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Introduction
Blind Deconvolution
Non-blind Deconvolution



blur [bl3:(r)]
• Long exposure
• Moving objects
• Camera motion

– panning shot



blur [bl3:(r)]
• Often degrades image/video 

quality severely
• Unavoidable under dim light 

circumstances



Various Kinds of Blurs

Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)



Camera Motion Blur
• Caused by camera shakes during 

exposure time
– Motion can be represented as a 

camera trajectory



Object Motion Blur
• Caused by object motions during exposure time



Defocus Blur
• Caused by the limited depth of field of a camera



Optical Lens Blur 
• Caused by lens aberration



Deblurring?
• Remove blur and restore a latent sharp image

from a given blurred image find its latent sharp image



Deblurring: Old Problem!
• Trott, T., “The Effect of Motion of Resolution”,

Photogrammetric Engineering, Vol. 26, pp. 819-827, 1960.
• Slepian, D., “Restoration of Photographs Blurred by Image Motion”,

Bell System Tech., Vol. 46, No. 10, pp. 2353-2362, 1967.



Why is it important?
• Image/video in our daily lives

– Sometimes a retake is difficult!



Why is it important?
• Strong demand for high quality deblurring

CCTV, car black box Medical 
imaging

Aerial/satellite 
photography

Robot vision



Deblurring

from a given blurred image find its latent sharp image



Commonly Used Blur Model

=     *

Blurred image Latent sharp image
Blur kernel

or Point Spread 
Function (PSF)

Convolution 
operator



Blind Deconvolution

=     *

Blurred image Latent sharp image
Blur kernel

or Point Spread 
Function (PSF)

Convolution 
operator



Non-blind Deconvolution

=     *

Blurred image Latent sharp image
Blur kernel

or Point Spread 
Function (PSF)

Convolution 
operator



Uniform vs. Non-uniform Blur
Uniform blur
• Every pixel is blurred in the 

same way
• Convolution based blur 

model



Uniform vs. Non-uniform Blur
Non-uniform blur
• Spatially-varying blur
• Pixels are blurred differently
• More faithful to real camera 

shakes



Most Blurs Are Non-Uniform

Camera shake (Camera motion blur)

Out of focus (Defocus blur) Combinations (vibration & motion, …)

Object movement (Object motion blur)



Introduction

Blind Deconvolution
Non-blind Deconvolution



Introduction

Blind Deconvolution
Non-blind Deconvolution

• Introduction
• Recent popular 

approaches
• Non-uniform blur



Blind Deconvolution (Uniform Blur)

=     *

Blurred image Latent sharp image
Blur kernel

or Point Spread 
Function (PSF)

Convolution 
operator



Key challenge: Ill-posedness!
Possible solutions

• Infinite number of 
solutions satisfy the blur 
model

• Analogous to

100 = $
2×50
4×25

3×33.333…

*

*

*

=

Key challenge: Ill-posedness!

Blurred 
image

Possible solutions
• Infinite number of solutions 

satisfy the blur model

• Analogous to

100 = ቐ
2 × 50
4 × 25

3 × 33.333…

*

*

*

=

27

Blurred image



• Parametric blur kernels
– [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], …
– Directional blur kernels defined by (length, angle)

In The Past…

*      à



In The Past…
• But real camera shakes are much more complex



In The Past…
• Parametric blur kernels

– Very restrictive assumption
– Often failed, poor quality

Blurred image Latent sharp image
* Images from [Yitzhaky et al. 1998]



Nowadays…
• Some successful approaches have been introduced…

– [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008],
[Cho and Lee, SIGGRAPH Asia 2009], …

– More realistic blur kernels
– Better quality
– More robust

• Commercial software
– Photoshop CC Shake reduction



Introduction

Blind Deconvolution
Non-blind Deconvolution

• Introduction

• Recent popular 
approaches

• Non-uniform blur



Recent Popular Approaches
Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?



