in image
processing, and then generalizing to more complex problems.

Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, [Sparse representations, . ..




Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to
the minimization of an energy function of the form

f(X)

y : Given measurements

x : Unknown to be recovered

« This is in-fact a Bayesian point of view, adopting
the Maximum-A-posteriori Probability (MAP)
estimation.

Thomas Bayes

Clearly, the wisdom in such an approach is within the " "'

choice of the prior — modeling the images of interest.




The Evolution of G(x)

During the past several decades we have made all sort of
guesses about the prior G(x) for images:
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Sparse Modeling of Signals

* Every columnin

D (dictionary) is
M a prototype signal
> (atom).

E The vector a is

0 generated

- randomly with few
; 5] (say L) non-zeros at

A fixed Dictionary A sparse X random locations
& random — and with random
vector values.

D a We shall refer to

this model as
Sparseland




Sparseland Signals are Special
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Multiply -
by D

[ €

X =Da

Interesting Model:

"

Every generated signal is
built as a linear combination of
few atoms from our dictionary D

A general model: the
obtained signals are a union of
many low-dimensional
Gaussians.

We have been using
this model in other context for a
while now (wavelet, JPEG, ...).




Sparse & Redundant Rep. Modeling?

Oursignal 'y _ P, where o is sparse
model is thus: = =




Sparse & Redundant Rep. Modeling?

W (X)=xP

P
|
p—0

Oursignal v — po, where o is sparse
model is thus:




Sparse & Redundant Rep. Modeling?

Af(X) = xP
Asp >0 we get

a count

of the non-zeros

INn the vector 1

P
lof
p—0

b o] Y

! +1

Our signal .
mo;erlsilsgphaus; x =Da where HQCHO <L




Back to Our MAP Energy Function

* L, norm effectively 1 p)
counts the number of EH X _XHZ
non-zeros in a.

The vector a is the ¥

representation (
of the desired

/ )
signal X. Dg—y —

The core idea: while few (L out of K) atoms can be merged
to form the true signal, the noise cannot be fitted well. Thus,
we obtain an effective projection of the noise onto a very
low-dimensional space, thus getting denoising effect.




Wait! There are Some Issues

Numerical Problems: How should we solve or approximate the solution
of the problem

: 2 .
min Do - XHz s.t. ||gc||8 <L or min ||gc||g s.t. [Do- XH; <¢?

o min Ao} + [Pa-y

Theoretical Problems: Is there a unique sparse representation? If we
are to approximate the solution somehow, how close will we get?

Practical Problems: What dictionary D should we use, such that all this
leads to effective denoising? Will all this work in applications?




To Summarize So Far ...

Image denoising (and
many other problems
in image processing)
requires a model for
the desired image

There are some Issues:

1. Theoretical

2. How to approximate?
3. What about D?

Use a model for
signals/images
based on sparse
and redundant
representations




L ets Start with the Noiseless Problem

Suppose we build a signal
by the relation

Do=

We aim to find the signal’s
representation:

-
INEEENEENEEEEESEEEEEEEEEETE
\ J

= Arg MiancHg s.t. X =Dq

Why should we necessarily get O =
Uniqueness

It might happen that eventually HOCH




Matrix “Spark”

*
Definition: Given a matrix D, o =Spark{D} is the smallest

number of columns that are linearly dependent.

Rank =4
Spark = 3

* In tensor decomposition,
Kruskal defined something
similar already in 1989.




Unigqueness Rule

Suppose this problem has been solved somehow

6. = ArgMine st. x =D

Unigqueness If we found a representation that satisfy

~ 0]
], < 2

Then necessarily it is unique (the sparsest).

This result implies that if V] generates signals
using “sparse enough” g, the solution of the
above will find it exactly.




Our Goal

problem, proven to be
— NP-Hard!

Here is a recipe for solving this problem:

min HQ(,Hg S.t. ‘DQC — yH; < 82 This is a combinatorial
oL LS

Gather all the Solve the LS problem

: 2
Set =1 supports {S}. min HDQC - XHZ s.t. supp(a) = Si—>| LS error < €2 ?
- of cardinality L .

1

Assume: K=1000, L=10 (known!), 1 nano-sec per each LS

for each support

Set L=L+1




L ets Approximate

: 0 > 2 2
min o st. [Do -y <

cxd\

Relaxation methods

Smooth the L, and use Build the solution one

continuous optimization non-zero element at
techniques a time




Relaxation — The Basis Pursuit (BP)

Instead of solving Solve Instead
: 0 :
Min fof, st [Pa-yl, < Min fafy st [Po-yf, <
« This is known as the Basis-Pursuit (BP)

« The newly defined problem is convex (quad. programming).

