BIL 717
 Image Processing
 Apr. 29, 2015

Graphical Models

Erkut Erdem
Hacettepe University
Computer Vision Lab (HUCVL)

Energy Minimization

- Many vision tasks are naturally posed as energy minimization problems on a rectangular grid of pixels:

$$
E(u)=E_{\text {data }}(u)+E_{\text {smoothness }}(u)
$$

- The data term $E_{\text {data }}(u)$ expresses our goal that the optimal model u be consistent with the measurements.
- The smoothness energy $E_{\text {smoothness }}(u)$ is derived from our prior knowledge about plausible solutions.
- Recall Mumford-Shah functional

Sample Vision Tasks

- Image Denoising: Given a noisy image $\hat{I}(x, y)$, where some measurements may be missing, recover the original image $I(x, y)$, which is typically assumed to be smooth.
- Image Segmentation: Assign labels to pixels in an image, e.g., to segment foreground from background.
- Stereo matching
- Surface Reconstruction
- ...

Smoothing out cluster assignments

- Assigning a cluster label per pixel may yield outliers:

- How to ensure they are spatially smooth?

Solution

Encode dependencies between pixels

Writing Likelihood as an "Energy"

$$
P(\mathbf{y} ; \theta, \text { data })=\frac{1}{Z} \prod_{i=1 . . N} p_{1}\left(y_{i} ; \theta, \text { data }\right) \prod_{i, j \in e d g e s} p_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)
$$

"Cost" of pairwise assignment y_{i}, y_{j}

Markov Random Fields

Node y_{i} : pixel label

Cost to assign a label to each pixel

Cost to assign a pair of labels to connected pixels
$\operatorname{Energy}(\mathbf{y} ; \theta$, data $)=\sum_{i} \psi_{1}\left(y_{i} ; \theta\right.$, data $)+\sum_{i, j \text { eadges }} \psi_{2}\left(y_{i}, y_{j} ; \theta\right.$, data $)$ D. Hoiem

Markov Random Fields

- Example: "label smoothing" grid
$\operatorname{Energ}(\mathbf{y} ; \theta$, data $)=\sum_{i} \psi_{1}\left(y_{i} ; \theta\right.$, data $)+\sum_{i, j \text { eadges }} \psi_{2}\left(y_{i}, y_{j} ; \theta\right.$, data $)$

Binary MRF Example

- Consider the following energy function for two binary random variables, $\mathrm{y}_{1} \& \mathrm{y}_{2}$.

\[

\]

$E\left(y_{1}, y_{2}\right)=\psi_{1}\left(y_{1}\right)+\psi_{2}\left(y_{2}\right)+\psi_{12}\left(y_{1}, y_{2}\right)$

Binary MRF Example

- Consider the following energy function for two binary random variables, $\mathrm{y}_{1} \& \mathrm{y}_{2}$.

$$
\begin{array}{l|l|l|l|l|l|}
0 & 5 & 0 & 1 & 0 & 0 \\
\hline & 3 \\
1 & 2 & 1 & 3 & 1 & 4 \\
\hline
\end{array}
$$

$$
\begin{aligned}
E\left(y_{1}, y_{2}\right)= & \psi_{1}\left(y_{1}\right)+\psi_{2}\left(y_{2}\right)+\psi_{12}\left(y_{1}, y_{2}\right) \\
= & \underbrace{5 \bar{y}_{1}+2 y_{1}}_{\psi_{1}} \\
& +\underbrace{\bar{y}_{2}+3 y_{2}}_{\psi_{2}} \\
& +\underbrace{3 \bar{y}_{1} y_{2}+4 y_{1} \bar{y}_{2}}_{\psi_{12}}
\end{aligned}
$$

where $\bar{y}_{1}=1-y_{1}$ and $\bar{y}_{2}=1-y_{2}$.

