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Review - Markov Random Fields
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« Example: “label smoothing” grid

D. Hoiem

Review - Solving MRFs
with graph cuts

Main idea:

» Construct a graph such that every st-cut corresponds to a
joint assignment to the variables y

» The cost of the cut should be equal to the energy of the
assignment, E(y; data)*.

* The minimum-cut then corresponds to the minimum
energy assignment, y* = argmin, E(y; data).

*Requires non-negative energies
S. Gould

Review - Solving MRFs
with graph cuts
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Review - Solving MRFs
with graph cuts

Source (Label 0)

o
’

4
':' Cost to assign to 0

Cost to split nodes

Cost to assign to 1
Sink (Label 1)

Energy(y;6,data) = val(y,,e data)+ Y\, (y;.y ;0,data)
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Code for Image Segmentation
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n = number of
pixels

x =arg min E(x)
X

How to minimize E(x)?

Global Minimum (x)

P. Kohli

Review - How does the code look like?

I Graph *g; I

For all pixels p

Source (0)
/* Add a node to the graph */ .
nodeID(p) = g->add_node();

/* Set cost of terminal edges x/
set_weights(nodeID(p),fgCost(p),
bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow() ; . Sink (1)

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

Review - How does the code look like?

Graph *g;
For all pixels p
Source (0
/* Add a node to the graph x/
nodeID(p) = g->add_node();
/* Set cost of terminal edges */ bgCOSt bgCOSt

set_weights(nodeID(p),fgCost(p),
bgCost(p));

a a
ene rQ Ok

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q), f0C
ost(a,
cost(p,q)); fgCost(a) g (ay)
end
g->compute_maxflow(); . Sink (1)

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli




Review - How does the code look like?

Review - How does the code look like?

Graph *g; Graph *g;
For all pixels p For all pixels p
Source (0) Source (0)
/* Add a node to the graph */ /* Add a node to the graph */
nodeID(p) = g->add_node(); nodeID(p) = g->add_node();
/* Set cost of terminal edges %/ bgCost(a,) bgCost(ay) /% Set cost of terminal edges */ bgCOSt(aJ) / bgCost(a,)
set_weights(nodeID(p),fgCost(p), set_weights(nodeID(p),fgCost(p), . '~§n
bgCost(p)); cost(p,a) bgCost(p)); co8t(p,q)
— ——
o Qe Qe ™
for all adjacent pixels p,q for all adjacent pixels p,q “., A
add_weights(nodeID(p),nodeID(q), add_weights(nodeID(p),nodeID(q),
cost(p,a)); fgCost(a,) fgCost(ay) | cost(p)a)); fgCost(a,) fgCost(a,)
end en
g=>compute_maxflow(); . Sink (1) g->compute_maxflow() ; . Sink (1)
label_p = g->is_connected_to_source(nodeID(p)); label_p = g->is_connected_to_source(nodeID(p))
// is the label of pixel p (0 or 1) // is the label of pixel p (0 or 1) ‘3112 bg aQ::fg ‘
P. Kohli P. Kohli
GrabCut model [Rother et. al. ‘04] o
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C. Rother

E(x,67,88) = 2 Fi(@)x+ B{(65)(1-x) +i,ZN|Xi'Xi|
F, = -log Pr(z(6F) B= -log Pr(z|68)

R

Background

Image z Output x 6F/8 Gaussian
Mixture models

for unknown x,6F,08 the optimization is NP-hard! [vicente et al. ‘09]

C. Rother




Review - GrabCut: lterated Graph Cuts
[Rother et al. Siggraph ‘04] o

min E(x, 6F, 8) min E(x, 6F, 8B)
oF,08 X

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. '06, LayoutCRF Winn et al. '06]

C. Rother

Review - Random Fields in Vision

( R
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C. Rother

Review - Why Higher-order Functions?