Recent Popular Approaches
Maximum Posterior (MAP) 
based

Variational Bayesian based

Edge Prediction based

Which one is better?

• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable solution, 
which maximizes a posterior 
distribution

• Easy to understand
• Convergence problem



Recent Popular Approaches
Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?

• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable 
solution, but consider all possible 
solutions

• Theoretically more robust
• Slow



Recent Popular Approaches
Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?

• [Cho & Lee. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp edges 
using heuristic image filters

• Fast
• Proven to be effective in practice,

but hard to analyze because of 
heuristic steps



Recent Popular Approaches
Maximum Posterior (MAP) 
based

Variational Bayesian based

Edge Prediction based

Which one is better?

• [Shan et al. SIGGRAPH 2008],
[Krishnan et al. CVPR 2011],
[Xu et al. CVPR 2013], …

• Seek the most probable solution, 
which maximizes a posterior 
distribution

• Easy to understand
• Convergence problem



Maximize a joint posterior probability with respect to 𝑘 and 𝑙

MAP based Approaches

Blur kernel 𝑘
Latent image 𝑙 Blurred image 𝑏

Posterior distribution

p(k, l |b)



Bayes rule:

MAP based Approaches

Posterior distribution Likelihood Prior on 𝑙 Prior on k

Blur kernel 𝑘
Latent image 𝑙 Blurred image 𝑏

p(k, l |b) ∝ p(b|l,k) p(l) p(k)



Negative log-posterior:

MAP based Approaches

Regularization on 
blur kernel 𝑘Data fitting term Regularization on 

latent image 𝑙

Negative log-posterior:

MAP based Approaches

െ log ݌ ݇, ݈ ܾ ֜ െ log ݌ ܾ ݇, ݈ െ log ݌ ݈ െ log ݌ ݇
֜ ݇ כ ݈ െ ܾ ଶ + ௟ߩ ݈ + ௞ߩ ݇

Regularization on 
blur kernel ݇Data fitting term Regularization on 

latent image ݈

40



Negative log-posterior:

Alternatingly minimize the energy function w.r.t. 𝑘 and 𝑙

MAP based Approaches

Regularization on 
blur kernel 𝑘Data fitting term Regularization on 

latent image 𝑙

Negative log-posterior:

MAP based Approaches

െ log ݌ ݇, ݈ ܾ ֜ െ log ݌ ܾ ݇, ݈ െ log ݌ ݈ െ log ݌ ݇
֜ ݇ כ ݈ െ ܾ ଶ + ௟ߩ ݈ + ௞ߩ ݇

Regularization on 
blur kernel ݇Data fitting term Regularization on 

latent image ݈

40



MAP based Approaches

Input blurred 
image 𝑏

Latent image 𝑙
estimation

- maximizes 
posterior w.r.t. 𝑙

Blur kernel 𝑘
estimation

- maximizes 
posterior w.r.t. 𝑘

Output 𝑙



MAP based Approaches
• Chan and Wong, TIP 1998

– Total variation based priors for estimating a parametric blur kernel
• Shan et al. SIGGRAPH 2008

– First MAP based method to estimate a nonparametric blur kernel
• Krishnan et al. CVPR 2011

– Normalized sparsity measure, a novel prior on latent images
• Xu et al. CVPR 2013

– L0 norm based prior on latent images



Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

Natural image 
statistics 

based prior on 
𝑙

Likelihood based on  
intensities & derivatives

Kernel statistics 
based prior on 𝑘

Shan et al. SIGGRAPH 2008
• Carefully designed likelihood & priors

݌ ݇, ݈ ܾ ן ݌ ܾ ݈, ݇ ݌ ݈ ݌ ݇
Natural image 

statistics based 
prior on ݈

Likelihood based on  
intensities & derivatives

Kernel statistics 
based prior on ݇
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Shan et al. SIGGRAPH 2008
• A few minutes for a small image
• High-quality results



Shan et al. SIGGRAPH 2008
• Convergence problem

– Often converge to the no-blur solution [Levin et al. CVPR 2009]
– Natural image priors prefer blurry images

Shan et al. SIGGRAPH 2008 Fergus et al. SIGGRAPH 
2006

(variational Bayesian based)
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Recent Popular Approaches
Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?

