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Energy Minimization

Many vision tasks are naturally posed as energy
minimization problems on a rectangular grid of pixels:

E(U,) — Ed@t@(“) + ESmOOthness(u)

The data term E_,,.(u) expresses our goal that the optimal
model u be consistent with the measurements.

The smoothness energy E.,.ress(U) 1S derived from our
prior knowledge about plausible solutions.

Recall Mumford-Shah functional

D. J. Fleet



Sample Vision Tasks

Image Denoising: Given a noisy image /(x,y), where some
measurements may be missing, recover the original image
I(x, y), which is typically assumed to be smooth.

Image Segmentation: Assign labels to pixels in an image,
e.g., to segment foreground from background.

Stereo matching
Surface Reconstruction

D. J. Fleet



Smoothing out cluster assignments

* Assigning a cluster label per pixel may yield outliers:

original labeled by cluster center’ s
intensity

| ?
e How to ensure they are

spatially smooth? c 3
2

K. Grauman



Solution

P(foreground | image)
Encode dependencies between pixels

Normalizing constant
\_\

P(y;6,data) = Hﬁ(y,,e data) []/,(v,.y,:6.data)

]‘ l 1.N ]‘ i,jeedges /\

Labels to be predicted  Individual predictions Pairwise predictions
D. Hoiem



Writing Likelihood as an “Energy”

P(y;0,data) = le (v;30.data) []p,(y,.,:6.data)

z 1.N i,jeedges

I

Energy(y;0,data) = ZWI (y,;6,data)+ 2‘//2(%»)’]»9 data)

/ i,jeedges

“Cost” of assignment y.

“Cost” of pairwise
assignment y, y,

D. Hoiem



Markov Random Fields

Node y;: pixel label

Y
Edge: constrained
< pairs

oo oo

Cost to assign a label Cost to assign a pair of labels

to each pixel \ to connected pixels
N\
Energ)(y;6,data) =Y v,(y,;0,data)+ Y v,(y,,y,;0,data)

i, jeedges :
D. Hoiem



Markov Random Fields

Unary potential
O: -logP(y, = O ; data)
1: -logP(y, = 1 ; data)

PR Pairwisoe P$tential
0|0 K
11K 0

« Example: “label smoothing™ grid

Energ)(y;6,data) =Y v,(y,;0,data)+ Y v,(y,,y,;0,data)

i, jeedges :
D. Hoiem



Binary MRF Example

« (Consider the following energy function
for two binary random variables, y,; & V..

5

2

1

E (y1,y2) = ¥1(y1) + ¥2(y2) + Y12(y1, y2)

3

0

3

4

0

S. Gould



Binary MRF Example

« (Consider the following energy function
for two binary random variables, y,; & V..

5

2

E (y1,y2) = ¥1(y1) + ¥2(y2) + Y12(y1, y2)

1

0

3

3

4

0

=5y1 + 251

e
+ o + 3yo
—_—

Y2
+31ye +4niye

—
Y12

where y1 =1 —y; and y» =1 — y».

S. Gould



Binary MRF Example

« (Consider the following energy function
for two binary random variables, y; & V..

2 3 410 , )
E (y1,y2) = ¥1(y1) + ¥2(32) + ¥12(y1, y2) —
= by1 + 2y A e
N ~ ” 0101 60244
L 0 11 11]0.002
T2t 3y 1[0 | 7 0090
% ) 1|11 5 |0.664
+ 3y1y2 +4y1yo ’

e
where y1 =1 —y; and y» =1 — y».
S. Gould



Image Denoising

« Given a noisy image v, perhaps with missing pixels,
recover an image u.that is both smooth and close tov.
 (Classical technigues:
— Linear filtering (e.g. Gaussian filtering)
— Median filtering
— Wiener filtering

* Modern techniques

— PDE-based techniques Denoising/smoothing

— Non-local methods techniques that preserve
— Wavelet techniques edges in images

