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   Noise Removal?

Remove 
Additive 
Noise?

•  Important: (i) Practical application; (ii) A convenient platform                       
(being the simplest inverse problem) for testing basic ideas in image 
processing, and then generalizing to more complex problems.

•  Many Considered Directions: Partial differential equations, Statistical 
estimators, Adaptive filters, Inverse problems & regularization,          
Wavelets, Example-based techniques, Sparse representations, …



 Relation to 
measurements

   Denoising By Energy Minimization 

Thomas Bayes                                    
1702 - 1761

Prior or regularizationy : Given measurements  
x : Unknown to be recovered
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Many of the proposed image denoising algorithms are related to 
the minimization of an energy function of the form

•  This is in-fact a Bayesian point of view, adopting !
the Maximum-A-posteriori Probability (MAP) 
estimation.

•  Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the images of interest. 



   The Evolution of G(x)

During the past several decades we have made all sort of 
guesses about the prior G(x) for images:   

•  Hidden Markov Models,
•  Compression algorithms as 
priors, 
•  …
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   Sparse Modeling of Signals 

MK

N

D
A fixed Dictionary

•  Every column in    !
D (dictionary) is    !
a prototype signal 
(atom).

•  The vector α is 
generated 
randomly with few 
(say L) non-zeros at 
random locations 
and with random 
values. 

A sparse 
& random 
vector

=

α
x

N

•  We shall refer to 
this model as 
Sparseland



Interesting Model:
•  Simple: Every generated signal is 

built as a linear combination of 
few atoms from our dictionary D

•  Rich: A general model: the 
obtained signals are a union of 
many low-dimensional 
Gaussians.

•  Familiar: We have been using 
this model in other context for a 
while now (wavelet, JPEG, …).

   Sparseland  Signals are Special

Multiply 
by D

αD=x

M
α



   Sparse & Redundant Rep. Modeling?

x where is sparse= α αDOur signal  !
model is thus: 
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   Sparse & Redundant Rep. Modeling?
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As p è 0 we  get 
a count!
of the non-zeros 
in the vector

0

0
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x where is sparse= α αDOur signal  !
model is thus: 

0

0
x where L= α α ≤D



•  L0 norm effectively                                                                  
counts the number of                                                                  
non-zeros in α. 

•  The vector α is the                                                            
representation (sparse/redundant)                                                     
of the desired                                                                                               
signal x.

•  The core idea: while few (L out of K) atoms can be merged        
to form the true signal, the noise cannot be fitted well. Thus, 
we obtain an effective projection of the noise onto a very         
low-dimensional space, thus getting denoising effect. 
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   Back to Our MAP Energy Function 

x



   Wait! There are Some Issues 
•  Numerical Problems: How should we solve or approximate the solution 

of the problem
 

          or                                           

                                or                                    ?

•  Theoretical Problems: Is there a unique sparse representation? If we 

are to approximate the solution somehow, how close will we get? 
 

•  Practical Problems: What dictionary D should we use, such that all this 
leads to effective denoising? Will all this work in applications?
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   To Summarize So Far …

Use a model for 
signals/images 

based on sparse 
and redundant 
representations

What can    
we do?  

Image denoising (and 
many other problems 
in image processing) 
requires a model for 
the desired image

Great!      
No?

There are some issues: 
1.  Theoretical
2.  How to approximate?
3.  What about D?



Known 

   Lets Start with the Noiseless Problem

0

0
ArgMin s.t. xˆ

α
α = α = αD

We aim to find the signal’s 
representation: 

Suppose we build a signal 
by the relation =xα=D

α̂ = αWhy should we necessarily get                ?

It might happen that eventually                    .

0 0

0 0
α̂ < α

Uniqueness



   Matrix “Spark”

Rank  = 4
Spark = 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

Example:

Donoho & E. (‘02) 

Definition: Given a matrix D, σ =Spark{D} is the smallest  
     number of columns that are linearly dependent. 

* In tensor decomposition, 
Kruskal defined something 
similar already in 1989.