• [Fergus et al. SIGGRAPH 2006],
[Levin et al. CVPR 2009],
[Levin et al. CVPR 2011], …

• Not seek for one most probable 
solution, but consider all possible 
solutions

• Theoretically more robust
• Slow



Variational Bayesian
• MAP

– Find the most probable 
solution

– May converge to a 
wrong solution

• Variational Bayesian
– Approximate the 

underlying distribution 
and find the mean

– More stable
– Slower

Variational
Bayes

Maximum 
a-Posteriori (MAP)

Pixel intensity

Sc
or

e

MAP v.s. Variational Bayes



Variational Bayesian
• Fergus et al. SIGGRAPH 2006

– First approach to handle non-parametric blur kernels
• Levin et al. CVPR 2009

– Show that variational Bayesian approaches can perform more robustly 
than MAP based approaches

• Levin et al. CVPR 2010
– EM based efficient approximation to variational Bayesian approach



Fergus et al. SIGGRAPH 2006
• Posterior distribution

Fergus et al. SIGGRAPH 2006
• Posterior distribution

݌ ݇, ݈ b ן ݌ ܾ ݇, ݈ ݌ ݈ ݌ ݇
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Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ ݌ ݇, ݈ ܾ
approximate distributions for blur kernel ݇, 

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin௞,௟ ݌ ݇, ݈ b
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Fergus et al. SIGGRAPH 2006
– Find an approximate distribution by minimizing Kullback-Leibler (KL) 

divergence

– cf) MAP based approach:

argminݍ)ܮܭ ݇ ݍ ݈ ݍ ଶିߪ ݌ ݇, ݈ ܾ
approximate distributions for blur kernel ݇, 

latent image ݈, and noise variance ߪଶ

ݍ ݇ , ݍ ݈ , ݍ ଶିߪ

argmin௞,௟ ݌ ݇, ݈ b

54



Fergus et al. SIGGRAPH 2006
• First method to estimate a nonparametric blur kernel
• Complex optimization
• Slow: more than an hour for a small image



Recent Popular Approaches
Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?

• [Cho et al. SIGGRAPH Asia 2009],
[Xu et al. ECCV 2010],
[Hirsch et al. ICCV 2011], …

• Explicitly try to recover sharp edges 
using heuristic image filters

• Fast
• Proven to be effective in practice,

but hard to analyze because of 
heuristic steps



Edge Prediction based Approaches
• Joshi et al. CVPR 2008

– Proposed sharp edge prediction to estimate blur kernels
– No iterative estimation
– Limited to small scale blur kernels

• Cho & Lee, SIGGRAPH Asia 2009
– Proposed sharp edge prediction to estimate large blur kernels
– Iterative framework
– State-of-the-art results & very fast

• Cho et al. CVPR 2010
– Applied Radon transform to estimate a blur kernel from blurry edge profiles
– Small scale blur kernels

• Xu et al. ECCV 2010
– Proposed a prediction scheme based on structure scales as well as gradient magnitudes

• Hirsch et al. ICCV 2011
– Applied a prediction scheme to estimate spatially-varying camera shakes



Cho & Lee, SIGGRAPH Asia 2009
• Key idea: blur can be estimated from a few edges
è No need to restore every detail for kernel estimation

Blurred image Latent image with only a few 
edges and no texture



Cho & Lee, SIGGRAPH Asia 2009

Input Simple
deconvolution

Fast
Kernel 

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters



Cho & Lee, SIGGRAPH Asia 2009

Input Simple
deconvolution

Fast
Kernel 

Estimation

OutputPrediction

Quickly restore important edges
using simple image filters

Quickly restore important edges
using simple image filters

Do not need complex priors for the latent image and the blur kernel
è Significantly reduce the computation time