» \ery efficient solvers can be deployed:

» |nterior point methods

= Sequential shrinkage for union of ortho-bases

» [terative shrinkage




Go Greedy: Matching Pursuit (MP)

’IIIIIIIIIIIIIIIIIIIIIIIIII 3
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The MP'is one of the greedy B e
algorithms that finds one atom at EEEEEEEEERiismiiiaianii:

a time [Valit & Znang (93], feEE e e
llllllllllllllllIlllllllll

Step 1 . flﬂd the one atom J[haJ[ (EEEEEEEEEEEEE NN
the signal.

)
L L]
g

Next steps: given the previously found
atoms, find the next one to the

residual.
The algorithm stops when the error [Da.- szls below the destination

threshold.

The Orthogonal MP (OMP) is an improved version that re-evaluates the
coefficients by Least-Squares after each round.




Pursuit Algorithms

: 0 > 2 2
min o]y st. [Po-yf <e

There are various algorithms designed for approximating the
solution of this problem:

« Greedy Algorithms: Matching Pursuit, Orthogonal Matching Pursuit
(OMP), Least-Squares-OMP, Weak Matching Pursuit, Block Matching
Pursuit [1993-today].

Relaxation Algorithms: Basis Pursuit (a.k.a. LASSO), Dnatzig Selector &
numerical ways to handle them [1995-today].

Hybrid Algorithms: StOMP, CoSaMP, Subspace Pursuit, Iterative Hard-
Thresholding [2007-today].




BP and MP Equivalence (No Noise)

o = Arg MiancHg s.t. x=Do




BP and MP Equivalence (No Noise)

Equivalence  Given a signal x with a representation X = Da,
assuming that [o, <0.5(1+1/u) , BP and MP

are guaranteed to find the sparsest solution.

MP and BP are different in general (hard to say which is better).

The above result corresponds to the worst-case, and as such, it is
too pessimistic.

Average performance results are available too, showing much better
bounds




BP Stability for the Noisy Case

min Aol + [Do: - y|




BP Stability for the Noisy Case

- Given a signal Y =Doa +V with a representation
Stability 0
satisfying |lof, <1/3u and a white Gaussian

noise ¥ ~ N(0,6°I), BP will show stability, i.e.,

|6z — o) < Const()) -logK - |, - &

* With very high
probability
For 0=0 we get a weaker version of the previous result.

This result is the oracle’s error, multuiplied by C- logK.

Similar results exist for other pursuit algorithms (Dantzig Selector,
Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, ...)




To Summarize So Far ...

Image denoising (and Use a model for
many other problems signals/images
in image processing) based on sparse
requires a model for and redundant
the desired image representations

We have seen that there are
approximation methods to
find the sparsest solution, and
there are theoretical results
that guarantee their success.

The
Dictionary D
should be
found
somehow !!!




What Should D Be?

& = argmin chug s.t. %H Do -y H; < g?
(0

Our Assumption: Good-behaved Images
have a sparse representation

Y

D should be chosen such that it sparsifies the representations

\ 1 \ 4

One approach to choose D is from a The approach we will take for

known set of transforms (Steerable building D is training it, based
wavelet, Curvelet, Contourlets, on Learning from
Bandlets, Shearlets ...) Image Examples




Measure of Quality for D

i B

B - SIS

Each example is Each example has a sparse
a linear combination representation with no
of atoms from D more than L atoms




K—Means For Clustering

Clustering: An extreme sparse representation

Initialize D

]

Sparse Coding

Nearest Neighbor

]

Dictionary
E Update

Column-by-Column by




The K-SVD Algorithm — General

Initialize D
|

Sparse Coding

Use Matching Pursuit

]

Dictionary
E Update

Column-by-Column by




K-SVD: Sparse Coding Stage

st v faf <L

D is known!
For the jih item
we solve

Min HDg-ngi st. Jofp <L

Solved by
A Pursuit Algorithm




K-SVD: Dictionary Update Stage

We should solve:

Min OC dk —E
dy , o

Refer only to the
examples that use the
column d,

Fixing all A and D apart
from the k" column, and
seek both d, and the k"
column in A to better fit

the residuall




K-SVD: Dictionary Update Stage

We should solve:

\

Refer only to the
examples that use the
column d,

Fixing all A and D apart
from the k" column, and
seek both d, and the k"
column in A to better fit

the residuall




K-SVD: Algorithm

Task: Find the best dictionary to represent the data samples {y;}}, as
sparse compositions, by solving

min {IlY = DX||%} subject to Vi, [x;[o < Zb.