*



   Uniqueness Rule

0

0
ArgMin s.t. xˆ

α
α = α = αD

Suppose this problem has been solved somehow

This result implies that if       generates signals 
using “sparse enough” α, the solution of the 
above will find it exactly.

M

If we found a representation that satisfy 



Then necessarily it is unique (the sparsest).
0
ˆ

2
σα <

Uniqueness


Donoho & E. (‘02) 



   Our Goal  

This is a combinatorial 
problem, proven to be 

NP-Hard! 
Here is a recipe for solving this problem:

Set L=1 
Gather all the 
supports {Si}i        
of cardinality L   

LS error ≤ ε2 ?

22
2

0
0 y.t.smin ε≤−αα

α
D

Solve the LS problem 


for each support                                  

( ) i
2
2

Spsup.t.symin =α−α
α
D

Set L=L+1 
There are (K) 

such supports
L

YesNo

DoneAssume: K=1000, L=10 (known!), 1 nano-sec per each LS
        We shall need ~8e+6 years to solve this problem !!!!!



   Lets Approximate   

22
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α
D

Greedy methods
Build the solution one 
non-zero element at 

a time

Relaxation methods
Smooth the L0 and use 
continuous optimization 

techniques



   Relaxation – The Basis Pursuit (BP)

ε≤−αα
α 2

0
0 y.t.sMin D

Instead of solving
ε≤−αα

α 21 y.t.sMin D

Solve Instead

•  This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (’95)].
•  The newly defined problem is convex (quad. programming).
•  Very efficient solvers can be deployed:

§  Interior point methods [Chen, Donoho, & Saunders (‘95)] [Kim, Koh, Lustig, Boyd, & D. 
Gorinevsky (`07)].

§  Sequential shrinkage for union of ortho-bases [Bruce et.al. (‘98)].

§  Iterative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole (‘04)]                     
[E. (‘05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle (`09)] … 



   Go Greedy: Matching Pursuit (MP)

≅
•  Next steps: given the previously found 

atoms, find the next one to best fit the 
residual.

•  The algorithm stops when the error            is below the destination 
threshold.

•  The MP is one of the greedy 
algorithms that finds one atom at 
a time [Mallat & Zhang (’93)].

•  Step 1: find the one atom that  best 
matches the signal. 

•  The Orthogonal MP (OMP) is an improved version that re-evaluates the 
coefficients by Least-Squares after each round.

2
y−αD
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   Pursuit Algorithms

There are various algorithms designed for approximating the 
solution of this problem: 

22
2

0
0 y.t.smin ε≤−αα

α
D

•  Greedy Algorithms: Matching Pursuit, Orthogonal Matching Pursuit 
(OMP), Least-Squares-OMP, Weak Matching Pursuit, Block Matching 
Pursuit [1993-today].

•  Relaxation Algorithms: Basis Pursuit (a.k.a. LASSO), Dnatzig Selector & 
numerical ways to handle them [1995-today].

•  Hybrid Algorithms: StOMP, CoSaMP, Subspace Pursuit, Iterative Hard-
Thresholding [2007-today].

•  …



   BP and MP Equivalence (No Noise)

0

0
ArgMin s.t. xˆ

α
α = α = αD



   BP and MP Equivalence (No Noise)

Given a signal x with a representation             ,
assuming that                               , BP and MP   

are guaranteed to find the sparsest solution. 
  

x = αD

( )α < + µ0

0
0.5 1 1Donoho & E. (‘02) 

Gribonval & Nielsen (‘03)
Tropp (‘03) 

Temlyakov (‘03)


Equivalence

•  MP and BP are different in general (hard to say which is better).
•  The above result corresponds to the worst-case, and as such, it is 

too pessimistic.
•  Average performance results are available too, showing much better 

bounds [Donoho (`04)] [Candes et.al. (‘04)] [Tanner et.al. (‘05)]             !
[E. (‘06)] [Tropp et.al. (‘06)] … [Candes et. al. (‘09)]. 