— MRF-based techniques



Denoising as a Probabillistic Inference

Perform maximum a posteriori (MAP) estimation by
maximizing the a posteriori distribution:

p(true 1mage | noisy image) = p(ulv)

By Bayes theorem: likelihood of noisy image |
given true image Image prior
~ | /
(V) = p(viu)p(u) o
p(v) «— normalization
If we take logarithm: term

log p(u1v) = log p(v 1 1) + log p(u) —@}W)\/

MAP estimation corresponds to minimizing the encoding
cost E(u)=-log p(vlu)-log p(u)




Modeling the Likelihood

* We assume that the noise at one pixel is
iIndependent of the others.

poluy =] | p(v; 1uy)

* We assume that the noise at each pixel is additive
and Gaussian distributed:

pv;lu,)=G, (v, —u;)
 Thus, we can write the likelihood:

p(vlu)= HGG(VU —u;)



Modeling the Prior

« How do we model the prior distribution of true images”?

 \What does that even mean?

— We want the prior to describe how probable it is (a-priori) to have a
particular true image among the set of all possible images.

T

ai &G A ¥
ik i{;‘f / ’m
i S 7 3
Sy | il I

probable improbable

S. Roth



Natural Images

What distinguishes “natural” images from “fake” ones”

S. Roth



Simple Observation

* Nearby pixels often have a similar intensity:

« But sometimes there are large intensity changes.

S. Roth



MRF-based Image Denoising

* Let each pixel be anodeinagraph G = (V,€)
with 4-connected neighborhoods.

pixels of the

O U;;  trueimage
(hidden)

pixels of the

o Vij noisy image
(observed)

Edges representing
the likelihood

Edges representing
the prior

S. Roth



Image Denoising

* The energy function is given by

ZD u;) + Z V(u;, u,)

A% (1,7)€€&

« Unary (clique) potentials D stem from the
measurement model, penalizing the discrepancy
between the data v and the solution U .

* Interaction (clique) potentials V" provide a definition of
smoothness, penalizing changes in U. between pixels
and their neighbors.

D. J. Fleet



Denoising as Inference

» Goal: Find the image u that minimizes F'(u)

« Several options for MAP estimation process:
—| Gradient techniques
— Gibbs sampling

— Simulated annealing
— Belief propagation
— Graph cut




Quadratic Potentials in 1D

* Let v be the sum of a smooth 1D signalu and |ID
Gaussian noise €:
where ¢ = (ul, ...,UN>, V= (Ul, ...,?JN>, and
e=(e1,....,en).

« With Gaussian IID noise, the negative log likelihood
provides a quadratic gata term. If we let the
smoothness term be quadratic as well, then up to a
constant, the log posterior is

E(u> — Z(un Un)Q + A i(um% Un)2

D. J. Fleet



Quadratic Potentials in 1D

» To find the optimal u”; we take derivatives of E(u)
with respect to U,,:

0 E(u)
0 U,

and therefore the necessary condition for the
critical point is

= 2 (un — Un) + 2\ (_un—l + 2uy, — un+1>

Up + A (_un—l -+ 2un — un+1) — Un
* For endpoints we obtain different equations:
ur + A (up —ug) = 1y

N linear equations
uy + A(uy —un_1) = vy NtheNunknowns
D. J. Fleet



Missing Measurements

e SUPPOSE our measurements exist at a subset of
positions, denoted P. Then we can write the energy
function as

E(“) — Z(un — Un)2 + A Z(un+1 — un>2

nepP all n
e At locations n where no measurement exists, we
have: —Up—1 +2Up — Upyrp = 0

« The Jacobi update equation in this case becomes:

L (v, + Al |+ Aufﬁrl) forn € P,

() — 1422 n—1
n \% (Uf,(zt)—1 + USJ)A) otherwise

D. J. Fleet



2D Image Smoothing

« For 2D images, the analogous energy we want to
minimize becomes:

E(u) = Z (u[n, m] — v[n, m])?

n.mepr

+ A Z uln+1,m) — uln, m))* + (uln, m+1] — uln, m))

alln,m

2

where P is a subset of pixels where the measurements v
are available.

| ooks familiar??