In general 8(x;Xo,Xg) # B(Xy,X5) + B(X¢,Xg) + B(Xp,Xq)

Reasons for higher-order RFs:

1. Even better image(texture) models:
— Field-of Expert [FoE, Roth et al. ‘05]
—  Curvature [Woodford et al. ‘08]

2. Use global Priors:
— Connectivity |Vicente et al. ‘08, Nowozin et al. ‘09]
— Better encoding label statistics woodford et al. ‘09]
— Convert global variables to global factors [vicente et al. ‘09]

C. Rother

Semantic Segmentation

» Joint recognition & segmentation

— segmenting all the objects in a given image and
identifying their visual categories

* aka scene parsing or image parsing

 Early studies aim at segmenting out a single
object of a known category
— Borenstein & Uliman, 2002, Liebe & Schiele, 2003,




Early Studies of Semantic Segmentation

+ Given an image and object category, to segment the
object

Object
Category

Cow Image Segmented Cow

+ Segmentation should (ideally) be
* shaped like the object e.g. cow-like
e obtained efficiently in an unsupervised manner
e able to handle self-occlusion
M. P. Kumar

Early Studies of Semantic Segmentation

R. Fergus

Early Studies of Semantic Segmentation

R. Fergus

Early Studies of Semantic Segmentation

P
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Using Normalized Cuts, Shi & Malik, 1997

Input Bottom-up

R. Fergus




Early Studies of Semantic Segmentation

Using Normalized Cuts, Shi & Malik, 1997

Input _ Bottom-up Top- down

W i,
ey a0y

Borenstein and Ullman, ECCV 2002

R. Fergus

Jigsaw approach: Borenstein and
Ullman, 2002

Fragmum Bank

Input images Segmentation

R. Fergus

Ll AT

Implicit Shape Model - Liebe and Schiele,
2003

Interest Points Matched Codebook Probabilistic

Entries
Voting Space

(continuous)

gk %

Refined Hypotheses Backprojected Backprojection
(uniform sampling) Hypotheses of Maxima

° % AN
Snﬁm S50 ]

R. Fergus

Random Fields for segmentation

| = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
6 = Parameters

p(h|1,0)
%/—/

Posterior

R. Fergus




Random Fields for segmentation

| = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
6 = Parameters

p(h|1,0) o< p(I,h|6)=p(I|h,0)p(h|0)
%(_/
Posterior Joint Prior

1. Generative approach models joint
- Markov random field (MRF)

2. Discriminative approach models posterior directly
-> Conditional random field (CRF)

R. Fergus

Generative Markov Random Field
p(h,1160)=p(I|h,0)p(h|6)
H¢( Ih,,é’)Hl//,](h,,h 16,)

\ J
Y
MRF Prior

Z(@{

~

Pairwise Potential (MRF)

h (abels) Wih, hle)

{foreground,
background}

Prior has no
dependency on |

| (pixels)
Image Plane

R. Fergus

Conditional Random Field

Discriminative approach Lafferty, McCallum and Pereira 2001

09 H¢(h,,1|9)1‘[vf,,<h,,h@ }

AN

p(h|1,0)=

Unary Palrvwse

e Dependency on | allows introduction of
pairwise terms that make use of image.

® For example, neighboring labels
should be similar only if pixel colors are
similar > Contrast term

e.g Kumar and Hebert 2003 .
| (pixels)

Image Plane

R. Fergus

Levin & Weiss [ECCV 2006]

Segmentation
alignment with
image edges

Consistency with
fragments
segmentation

Resulting min-cut
segmentation

R. Fergus




Semantic Segmentation
Joint Object recognition & segmentation

Goal: Detect and segment test image:

Up to 2.000.000 shape templates

E(x,w): {0,1}"x {Exemplar} — R
E(x,w) = Zi [Tow)-x| + > ?. g\lxi’xj)
“Hamming distance”

[Lempitsky et al. ECCV ’08] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

58EyY

UIUC dataset; 98.8%

accuracy
[Lempitsky et al. ECCV '08] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