   BP Stability for the Noisy Case 
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   BP Stability for the Noisy Case 

•  For σ=0 we get a weaker version of the previous result.
•  This result is the oracle’s error, multuiplied by C· logK.
•  Similar results exist for other pursuit algorithms (Dantzig Selector, 

Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, …)

Given a signal                   with a representation
satisfying                        and a white Gaussian 

noise                      , BP will show  stability, i.e., 

α < µ0

0
1 / 3

Ben-Haim, Eldar & E. (‘09)

Stability
vy +α= D

2 0 2
BP 2 0

Const( ) logKα̂ − α < λ ⋅ ⋅ α ⋅ σ

( )2v ~ N 0,σ I

* With very high   
   probability

*



   To Summarize So Far …
Use a model for 
signals/images 

based on sparse 
and redundant 
representations

What do    
we do?  

Image denoising (and 
many other problems 
in image processing) 
requires a model for 
the desired image

We have seen that there are 
approximation methods to 

find the sparsest solution, and 
there are theoretical results 

that guarantee their success.

Problems?

What           
next?  

The 
Dictionary D 
should be 

found 
somehow !!!
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   What Should D Be? 

Our Assumption: Good-behaved Images                                      
have a sparse representation

D should be chosen such that it sparsifies the representations

The approach we will take for 
building D is training it, based 

on Learning from !
Image Examples 

One approach to choose D is from a 
known set of transforms (Steerable 

wavelet, Curvelet, Contourlets, 
Bandlets, Shearlets …)
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Each example is                    
a linear combination                   

of atoms from D

   Measure of Quality for D

D≈X A

Each example has a sparse 
representation with no 

more than L atoms

L,j.t.sxMin
0

0j
P

1j

2

2jj
,

≤α∀−α∑
=
D

AD [Field & Olshausen (‘96)]
[Engan et. al. (‘99)]

[Lewicki & Sejnowski (‘00)]
[Cotter et. al. (‘03)]

[Gribonval et. al. (‘04)]
[Aharon, E. & Bruckstein (‘04)] 
[Aharon, E. & Bruckstein (‘05)]
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   K–Means For Clustering 

DInitialize         D

Sparse Coding
Nearest Neighbor

Dictionary 
Update

Column-by-Column by  
Mean computation over the 

relevant examples

XT

Clustering: An extreme sparse representation  
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   The K–SVD Algorithm – General 

DInitialize         D

Sparse Coding
Use Matching Pursuit

Dictionary 
Update

Column-by-Column by  
SVD computation over the 

relevant examples

[Aharon, E. & Bruckstein (‘04,‘05)]

XT
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   K–SVD: Sparse Coding Stage

D

XT

L,j.t.sxMin
p

pj
P

1j

2

2jj ≤α∀∑ −α
=
D

A

D is known!  
For the jth item           

we solve 

L.t.sxMin p
p

2

2j
≤α−α

α
D

Solved by                            !
A Pursuit Algorithm



   K–SVD: Dictionary Update Stage

D Refer only to the 
examples that use the 

column dk?dk =

Fixing all A and D apart 
from the kth column, and 
seek both dk and the kth 
column in A to better fit 

the residual!

We should solve:
2

F

T
kk,d
dMin

kk
E−α

α



   K–SVD: Dictionary Update Stage

D Refer only to the 
examples that use the 

column dk?dk =

Fixing all A and D apart 
from the kth column, and 
seek both dk and the kth 
column in A to better fit 

the residual!

We should solve:
2

F

T
kk,d
dMin

kk
E−α

αSVD



   K–SVD: Algorithm



   To Summarize So Far …
Use a model for 
signals/images 

based on sparse 
and redundant 
representations

What do    
we do?  

Image denoising (and 
many other problems 
in image processing) 
requires a model for 
the desired image

We have seen that there are 
approximation methods to 

find the sparsest solution, and 
there are theoretical results 

that guarantee their success.

Problems?

What           
next?  