D. J. Fleet



Robust Potentials

* Quadratic potentials are not robust to outliers and
hence they over-smooth edges. These effects will
propagate throughout the graph.

 |nstead of quadratic potentials, we could use a robust
error function p:

N N-1
E(u) = Z Py — Uy, 0g) + A Z P(Upi1 — Up, O5) ,
n=1 n=1

where o, and o, are scale parameters.

D. J. Fleet



Robust Potentials

« Example: the Lorentzian error function

o=t (143 (2)), o) = 5

o 202 4+ 72

Error function Influence function

D. J. Fleet



Robust Potentials

« Example: the Lorentzian error function
« Smoothing a noisy step edge

Noisy step LS smoother Lorentzian smoother

D. J. Fleet



Robust Image Smoothing

* A Lorentzian smoothness potential encourages an
approximately piecewise constant result:

Original image Output of robust smoothing

D. J. Fleet



Robust Image Smoothing

* A Lorentzian smoothness potential encourages an
approximately piecewise constant result:

Original image

D. J. Fleet



Image Segmentation

« Given an image, partition it into meaningful regions or
segments.
* Approaches

— Variational segmentation models
— Clustering-based approaches (K-means, Mean Shift)

— Graph-theoretic formulations

 MRF-based techniques
MRFs and Graph-cut



Markov Random Fields

Unary potential
O: -logP(y, = O ; data)
1: -logP(y, = 1 ; data)

PR Pairwisoe P$tential
0|0 K
11K 0

« Example: “label smoothing™ grid

Energ)(y;6,data) =Y v,(y,;0,data)+ Y v,(y,,y,;0,data)

i, jeedges :
D. Hoiem



Solving MRFs with graph cuts

Main idea:

« Construct a graph such that every st-cut corresponds to a
joint assignment to the variables y

* The cost of the cut should be equal to the energy of the
assignment, E(y; data)*.

* The minimum-cut then corresponds to the minimum
energy assignment, y* = argmin, E(y; data).

*Requires non-negative energies
S. Gould



Solving MRFs with graph cuts

Source (Label 0)

/ Cost to assign to 1

Cost to split nodes

Sink (Label 1)

Energy(y;0,data) = Zwl(y 0,data) + sz(y ,Y;,0,data)

I, jeedges .
D. Hoiem



Solving MRFs with graph cuts

Source (Label 0)

Cost to split nodes

Cost to assign to 1
Sink (Label 1)

Energy(y:6,data) = > v (y:0,data)+ D ¥(.,:0.data)

i, jeedges :
D. Holem



The st-Mincut Problem

Graph (V, E, C)
Vertices V = {vy, V, ... V.)}
Edges E = {(vq, Vy) ...}
Costs C = {cy 9 .-}

P. Konli



The st-Mincut Problem

What is a st-cut?

P. Konli



The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
fromSto T

5+1+9=15

P. Konli



The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
fromSto T

What is the st-mincut?

st-cut with the
minimum cost

2+2+4=8

P. Konli



So how does this work?

Construct a graph such that:
1. Any st-cut corresponds to an assignment of x

2. The cost of the cut is equal to the energy of x : E(X)

st-mincut

Solution

[Hammer, 1965] [Kolmogorov and Zabih, 2002]

P. Konli



st-mincut and Energy Minimization

ze +ZQJ X)

]

For all jj 6,0,1) + 6;(1,0) =6,(0,0) + 8;(1,1)

I Equivalent (transformable)

P. Konli



Graph Construction

. Source (0)

P. Konli



Graph Construction

E(a~| ,8.2) — 28.1
Source (0)
4

a, Q Qag

B sink()