Binary MRF Example

- Consider the following energy function for two binary random variables, $\mathrm{y}_{1} \& \mathrm{y}_{2}$.

$$
\begin{array}{|l|l|l|l|l|}
0 & 5 & 0 & 1 & 0 \\
1 & 2 & 0 & 3 \\
\hline & 1 & 3 \\
\hline
\end{array} \quad 1 \begin{array}{|l|l|}
\hline 4 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
E\left(y_{1}, y_{2}\right)= & \psi_{1}\left(y_{1}\right)+\psi_{2}\left(y_{2}\right)+\psi_{12}\left(y_{1}, y_{2}\right) \\
= & \underbrace{5 \bar{y}_{1}+2 y_{1}}_{\psi_{1}} \\
& +\underbrace{\bar{y}_{2}+3 y_{2}}_{\psi_{2}} \\
& +\underbrace{3 \bar{y}_{1} y_{2}+4 y_{1} \bar{y}_{2}}_{\psi_{12}}
\end{aligned}
$$

Graphical Model

Probability Table

y_{1}	y_{2}	E	P
0	0	6	0.244
0	1	11	0.002
1	0	7	0.090
1	1	5	0.664

where $\bar{y}_{1}=1-y_{1}$ and $\bar{y}_{2}=1-y_{2}$.

Image Denoising

- Given a noisy image v, perhaps with missing pixels, recover an image u. that is both smooth and close to v.
- Classical techniques:
- Linear filtering (e.g. Gaussian filtering)
- Median filtering
- Wiener filtering
- Modern techniques
- PDE-based techniques
- Non-local methods
- Wavelet techniques
- MRF-based techniques

Denoising as a Probabilistic Inference

- Perform maximum a posteriori (MAP) estimation by maximizing the a posteriori distribution:

$$
p(\text { true image } \mid \text { noisy image })=p(u \mid v)
$$

- By Bayes theorem: likelihood of noisy image given true image
image prior

- If we take logarithm:

$$
\log p(u \mid v)=\log p(v \mid u)+\log p(u)-\log p(v)
$$

- MAP estimation corresponds to minimizing the encoding cost

$$
E(u)=-\log p(v \mid u)-\log p(u)
$$

Modeling the Likelihood

- We assume that the noise at one pixel is independent of the others.

$$
p(v \mid u)=\prod_{i, j} p\left(v_{i j} \mid u_{i j}\right)
$$

- We assume that the noise at each pixel is additive and Gaussian distributed:

$$
p\left(v_{i j} \mid u_{i j}\right)=G_{\sigma}\left(v_{i j}-u_{i j}\right)
$$

- Thus, we can write the likelihood:

$$
p(v \mid u)=\prod_{i, j} G_{\sigma}\left(v_{i j}-u_{i j}\right)
$$

Modeling the Prior

- How do we model the prior distribution of true images?
- What does that even mean?
- We want the prior to describe how probable it is (a-priori) to have a particular true image among the set of all possible images.

probable

Natural Images

- What distinguishes "natural" images from "fake" ones?

Simple Observation

- Nearby pixels often have a similar intensity:

- But sometimes there are large intensity changes.

MRF-based Image Denoising

- Let each pixel be a node in a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with 4-connected neighborhoods.

Image Denoising

- The energy function is given by

$$
E(u)=\sum_{i \in \mathcal{V}} D\left(u_{i}\right)+\sum_{(i, j) \in \mathcal{E}} V\left(u_{i}, u_{j}\right)
$$

- Unary (clique) potentials D stem from the measurement model, penalizing the discrepancy between the data v and the solution u.
- Interaction (clique) potentials V provide a definition of smoothness, penalizing changes in u. between pixels and their neighbors.

Denoising as Inference

- Goal: Find the image u that minimizes $E(u)$
- Several options for MAP estimation process:
- Gradient techniques
- Gibbs sampling
- Simulated annealing
- Belief propagation
- Graph cut

Quadratic Potentials in 1D

- Let v be the sum of a smooth 1D signal u and IID Gaussian noise e : where $u=\left(u_{1}, \ldots, u_{N}\right), v=\left(v_{1}, \ldots, v_{N}\right)$, and

$$
e=\left(e_{1}, \ldots, e_{N}\right)
$$

- With Gaussian IID noise, the negative log likelihood provides a quadratic data term. If we let the smoothness term be quadratic as well, then up to a constant, the log posterior is

$$
E(u)=\sum_{n=1}^{N}\left(u_{n}-v_{n}\right)^{2}+\lambda \sum_{n=1}^{N-1}\left(u_{n+1}-u_{n}\right)^{2}
$$