Will it all!
work in!

applications?



Our prior

Extracts a patch 
in the ij location

•  The K-SVD algorithm is reasonable for low-
dimension signals (N in the range 10-400).!
As N grows, the complexity and the memory 
requirements of the K-SVD become 
prohibitive. 

•  So, how should large images be handled?

L.t.s

xyx
2
1

ArgMinx̂

0

0ij

ij

2

2ijij
2
2}{,x ijij

≤α

∑ α−µ+−=
α

DR

   From Local to Global Treatment

DN

k

•  The solution: Force shift-invariant sparsity  - on each patch of size         !
N-by-N (N=8) in the image, including overlaps. 



Option 1:
•  Use a database of images,
•  We tried that, and it works fine (~0.5-1dB                 

below the state-of-the-art). 
Option 2: 
•  Use the corrupted image itself !!  
•  Simply sweep through all patches of size                     

N-by-N (overlapping blocks), 
•  Image of size 10002 pixels      ~106                  

examples to use – more than enough.
•  This works much better!

   What Data to Train On?



Complexity of this algorithm: O(N2×K×L×Iterations) per pixel. For N=8, 
L=1, K=256, and 10 iterations, we need 160,000 (!!) operations per pixel. 

K-SVD

L.t.sxyxArgMinx̂
0

0ijij

2

2ijij
2
22
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,}{,x ijij

≤αα−µ+−= ∑
α

DR
D

x=y and D known

L.t.s

xMin

0
0

2
2ijij

≤α

α−=α
α

DR

Compute αij  per patch 





using the matching pursuit

x and αij known

∑ α−
α ij

2

2ijxMin DR

Compute D to minimize 



using SVD, updating one 

column at a time

D and αij known

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
αµ+

⎥
⎥
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⎤

⎢
⎢
⎣

⎡
µ+= ∑∑

−

ij
ij

T
ij

1

ij
ij

T
ij yIx DRRR

Compute x by



which is a simple averaging 

of shifted patches

   K-SVD Image Denoising

D?



Initial dictionary (overcomplete 
DCT) 64×256

   Image Denoising (Gray) [E. & Aharon (‘06)]

Source

Result 30.829dB

The obtained dictionary after  !
10 iterations

Noisy image 
20=σ



Initial dictionary (overcomplete 
DCT) 64×256

   Image Denoising (Gray) [E. & Aharon (‘06)]

Source

Result 30.829dB

The obtained dictionary after  !
10 iterations

Noisy image 
20=σ

•  The results of the K-SVD algorithm compete favorably 
with the state-of-the-art. 

•  In a recent work that extended this algorithm to use 
joint sparse representation on the patches, the best 
published denoising performance are obtained [Mairal, 
Bach, Ponce, Sapiro & Zisserman (‘09)].



   Denoising (Color) [Mairal, E. & Sapiro (‘08)]

•  When turning to handle color images, the 
main difficulty is in defining the relation 
between the color layers – R, G, and B. 

•  The solution with the above algorithm is 
simple – consider 3D patches or 8-by-8 with !
the 3 color layers, and the dictionary!
will detect the proper relations. 



   Denoising (Color) [Mairal, E. & Sapiro (‘08)]

  Original               Noisy (20.43dB)          Result  (30.75dB)



   Denoising (Color) [Mairal, E. & Sapiro (‘08)]

  Original            Noisy (12.77dB)     Result  (29.87dB)

The K-SVD algorithm leads to state-of-the-art denoising 
results, giving ~1dB better results compared to [Mcauley et. al. (‘06)] !

which implements a learned MRF model (Field-of-Experts)



   Image Inpainting – The Basics 
•  Assume: the signal x has been created                                        

by x=Dα0 with very sparse α0. 
•  Missing values in x imply                                                                   

missing rows in this linear                                                    
system. 

•  By removing these rows, we get               .

•  Now solve


•  If α0 was sparse enough, it will be the solution of the  above 
problem! Thus, computing Dα0 recovers x perfectly.