P. Konli



Graph Construction

E(a~| ,82) — 28.1 + 531
Source (0)
2

a, Q Qag

P. Konli



Graph Construction

E(a~| ,8.2) — 28.1 + 55.1"‘ 932 + 4é2

Source (0)
/\9

a, Q Q a,
A /4
B sink()

P. Konli



Graph Construction

E(a,,a,) = 2a, + 5a8,+ 9a, + 44, + 22,2,

Source (0)

P. Konli



Graph Construction

E(ay,a,) = 2a, + 5a,+ 9a, + 434, + 23,3, + 3,2,

NQ

Q) Ok
< —

N/

. Sink (1

P. Konli



Graph Construction

E(ay,a,) = 2a, + 5a8,+ 9a, + 44, + 22,3, + 343,

NQ

Q) () ®
< —

N/

. Sink (1

P. Konli



Graph Construction

E(@,a,) =27 +5a,+ 9" +4a,+ 23,3, +3,a,

Source (0)
2 9
1
a Q—Q a,
e——

s

.

Cost of cut = 11

a—|:1 8221

E(,1) =11

P. Konli



Graph Construction

E(@,a,) =2 +5a,+9a,+4 1 +2 + 3,3,

Source (0)

st-mincut cost = 8

8.121 8220

E(1,0)=8

P. Konli



How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Assuming non-negative capacity 5 Konl



Maxtlow Algorithms
Flow = 0

Augmenting Path Based
Algorithms

P. Konli



Maxtlow Algorithms
Flow = 0

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

P. Konli



Maxtlow Algorithms
Flow =0 + 2

[ J

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

P. Konli



Maxtlow Algorithms

Augmenting Path Based
Algorithms

Flow = 2

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

P. Konli



Maxtlow Algorithms

Flow = 2

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms

Flow = 2

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms

Flow =2 +4

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms
Flow = 6

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms
Flow = 6

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms
Flow =6 + 2

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms
Flow = 8

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Maxtlow Algorithms
Flow = 8

Augmenting Path Based
Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be found

P. Konli



Flow and Reparametrization

E(ay,a,) = 2a, + 5a8,+ 9a, + 44, + 22,3, + 343,

Ne

Q) () ®
< —

N/

. Sink (1

P. Konli



Flow and Reparametrization

E(ay,a,) = 2a, + 5a,+ 9a, + 44, + 22,3, + 343,

Source (0
/\ 23, + 53;

Q—Q % = 2(a,+a,) + 343,

2
\ / -2+ 33,
5 4 |

P. Konli



Flow and Reparametrization

E(a~| ,8.2) — 2 + 3514‘ 982 + 49.2 + 28.1 éz + é.-l 32

Source (0
/\ 23, + 53;

Q—Q % = 2(a,+a,) + 343,

2
\ / -2 +3a
3 A4 L

P. Konli



E(ay,ay)

Flow and Reparametrization

=2+ 384+ 9a, + 48, + 28,8, + 3,2,

Ne

Q) () ®
< —

N/

. Sink (1

r

9a, + 43,

&

P. Konli



E(ay,ay)