E(xw) = 8w, %) +) 6,(x) + D 6,(x) + 2 6 (x,X)

! (color) '(location) ' (class) b (edge aware
Ising prior)
x € {1,...,K} for K object classes
Location Class (boosted textons)
. _
hs

sky grass (@) Input image (b) Texton map (6 Feature pair = (r)  (d) Superimposed rectangles

[TextonBoost; Shotton et al, ‘06] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

(a.) A

(b) 69.6% (c) 70.3% (d) 72.2%
Class+ + edges + color
location
[TextonBoost; Shotton et al, ‘06] C. Rother




Semantic Segmentation
Joint Object recognition & segmentation
Good results ...

building building

aeroplane

grass grass grass  road

sheep o building

car
grass road

oSV 3 Euilding | Grass | Tree Cow Sheep  Sky  Aeroplane | Water  Face Car
classes

Bike Flower Sign Bird Book Chair Road Cat Dog Body Boat

[TextonBoost; Shotton et al, ‘06] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

Failure cases...

T e

building

sign

road |foad Nbuild

C. Rother

Nonparametric Scene Parsing via Label
Transfer (Liu et al. TPAMI'12)

A non-parametric
formulation

result groundtruth

window

tree
sky
road

input

pole
car
building

unlabeled

retrieved images and their
annotations

Nonparametric Scene Parsing via Label
Transfer

* Framework consists of three main modules:

1. Scene retrieval: finding nearest neighbors (k-NN
approach)

2. Dense scene alignment: dense scene matching (SIFT

Flow)




Dense Scene Alignment
via SIFT Flow

» SIFT Flow (Liu et al., ECCV 2008)

— Finds semantically meaningful correspondences among
two images by matching local SIFT descriptors

Best match Query & warped
best match

Dense Scene Alignment
via SIFT Flow

» SIFT Flow (Liu et al., ECCV 2008)

— Finds semantically meaningful correspondences among
two images by matching local SIFT descriptors

me [[51(p) = s2(p +w(p))l1, 1) + data term
Zn [u(p)| + [v(p)]) + small displacement
term

Z min(Alu(p) — u(q)|,d)+

(p.a)ee

smoothness
min(Alv(p) — v(q)],d),

term

w(p)=(u(p), v(p)) : flow vector at point p

Label Transfer

+ A set of voting candidates {s;c;w;}.;., is obtained from the

retrieved images with s;, ¢;, and w; denoting the SIFT image,

annotation, and SIFT flow field of the ith voting candidate.
+ A probabilistic MRF model is built to integrate

— multiple category labels,

— prior object (category) information

— spatial smoothness of category labels

—log P(c|1, s, {si,ci,w;}) Zw ;s,{si})
+ozZ)\(c( +0 Z ¢c(p) (a);I) +1logZ

{p.a}ee

Label Transfer

» Likelihood term:

l) _ { min [|s(p) — si(p + w(p))ll, Qp; # 0,

ZGQPZ

P(c(p) = . =0,

o Q= {i;c(p+w(p)) =1} where/=1,...,L indicates
the index set of the voting candidates whose label
is [ after being warped to pixel p.

e Tis set to be the value of the maximum difference
of SIFT feature: T = max,, s, plls1(pP) — s2(p)||




Label Transfer

» Prior term :

A(e(p) = 1) = —log hist;(p)

» The prior probability that the object category /
appears at pixel p.

— obtained by counting the occurrence of each object
category at each location in the training set

— Location prior

Label Transfer

» Spatial smoothness term:

¢+ e HE)-I@I
£+1

o (c(p), c(q)) = ble(p) # c(q)] (

* The neighboring pixels into having the same label
with the probability depending on the image
edges:

— Stronger the contrast, the more likely it is that the
neighboring pixels may have different labels.

Parsing Results

query image result  groundtruth
2 —'p .
A & 1! () \
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retrieved images and annotations  flow field ~ warped images and annotations

Parsing Results

query image result  groundtruth
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