Quadratic Potentials in 1D

- To find the optimal u^{*}, we take derivatives of $E(u)$ with respect to u_{n} :
$\frac{\partial E(u)}{\partial u_{n}}=2\left(u_{n}-v_{n}\right)+2 \lambda\left(-u_{n-1}+2 u_{n}-u_{n+1}\right)$
and therefore the necessary condition for the critical point is

$$
u_{n}+\lambda\left(-u_{n-1}+2 u_{n}-u_{n+1}\right)=v_{n}
$$

- For endpoints we obtain different equations:

$$
\begin{aligned}
u_{1}+\lambda\left(u_{1}-u_{2}\right) & =v_{1} \quad \mathrm{~N} \text { linear equations } \\
u_{N}+\lambda\left(u_{N}-u_{N-1}\right) & =v_{N} \quad \text { in the } \mathrm{N} \text { unknowns }
\end{aligned}
$$

Missing Measurements

- Suppose our measurements exist at a subset of positions, denoted P. Then we can write the energy function as

$$
E(u)=\sum_{n \in P}\left(u_{n}-v_{n}\right)^{2}+\lambda \sum_{\text {all } n}\left(u_{n+1}-u_{n}\right)^{2}
$$

- At locations n where no measurement exists, we have: $\quad-u_{n-1}+2 u_{n}-u_{n+1}=0$
- The Jacobi update equation in this case becomes:

$$
u_{n}^{(t+1)}= \begin{cases}\frac{1}{1+2 \lambda}\left(v_{n}+\lambda u_{n-1}^{(t)}+\lambda u_{n+1}^{(t)}\right) & \text { for } n \in P \\ \frac{1}{2}\left(u_{n-1}^{(t)}+u_{n+1}^{(t)}\right) & \text { otherwise }\end{cases}
$$

2D Image Smoothing

- For 2D images, the analogous energy we want to minimize becomes:

$$
\begin{aligned}
E(u) & =\sum_{n, m \in P}(u[n, m]-v[n, m])^{2} \\
& +\lambda \sum_{\text {all } n, m}(u[n+1, m]-u[n, m])^{2}+(u[n, m+1]-u[n, m])^{2}
\end{aligned}
$$

where P is a subset of pixels where the measurements v are available.

Looks familiar??

Robust Potentials

- Quadratic potentials are not robust to outliers and hence they over-smooth edges. These effects will propagate throughout the graph.
- Instead of quadratic potentials, we could use a robust error function ρ :

$$
E(u)=\sum_{n=1}^{N} \rho\left(u_{n}-v_{n}, \sigma_{d}\right)+\lambda \sum_{n=1}^{N-1} \rho\left(u_{n+1}-u_{n}, \sigma_{s}\right),
$$

where σ_{d} and σ_{s} are scale parameters.

Robust Potentials

- Example: the Lorentzian error function

Robust Potentials

- Example: the Lorentzian error function
- Smoothing a noisy step edge

Noisy step

LS smoother

Lorentzian smoother

Robust Image Smoothing

- A Lorentzian smoothness potential encourages an approximately piecewise constant result:

Original image

Output of robust smoothing

Robust Image Smoothing

- A Lorentzian smoothness potential encourages an approximately piecewise constant result:

Original image

D. J. Fleet

Image Segmentation

- Given an image, partition it into meaningful regions or segments.
- Approaches
- Variational segmentation models
- Clustering-based approaches (K-means, Mean Shift)
- Graph-theoretic formulations
- MRF-based techniques

MRFs and Graph-cut

Markov Random Fields

- Example: "label smoothing" grid
$\operatorname{Energ}(\mathbf{y} ; \theta$, data $)=\sum_{i} \psi_{1}\left(y_{i} ; \theta\right.$, data $)+\sum_{i, j \text { eadges }} \psi_{2}\left(y_{i}, y_{j} ; \theta\right.$, data $)$

Solving MRFs with graph cuts

Main idea:

- Construct a graph such that every st-cut corresponds to a joint assignment to the variables y
- The cost of the cut should be equal to the energy of the assignment, $\mathrm{E}(\mathrm{y}$; data)*.
- The minimum-cut then corresponds to the minimum energy assignment, $\mathrm{y}^{\star}=\operatorname{argmin}_{\mathrm{y}} \mathrm{E}(\mathrm{y}$; data).
* Requires non-negative energies

Solving MRFs with graph cuts

$$
\operatorname{Energy}(\mathbf{y} ; \theta, \text { data })=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data }\right)+\sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)
$$

Solving MRFs with graph cuts

$$
\operatorname{Energy}(\mathbf{y} ; \theta, \text { data })=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data }\right)+\sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)
$$

The st-Mincut Problem

Graph (V, E, C)
Vertices $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2} \ldots \mathrm{v}_{\mathrm{n}}\right\}$
Edges $\mathrm{E}=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \ldots.\right\}$
Costs $C=\left\{C_{(1,2)} \ldots ..\right\}$

The st-Mincut Problem

What is a st-cut?