Flow and Reparametrization

— 2 + 85.1"‘ 58.2"‘ 4+ 28.15.2"‘5.18.2

Ne

Q) () ®
< —

N/o

. Sink (1

r

9a, + 43,

&

P. Konli



Flow and Reparametrization

E(a,,a,) = 6+ 3a,+ 5a, + 22,3, + 3,4,

Ne

Q) () ®
< —

N\_/o

. Sink (1

P. Konli



Flow and Reparametrization

E(a,,a,) = 6+ 3a,+ ba, + 2a,a, + 3,4,

P. Konli



Flow and Reparametrization

E(a,,a,) = 6+ 3a,+ ba, + 2a,a, + 3,4,

33+ 5a, + 28,4,

Source (0)
0 5
a1 Q—Q 82 F2 — 1+é‘182
O

2

0 1
0

B sink) 1
1

&
~
-

- O =+ O

:
2 2
1
1 1

P. Konli



Flow and Reparametrization

E(a~| ,8.2) — 8 + é.-|+ 38.2 + 331 8.2

33+ 5a, + 28,4,

Source (0)
= 2(1+8,a,) +a,+3a,
0 3
3 F, =a,+a,+a,a,

a, Q—Q cp F, = 1+3,a,
\' o /
1 0 o o0 1 1
B sink() ? ; f f
ER

P. Konli



Flow and Reparametrization

E(a~| ,8.2) — 8 + é1+ 332 + 3318.2

NQ

a, Q—Q a, No more

<—-O—— augmenting paths
possible
1 0

. Sink (1

P. Konli



Flow and Reparametrization

E(a; ,aQ) = 8|+ &+ 3a, + 34,4, — Residual Graph

(positive coefficients)
Source (0
Total Flow
bound on the
optimal solution
> Q_’Q &
< —
0
1 0
B sink)

Tight Bound >> Inference of the optimal solution becomes J[FI\F/)IaK| .
onil




Flow and Reparametrization

E(a‘l ’8-2) =8

/

Total Flow

bound on the
energy of the

+|a,+ 3a, + 38,4, m—

Source (0)

Residual Graph

(positive coefficients)

7

st-mincut cost = 8

a1:1 8220

E(1,0)=8

P. Konli



Maxflow in Computer Vision

« Specialized algorithms for vision problems
— Grid graphs
— Low connectivity (m ~ O(n))

* Dual search tree augmenting path algorithm
[Boykov and Kolmogorov PAMI 2004]
» Finds approximate shortest augmenting paths efficiently
« High worst-case time complexity
« Empirically outperforms other algorithms on vision problems

P. Konli



Code for Image Segmentation

0 —fg

| g 1 — bg

N = number of
pixels

x =arg min E(x)
X

How to minimize E(x)7
Global Minimum (X))

P. Konli



How does the code look like?

Graph *g;

For all pixels p

Source (0)
/* Add a node to the graph x/ .
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow(); . Sink (1)

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Konli



How does the code look like?

Graph *g;

r7For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

Source (0)

bgCost(a,) bgCost(a,)
QO
fgCost(a,) fgCost(a,)

B sink()

label_p = g->is_connected_to_source(nodeID(p));

// is the label of pixel p (0 or 1)

P. Konli



How does the code look like?

Graph *g;
For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

Source (0)

bgCost(a,) bgCost(a,)

fgCost(a,) fgCost(a,)

B sink()

label_p = g->is_connected_to_source(nodeID(p));

// is the label of pixel p (0 or 1)

P. Konli



How does the code look like?

Graph *g;

For all pixels p
Source (0)

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */ bgCOSt(a1) bgCOSt(az)
set_weights(nodeID(p),fgCost(p),

bgCost(p));
(O
end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
is the label of pixel ® or 1 — _
// p p ( ) a1 bg 3_2 fg

P. Konli



Random Fields in Vision

4-connected,; higher(8)-connected,; MRE with Higher-order MRF
pairwise MRF pairwise MRF global variables
E(X) = ) 6;(x.X) ) = 806%) | EX) = 6 (xx) E(X) = 6, ()
ijeN, i,j € Ng ij € Ng L &Ny
+6(X4,...,X,)
Order 2 Order 2 Order 2
L ) Order n

C. Rother



GrabCut segmentation

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.