Initialization : Set the dictionary matrix D(® ¢ R™** with ¢2 normalized
columns. Set J = 1.
Repeat until convergence (stopping rule):
o Sparse Coding Stage: Use any pursuit algorithm to compute the
representation vectors x; for each example y;, by approximating the
solution of

i=1,2,..., N, min{[ly; —Dx;[|3} subject o [|x;]|o < Tp.
Xi

Codebook Update Stage: For each column k = 1,2,..., K in D=1,
update it by
- Define the group of examples that use this atom, wy = {i| 1 <i <
N, xk(i) # 0}.
Compute the overall representation error matrix, E;, by

E,=Y ) d;jx].
J#k

Restrict E; by choosing only the columns corresponding to wy, and
obtain E£.

Apply SVD decomposition Eff = UAVT. Choose the updated
dictionary column d; to be the first column of U. Update the
coefficient vector x% to be the first column of V multiplied by
A(L,1).

SetJ=J+1.




To Summarize So Far ...

Image denoising (and Use a model for
many other problems signals/images
in image processing) based on sparse
requires a model for and redundant
the desired image representations

We have seen that there are
approximation methods to
find the sparsest solution, and
there are theoretical results
that guarantee their success.

Will it all
work in
applications?




From Local to Global Treatment

* The K-SVD algorithm is reasonable for low-
dimension signals (N in the range 10-400).
As N grows, the complexity and the memory
requirements of the K-SVD become
prohibitive.

So, how should large images be handled?

Force shift-invariant sparsity - on each patch of size
N-by-N (N=8) in the image, including overlaps.

X = ArgMin —HX YH2+HZHRUX Do |]H
_/{_U}l]

- HOC'JH Our prior




What Data to Train On?

Option 1:
« Use a database of images,

* We tried that, and it works fine (~0.5-1dB
below the state-of-the-art).

Option 2:

« Use the corrupted image itself !!

v 1 TN
ol e TR e ih -

Simply sweep through all patches of size
N-by-N (overlapping blocks),

Image of size 10007 pixels == ~10°
examples to use — more than enough.

This works much better!




K-SVD Image Denoising

= Arth - y[2 + ¥ [Ryx - Degll st ol <L
X, {0 Ji i

x=y and D known x and qg; known D and g; known

| o "y

Compute q; per patch Compute D to minimize Compute x by

-1
ij = M&”‘ RijX = DQ‘H; Moicn > HRin = DQCHi 5= {I * “%RUT Rij] {X : “% R] D%}
o o 3

0
S.t. ‘Q‘Ho <L using SVD, updating one  which is a simple averaging
using the matching pursuit column at a time of shifted patches

RV




Image Denoising (Gray) . & Anaron (06)

- Noisy image

J c =20
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The obtained dictionary after
10 iterations




Image Denoising (Gray) . & Anaron (06)

s " Source
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The results of the K-SVD algorithm compete favorably T =3"S¥ie
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Denoising (CO|OF) [Mairal, E. & Sapiro (‘08)]

* When turning to handle color images, the
main difficulty is in defining the relation
between the color layers — R, G, and B.

The solution with the above algorithm is

simple — consider 3D patches or 8-by-8 with,

the 3 color layers, and the dictionary
will detect the proper relations.
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Denoising (Color

Original Noisy (20.43dB) Result (30.75dB)

“n,




Denoising (CO|OF) [Mairal, E. & Sapiro (‘08)]

The K-SVD algorithm leads to state-of-the-art denoising
results, giving ~1dB better results compared to vcauey et al (06)
which implements a learned MRF model (Field-of-Experts)

Original Noisy (12.77dB) Result (29.87dB)




Image Inpainting — The Basics

Assume: the signal x has been created
by x=Da, with very sparse q,,.

-
=
1
| <

Missing values in x imply
missing rows in this linear
system.

By removing these rows, we get

Do = X

Now solve

MgEanaHo s.t. X =D

If @, was sparse enough, it will be the solution of the above
problem! Thus, computing Dd,, recovers x perfectly.

HEEEEEEEEEEEEEEEEEEEEEEEEEEEE
CITTTTITTTITTTTTT]




Side Note: Compressed-Sensing

IS leaning on the very same principal, leading to
alternative sampling theorems.

Assume: the signal x has been created by x=Da,, with very sparse q,.