The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

$$
\begin{aligned}
& \text { Sum of cost of all edges going } \\
& \text { from S to } T
\end{aligned}
$$

The st-Mincut Problem

What is a st-cut?

$$
2+2+4=8
$$

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

> Sum of cost of all edges going from S to T

What is the st-mincut?

> st-cut with the minimum cost

So how does this work?

Construct a graph such that:

1. Any st-cut corresponds to an assignment of x
2. The cost of the cut is equal to the energy of $x: E(x)$

[Hammer, 1965] [Kolmogorov and Zabih, 2002]

st-mincut and Energy Minimization

$$
E(x)=\sum_{i} \theta_{i}\left(x_{i}\right)+\sum_{i, j} \theta_{i}\left(x_{i}, x_{i}\right)
$$

For all ij

$$
\theta_{i j}(0,1)+\theta_{i j}(1,0) \geq \theta_{i j}(0,0)+\theta_{i j}(1,1)
$$

Equivalent (transformable)

$$
E(x)=\sum_{i} c_{i} x_{i}+\sum_{, j} c_{i j} x_{i}\left(1-x_{j}\right) \quad c_{i j} \geq 0
$$

Graph Construction

$E\left(a_{1}, a_{2}\right)$

Source (0)

Sink (1)

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}$

Sink (1)

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

> Edges: Flow < Capacity
> Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem
In every network, the maximum flow equals the cost of the st-mincut

Maxflow Algorithms

Flow $=0$

Augmenting Path Based Algorithms

Maxflow Algorithms

Flow $=0$

Augmenting Path Based

 Algorithms1. Find path from source to sink with positive capacity

Maxflow Algorithms

Flow $=0+2$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path

Maxflow Algorithms

Flow $=2$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path

Maxflow Algorithms

Flow $=2$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=2$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=2+4$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=6$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=6$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=6+2$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=8$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=8$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

$$
\begin{aligned}
& 2 a_{1}+5 \bar{a}_{1} \\
& =2\left(a_{1}+\bar{a}_{1}\right)+3 \bar{a}_{1} \\
& =2+3 \bar{a}_{1}
\end{aligned}
$$

Flow and Reparametrization

$$
\mathrm{E}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)=2+3 \overline{\mathrm{a}}_{1}+9 \mathrm{a}_{2}+4 \overline{\mathrm{a}}_{2}+2 \mathrm{a}_{1} \overline{\mathrm{a}}_{2}+\overline{\mathrm{a}}_{1} \mathrm{a}_{2}
$$

Flow and Reparametrization

$$
\mathrm{E}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)=2+3 \overline{\mathrm{a}}_{1}+9 \mathrm{a}_{2}+4 \overline{\mathrm{a}}_{2}+2 \mathrm{a}_{1} \overline{\mathrm{a}}_{2}+\overline{\mathrm{a}}_{1} \mathrm{a}_{2}
$$

Flow and Reparametrization

$\mathrm{E}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)=2+3 \overline{\mathrm{a}}_{1}+5 \mathrm{a}_{2}+4+2 \mathrm{a}_{1} \overline{\mathrm{a}}_{2}+\overline{\mathrm{a}}_{1} \mathrm{a}_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

No more
augmenting paths possible

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$
 (positive coefficients)

Tight Bound >> Inference of the optimal solution becomes trivial

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$
 (positive coefficients)

Total Flow
bound on the energy of the optimal solution

Maxflow in Computer Vision

- Specialized algorithms for vision problems
- Grid graphs
- Low connectivity (m ~ O(n))
- Dual search tree augmenting path algorithm
[Boykov and Kolmogorov PAMI 2004]
- Finds approximate shortest augmenting paths efficiently
- High worst-case time complexity
- Empirically outperforms other algorithms on vision problems