D. Hoiem



MRF with global potential

GrabCut model [Rother et. al. ‘04] oF/B

E(x,6%,08) = > Fi(@")x+ B(65)(1-x) + gN|xi—xj|

F. = -log Pr(z|6F) B= -log Pr(z|6®)

R

B3‘(3kground 2/ 74
7,

£ 2L
Py 7, /
1 // LA

4 //‘
5

; /6 ::/
; 4/~ Foreground G

Image z Output x 6B Gaussian
Mixture models

for unknown x,67,0B the optimization is NP-hard! vicente et al. ‘09]

C. Rother



GrabCut: Iterated Graph Cuts
[Rother et al. Siggraph ‘04] ore

m)i(n E(x, 6, BB

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. 06, LayoutCRF Winn et al. '06]

C. Rother




GrabCut: lterated Graph Cuts

1. Define graph
— usually 4-connected or 8-connected

2. Define unary potentials
— Golor histogram or mixture of Gaussians for

background and foreground P(e(x):0 )
unary _ potential(x) =—log > Uoreground
P(c(x);0,

ackground )

3. Define pairwise potentials
edge potential(x,y)=k, +k, exp{
4, Apply graph cuts

b. Return to 2, using current labels to compute
foreground, background models

20

_C(x)_c(y)z}

D. Hoiem



GrabCut: lterated Graph Cuts

C. Rother



R

) % % /A
y Vs = /'

~“Foreground &
Background

\\s

G

Colour Model

—)

R

Background 7

lterated
graph cut

//

G

C. Rother



Optimizing over B’s help

iration
[Boykov&dJolly ‘01]

after convergence
[GrabCut ‘04]

==

after bnvergence
[GrabCut ‘04]

C. Rother



What is easy or hard about these cases for
graphcut-based segmentation?

D. Hoiem



Easier examples

D. Hoiem



More difficult Examples

Initial
Rectangle

Initial
Result

D. Hoiem



Semantic Segmentation
Joint Object recognition & segmentation

Z 0, (W +Z 8,(¢) + 2 6,(x) + ) 6;(x.)

(color) Iocatlon) ' (class) "I (edge aware
Ising prior)
x. € {1,...,K} for K object classes

LLocation Class (boosted textons)

Sky g rass (a) Input image (b) Texton map (c) Feature pair = (r,t)  (d) Superimposed rectangles

[TextonBoost; Shotton et al, ‘06] C. Rother



Semantic Segmentation
Joint Object recognition & segmentation

(b) 69.6% (c) 70.3% (d) 72.2%
Class+ + edges + color
location

[TextonBoost; Shotton et al, ‘06] C. Rother



Semantic Segmentation
Joint Object recognition & segmentation
| Good results ...

tree

building .
body—» road aeroplane building

grass grass grass road

bike building
car

road

Object Building Grass = Tree Sheep Sky Aeroplane | Water
classes

Bike Flower Sign Bird Chair Road Cat

[TextonBoost; Shotton et al, ‘06] C. Rother



Random Fields in Vision

N
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Why Higher-order Functions?

INn general B(x;,X,,X3) # B(X;,X,) + 0(X4,X3) + 0(X5,X5)

Reasons for higher-order RFs:

1. Even better image(texture) models:

—  Fleld-of Expert [FoE, Roth et al. ‘05]
—  Curvature [Woodford et al. ‘08]

2. Use global Priors:
— Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09]
— Better encoding label statistics [Woodford et al. ‘09]
— Convert global variables to global factors [Vicente et al. ‘09]
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Modeling the Potentials

« Could the potentials (image priors) be learned from natural
images”?

Field of Experts
(FoE), S. Roth &
_ M. J. Black, CVPR
% 2005




De-noising with Field-of-Experts
[Roth and Black 05, Ishikawa ‘09]
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X, set of nxn patches (here 2x2)

Jksetoffllters i m . E EE

non-convex optimization problem

How to handle continuous labels in discrete MRF?
From [Ishikawa PAMI ’09, Roth et al ‘05]

C. Rother



De-noising with Field-of-Experts
[Roth and Black 05, Ishikawa ‘09]
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denoised using

0=20 gradient ascent
PSNR 22.49dB PSNR 27.60dB
SSIM 0.528 SSIM 0.810

* \ery sharp discontinuities. No blurring across boundaries.

« Noise is removed quite well nonetheless.

S. Roth