0 xα =D

=xα =D! !

0
Min s.t. x

α
α = αD!!



   Side Note: Compressed-Sensing
•  Compressed Sensing is leaning on the very same principal, leading to 

alternative sampling theorems.

=

•  Assume: the signal x has been created by x=Dα0 with very sparse α0. 

•  Multiply this set of equations by the matrix Q which reduces 
the number of rows.

•  The new, smaller, system of equations is
x xα = α =QD Q D! ! ×

•  If α0 was sparse enough, it will be the sparsest solution of the 
new system, thus, computing Dα0 recovers x perfectly.

•  Compressed sensing focuses on conditions for this to happen, 
guaranteeing such recovery.



Result

Experiments lead to state-of-the-art inpainting results.

  Original        80% missing

   Inpainting [Mairal, E. & Sapiro (‘08)]



Experiments lead to state-of-the-art inpainting results.

   Inpainting [Mairal, E. & Sapiro (‘08)]

  Original        80% missing Result



Experiments lead to state-of-the-art inpainting results.

   Inpainting [Mairal, E. & Sapiro (‘08)]



   Image Compression [Bryt and E. (‘08)]
•  The problem: Compressing photo-ID images.
•  General purpose methods (JPEG, JPEG2000)                                              !

do not take into account the specific family. 
•  By adapting to the image-content (PCA/K-SVD),                                       

better results could be obtained.
•  For these techniques to operate well, train                                        

dictionaries locally (per patch) using a                                                              
training set of images is required.

•  In PCA, only the (quantized) coefficients are stored,                                   
whereas the K-SVD requires storage of the indices                                       
as well.

•  Geometric alignment of the image is very helpful                                                
and should be done [Goldenberg, Kimmel, & E. (‘05)]. 



   Image Compression
Training set (2500 images)Detect main features and warp 

the images to a common 
reference (20 parameters)  O

n the training set

Divide the image into disjoint !
15-by-15 patches. For each 

compute mean and dictionary 

Per each patch find the operating 
parameters (number of atoms L, 

quantization Q) 

Warp, remove the mean from 
each patch, sparse code using L 

atoms, apply Q, and dewarp

On the        
test image
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   Image Compression Results

Results   !
for 820 

Bytes per    
each file

11.99

10.83

10.93

10.49

8.92

8.71

8.81

7.89

8.61

5.56

4.82

5.58

Original
JPEG

JPEG-2000
Local-PCA

K-SVD
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Results   !
for 550 

Bytes per    
each file

15.81

14.67

15.30

13.89

12.41

12.57

10.66

9.44

10.27

6.60

5.49

6.36

   Image Compression Results
Original

JPEG

JPEG-2000
Local-PCA

K-SVD
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Results   !
for 400 

Bytes per    
each file

18.62

16.12

16.81

12.30

11.38

12.54

7.61

6.31

7.20

?

?
?

   Image Compression Results
Original

JPEG

JPEG-2000
Local-PCA

K-SVD
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550 bytes  !
K-SVD 

results with 
and without 
deblocking

   Deblocking the Results [Bryt and E. (`09)]

K-SVD (6.60) K-SVD (11.67)K-SVD (6.45)K-SVD (5.49)

Deblock (6.24) Deblock (11.32)Deblock (6.03)Deblock (5.27)
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   Super-Resolution [Zeyde, Protter, & E. (‘11)] 
•  Given a low-resolution image, we desire to enlarge it 

while producing a sharp looking result. This problem is 
referred to as “Single-Image Super-Resolution”.

•  Image scale-up using bicubic interpolation is far from 
being satisfactory for this task. 

•  Recently, a sparse and redundant representation 
technique was proposed [Yang, Wright, Huang, and Ma (’08)] 
for solving this problem, by training a coupled-
dictionaries for the low- and high res. images. 

•  We extended and improved their algorithms and results.



SR Result
PSNR=16.95dB
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   Super-Resolution – Results (1)

The training image: 
717×717 pixels, 
providing a set of 
54,289 training 
patch-pairs.