Code for Image Segmentation

$$
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j}\left|x_{i}-x_{j}\right| \quad \begin{array}{r}
E:\{0,1\}^{n} \rightarrow R \\
0 \rightarrow f g \\
1 \rightarrow b g \\
n=\text { number of } \\
\text { pixels }
\end{array}
$$

$$
x^{\prime}=\arg \min _{x} E(x)
$$

How to minimize $E(x)$?
Global Minimum (x^{*})

How does the code look like?

```
Graph *g;
For all pixels p
    /* Add a node to the graph */
    nodeID(p) = g->add_node();
    /* Set cost of terminal edges */
    set_weights(nodeID(p),fgCost(p),
        bgCost(p));
end
for all adjacent pixels p,q
    add_weights(nodeID(p), nodeID(q),
        cost(p,q));
end
g->compute_maxflow();
Sink (1)
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```


How does the code look like?

Graph *g;

```
For all pixels p
    /* Add a node to the graph */
    nodeID(p) = g->add_node();
    /* Set cost of terminal edges */
    set_weights(nodeID(p),fgCost(p),
        bgCost(p));
end
for all adjacent pixels p,q
    add_weights(nodeID(p), nodeID(q),
        cost(p,q));
end
g->compute_maxflow();
```



```
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```


How does the code look like?

Graph *g;
For all pixels p
/* Add a node to the graph */ nodeID(p) = g->add_node();
/* Set cost of terminal edges */ set_weights(nodeID(p),fgCost(p), bgCost(p));
end

```
for all adjacent pixels p,q
    add_weights(nodeID(p),nodeID(q),
        cost(p,q));
end
```