Multiply this set of equations by the matrix Q which reduces
the number of rows.

The new, smaller, system of equations is

QDo = Qx = Do =X X

If a, was sparse enough, it will be the spargest solution of the
new system, thus, computing DQ,, recovers x perfectly.

Compressed sensing focuses on conditions for this to happen,
guaranteeing such recovery.

-




Inpainting (vairal, £. & sapiro (08)

Experiments lead to state-of-the-art inpainting results.

Original 80% missing Result




Inpainting vairal, . & sapiro (03);

Experiments lead to state-of-the-art inpainting results.




Inpainting (vairal, £. & sapiro (08)

Experiments lead to state-of-the-art inpainting results.




Image Compression eyt and £ (08)

The problem: Compressing photo-ID images.

General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

By adapting to the image-content (PCA/K-SVD),
better results could be obtained.

For these techniques to operate well, train
dictionaries locally (per patch) using a
training set of images is required.

In PCA, only the (quantized) coefficients are stored,
whereas the K-SVD requires storage of the indices
as well.

Geometric alignment of the image is very helpful
and should be done [Goldenberg, Kimmel, & E. (‘05)].




Image Compression

Detect main features and warp
the images to a common
reference (20 parameters)

¥

Divide the image into disjoint
15-by-15 patches. For each
compute and

A4

Per each patch find the operating
parameters (number of atoms L,
quantization Q)

4

Warp, remove the mean from
each patch, sparse code using L

atoms, apply Q, and dewarp

Training set (2500 images)
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Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD




Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD




Image Compression Results

Original
JPEG
JPEG-2000
Local-PCA
K-SVD




Deblocking the Results sry:and e (09

K-SVD (5.49)  K-SVD (6.45) K-SVD (11.67)

\d | :s" \

Deblock (6.24)  Deblock (5.27) Deblock (6.03) Deblock (11.32)




Super'ReSC)lUtiOn [Zeyde, Protter, & E. (‘11)]

Given a low-resolution image, we desire to enlarge it
while producing a sharp looking result. This problem is
referred to as “Single-lmage Super-Resolution”.

Image scale-up using bicubic interpolation is far from
being satisfactory for this task.

Recently, a sparse and redundant representation
technique was proposed [Yang, Wright, Huang, and Ma ('08)]
for solving this problem, by training a coupled-
dictionaries for the low- and high res. images.

We extended and improved their algorithms and results.




Super-Resolution — Results

s been st
stimulated ne

The training image:
717x717 pixels,
providing a set of
54,289 training
patch-pairs.




Super-Resolution — Results (1
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Super-Resolution — Results (2)

f \ o\

Scaled-Up (factor 2:1) using the proposed algorithm,
PSNR=29.32dB (3.32dB improvement over bicubic)
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Super-Resolution — Results (2)
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LO-Image Smoothing

General goals:

» Suppress insignificant details
* Maintain major edges




LO-Smoothing Method

A general and effective global smoothing
strategy based on a sparsity measure
A

c(f)=#{pl|Vf,| =0}

which corresponds to the LO-norm of gradient




Two Features

1. Flattening insignificant details

By removing small non-zero
gradients




Two Features

2. Enhancing prominent edges

Because large gradients receive
the same penalty as small ones

v

YA

FN

|
L 4 g

X

>
#{p||Vf, |20t =#{p||aVf, |0}




Our

-ramework in 1D

e Constrain # of non-zero gradients
c(N)=#p|f, [, %0} =k

e Make the result similar to the input
m}nZ(fp -g,)’

e Objective function

min 3.(/,

—g,) st o(f)=k




Our Framework in 1D

e |[nput 1D signal g




Our Framework in 1D

e |[nput 1D signal g




Our Framework in 1D

e |[nput 1D signal g




Our Framework in 1D

e |[nput 1D signal g

mfin%i(fp—gp)2 st. c(f)=200




Transformation

minY(f,-g,)’ st c(f)=
' 1
min Y'(/, ~g,)" +/-c(/)




2D Image

m}nz(fp _gp)2 +;L'C(axf’ayf)

c(@,1.0,/)=#{p|d,/,|+]0,/,| = 0}




Approximation

m}n;(fp—gp)zﬁ-c( f,vo)

Separately estimate f* and (4,v)




lterative Optimization

Both the sub-problems are with
closed-form solutions




Iteréﬁoh #34




Smoothing Strength




Smoothing Strength




Smoothing Strength




Smoothing Strength




Comparison

Total Variation LO Smoothing