Ideal 
Image

Given Image

SR Result
PSNR=16.95dB

Bicubic 
interpolation 

PSNR=14.68dB
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   Super-Resolution – Results (1)



Given image

Scaled-Up (factor 2:1) using the proposed algorithm, 
PSNR=29.32dB  (3.32dB improvement over bicubic)

57

   Super-Resolution – Results (2)



        The Original                    Bicubic Interpolation                   SR result 
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   Super-Resolution – Results (2)



        The Original                    Bicubic Interpolation                   SR result 
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   Super-Resolution – Results (2)



L0-Image Smoothing

General goals: 
 

•  Suppress insignificant details
•  Maintain major edges



L0-Smoothing Method

A general and effective global smoothing 
strategy based on a sparsity measure



 ( ) : #{ | 0}pc f p f= ∇ ≠

which corresponds to the L0-norm of gradient



Two Features

1. insignificant details

By removing small non-zero 
gradients



Two Features

2. prominent edges


Because large gradients receive 
the same penalty as small ones

#{ | 0} #{ | 0}p pp f p fα∇ ≠ = ∇ ≠



Our Framework in 1D

• Constrain # of non-zero gradients

• Make the result similar to the input

• Objective function  

1 ( ) #{ | 0}p pc f p f f k+= − ≠ =

2min ( )    p pf p
f g−∑

2min ( )       s.t.      ( )p pf p
f g c f k− =∑

g



•  Input 1D signal 

Our Framework in 1D

g

2min ( )       s.t.      ( ) 1p pf p
f g c f− =∑



2min ( )       . .    2  ( )p pf p
f g s t c f− =∑

•  Input 1D signal 

Our Framework in 1D

g



2min ( )       . .    5  ( )p pf p
f g s t c f− =∑

•  Input 1D signal 

Our Framework in 1D

g



2min ( )       . .      ( ) 200p pf p
f g s t c f− =∑

•  Input 1D signal 

Our Framework in 1D

g



Transformation

2min ( )       s.t.      ( )p pf p
f g c kf− =∑

0	  

2	  

4	  

6	  

8	  

10	  

1	   51	   101	  

2min ( ) ( )p pf p
f g c fλ− + ⋅∑

1
λ

k



2D Image

2min ( ) ( , )p p x yf p
f g c f fλ− + ⋅ ∂ ∂∑

( , ) #{ | 0}x y x p y pc f f p f f∂ ∂ = ∂ + ∂ ≠

2min (( , )) x yf p
p p ff g c fλ+ ⋅ ∂ ∂−∑

Finding the global optimum is !
NP hard

2min ( () , )p pf p
x yc ff g fλ− + ∂ ∂⋅∑



Approximation

2min ( ) ( , )p p x yf p
f g c f fλ− + ⋅ ∂ ∂∑ ,h v

( )2 2( ) ( )x p p y p p
p

f h f vβ+ ⋅ ∂ − + ∂ −∑

,h v

Separately estimate     and  ( , )h vf



Iterative Optimization

• Compute      given 

• Compute         given

• Gradually approximate the original problem    

( )2 2 2( ) ( ) ( ) ( )p p x p p y p p
p

E f f g f h f vβ= − + ⋅ ∂ − + ∂ −∑
f

( )2 2( , ) ( ) ( ) ( , )x p p y p p
p

E h v f h f v c h vλ
β

= ∂ − + ∂ − +∑

,h v

,h v f

2β β←

Both the sub-problems are with 
closed-form solutions



One Example

Iteration #1Iteration #2Iteration #3Iteration #4Iteration #5Iteration #6Iteration #7Iteration #8Iteration #9Iteration #10Iteration #11Iteration #12Iteration #13Iteration #14Iteration #15

Converge in 15 iterations



Smoothing Strength

Input



=0.01λ

Smoothing Strength



=0.02λ

Smoothing Strength



=0.03λ

Smoothing Strength



Comparison

Total Variation L0 Smoothing