g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

```
Graph *g;
For all pixels p
    /* Add a node to the graph */
    nodeID(p) = g->add_node();
    /* Set cost of terminal edges */
    set_weights(nodeID(p),fgCost(p),
        bgCost(p));
end
for all adjacent pixels p,q
    add_weights(nodeID(p), nodeID(q),
        cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```


Random Fields in Vision

4-connected; pairwise MRF

$$
E(x)=\sum_{i, j \in N_{j}} \theta_{i j}\left(x_{i}, x_{j}\right)
$$

Order 2

higher(8)-connected; pairwise MRF

$$
E(x)=\sum_{i, j \in N_{8}} \theta_{i j}\left(x_{i}, x_{j}\right)
$$

Order 2

MRF with
global variables
$E(x)=\sum_{i, j \in N_{s}} \theta_{i j}\left(x_{i}, x_{j}\right)$
Order 2

Higher-order MRF

$$
\begin{array}{r}
E(x)=\sum_{\mathrm{i}, \mathrm{j} \in \mathrm{~N}_{4}} \theta_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right) \\
+\Theta\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
\text { Order } \mathrm{n}
\end{array}
$$

GrabCut segmentation

User provides rough indication of foreground region.
Goal: Automatically provide a pixel-level segmentation.

MRF with global potential

 GrabCut model [Rother et. al. ‘04]

$$
\begin{aligned}
E\left(x, \theta^{F}, \theta^{B}\right) & =\sum_{i} F_{i}\left(\theta^{F}\right) x_{i}+B_{i}\left(\theta^{B}\right)\left(1-x_{i}\right) \quad+\sum_{\mathrm{i}, \mathrm{j} \in \mathrm{~N}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right| \\
\mathrm{F}_{\mathrm{i}} & =-\log \operatorname{Pr}\left(\mathrm{z}_{\mathrm{i}} \mid \theta^{\mathrm{F}}\right) \quad \mathrm{B}_{\mathrm{i}}=-\log \operatorname{Pr}\left(\mathrm{z}_{i} \mid \theta^{\mathrm{B}}\right)
\end{aligned}
$$

Image z

Output x

$\theta^{\text {F/B }}$ Gaussian
Mixture models

Problem: for unknown $\mathrm{x}, \mathrm{\theta}^{\mathrm{F}}, \theta^{\mathrm{B}}$ the optimization is NP -hard! Nicente et al. ${ }^{\text {oog }}$

GrabCut: Iterated Graph Cuts [Rother et al. Siggraph "04]

$\min _{\theta^{F}, \theta^{B}} E\left(x, \theta^{F}, \theta^{B}\right)$

$\min _{x} E\left(x, \theta^{F}, \theta^{B}\right)$

Learning of the colour distributions

Graph cut to infer segmentation

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. '06]

GrabCut: Iterated Graph Cuts

1. Define graph

- usually 4-connected or 8-connected

2. Define unary potentials

- Color histogram or mixture of Gaussians for background and foreground
unary_ potential $(x)=-\log \left(\frac{P\left(c(x) ; \theta_{\text {foreground }}\right)}{P\left(c(x) ; \theta_{\text {background }}\right)}\right)$

3. Define pairwise potentials

$$
\begin{aligned}
& \text { edge_potential }(x, y)=k_{1}+k_{2} \exp \left\{\frac{-\|c(x)-c(y)\|^{2}}{2 \sigma^{2}}\right\} \\
& \text { draph cuts }
\end{aligned}
$$

4. Apply graph cuts
5. Return to 2, using current labels to compute foreground, background models

GrabCut: Iterated Graph Cuts

Result

Energy after each Iteration
C. Rother

Colour Model

Optimizing over Ө's help

What is easy or hard about these cases for graphcut-based segmentation?

Easier examples

D. Hoiem

More difficult Examples

Semantic Segmentation Joint Object recognition \& segmentation

$$
E(x, \omega)=\sum_{\text {(color) }} \theta_{i}\left(\omega, x_{i}\right)+\sum_{i_{\text {(location) }}} \theta_{i}\left(x_{i}\right)+\sum_{i} \theta_{i}\left(x_{\text {(class) }}\right)+\sum_{\substack{i, j \\ \text { i,j } \\ \text { (sing prior) }}}^{\theta_{i j}\left(x_{i}, x_{j}\right)}
$$

$x_{i} \in\{1, \ldots, K\}$ for K object classes

Class (boosted textons)

(a) Input image

(b) Texton map

texton t

Semantic Segmentation Joint Object recognition \& segmentation

(a)

(b) 69.6%

Class+
location

(c) 70.3%

+ edges

(d) 72.2%
+ color

Semantic Segmentation Joint Object recognition \& segmentation

Good results ...

Random Fields in Vision

4-connected; pairwise MRF

$$
E(x)=\sum_{i, j \in N_{1}} \theta_{i j}\left(x_{i}, x_{j}\right)
$$

Order 2

higher(8)-connected; pairwise MRF

$$
\begin{array}{cr}
E(x)=\sum_{i, j \in N_{8}} \theta_{i j}\left(x_{i}, x_{j}\right) & E(x)=\sum_{i, j \in N_{s}} \theta_{i j}\left(x_{i}, x_{j}\right) \\
\text { Order 2 } & \text { Order 2 }
\end{array}
$$

MRF with
global variables

Higher-order MRF

$$
\begin{aligned}
E(x)= & \sum_{i, j \in N_{4}} \theta_{i j}\left(x_{i}, x_{j}\right) \\
& +\theta\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Order n

Why Higher-order Functions?

In general $\theta\left(x_{1}, x_{2}, x_{3}\right) \neq \theta\left(x_{1}, x_{2}\right)+\theta\left(x_{1}, x_{3}\right)+\theta\left(x_{2}, x_{3}\right)$
$\underline{\text { Reasons for higher-order RFs: }}$

1. Even better image(texture) models:

- Field-of Expert [FoE, Roth et al. '05]
- Curvature [Woodford et al. '08]

2. Use global Priors:

- Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09]
- Better encoding label statistics [Woodford et al. ‘09]
- Convert global variables to global factors [Vicente et al. ‘09]

Modeling the Potentials

- Could the potentials (image priors) be learned from natural images?

De-noising with Field-of-Experts

[Roth and Black '05, Ishikawa '09]

$$
E(X)=\sum_{\substack{\mathrm{i} \\ \text { Unary } \\ \text { likelihood }}}^{\left(z_{i}-x_{i}\right)^{2} / 2 \sigma^{2}}+\sum \sum_{\mathrm{C} k}^{\mathrm{a}_{\mathrm{k}}\left(1+0.5\left(\mathrm{~J}_{\mathrm{k}} \mathrm{x}_{\mathrm{c}}\right)^{2}\right)} \text { FoE prior }
$$

non-convex optimization problem

How to handle continuous labels in discrete MRF?
From [Ishikawa PAMI '09, Roth et al '05]

De-noising with Field-of-Experts

[Roth and Black '05, Ishikawa '09]

- Very sharp discontinuities. No blurring across boundaries.
- Noise is removed quite well nonetheless.