Cho & Lee, SIGGRAPH Asia 2009

Fast but low quality deconvolution Prediction

Updated kernelPrevious kernel



Cho & Lee, SIGGRAPH Asia 2009

Prediction
Simple & fast image filtering operations

Thresholding
gradients

Bilateral filtering &
Shock filtering

Fast but low-quality 
deconvolution

Visualized by Poisson 
image reconstruction



Cho & Lee, SIGGRAPH Asia 2009

Blurry input Deblurring result Blur kernel

• State of the art results
• A few seconds
• 1Mpix image
• in C++



Xu & Jia, ECCV 2010
• Extended edge prediction to handle blur larger than image 

structures

Blurred image Fergus et al.
SIGGRAPH 2006

Shan et al.
SIGGRAPH 2008

For this complex 
scene, most methods 
fail to estimate a 
correct blur kernel.
Why?



Xu & Jia, ECCV 2010

Blur > structures
• Hard to tell which blur 

is caused by which 
edge

• Most method fails

Blur < structures
• Each blurry pixel is 

caused by one edge
• Easy to figure out the 

original sharp 
structure



Xu & Jia, ECCV 2010

Structure scale 
aware gradient 

thresholding

Smoothing &
Shock filtering

Deconvolution

Visualized by Poisson 
image reconstruction



Xu & Jia, ECCV 2010

Blurred image Fergus et al.
SIGGRAPH 2006

Shan et al.
SIGGRAPH 2008

Xu & Jia, ECCV 2010



Recent Popular Approaches
Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Which one is better?



Benchmarks
• Many different methods…
• Which one is the best?

– Quality
– Speed

• Different works report different benchmark results
– Depending on test data
– Levin et al. CVPR 2009, 2010
– Köhler et al. ECCV 2012



Benchmarks
• Levin et al. CVPR 2009

– Provide a dataset
• 32 test images
• 4 clear images (255x255)
• 8 blur kernels (10x10 ~ 25x25)
• One of the most widely used

datasets
– Evaluate blind deconvolution

methods using the dataset



Benchmarks
• Levin et al. CVPR 2009

– Counted the number of
successful results
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Benchmarks
• Cho & Lee, SIGGRAPH Asia 2009

– Comparison based on
Levin et al.’s dataset

– Slightly different
parameter settings
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Benchmarks
• Köhler et al. ECCV 2012

– Record and analyze real camera motions
• Recorded 6D camera shakes in the 3D 

space using markers
• Played back camera shakes using a robot 

arm

– Provide a benchmark dataset based on 
real camera shakes

– Provide benchmark results for recent 
state-of-the-art methods



Benchmarks
• Köhler et al. ECCV 2012

– Dataset
• 48 test images
• 4 sharp images
• 12 non-uniform camera shakes



Benchmarks
• Köhler et al. ECCV 2012

PS
N

R 
(d

B)

MAP Edge prediction

20
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26

28

30

1 2 3 4 5 6

Variational
Bayesian



Benchmarks
• Benchmark results depend on

– Implementation details & tricks
– Benchmark datasets
– Parameters used in benchmarks

• But, in general, more recent one shows better quality

• Speed?
– Edge prediction > MAP >> Variational Bayesian



Introduction

Blind Deconvolution
Non-blind Deconvolution
Advanced Issues

• Introduction
• Recent popular 

approaches

• Non-uniform blur



Convolution based Blur Model
• Uniform and spatially invariant blur



Real Camera Shakes: Spatially Variant!



Uniform Blur Model Assumes

x & y translational
camera shakes Planar scene



Real Camera Shakes

6D real camera motion

Different depths



Real Blurred Image

Clean

Severe artifacts

Non-uniformly blurred image

Uniform deblurring result



Pixel-wise Blur Model
• Dai and Wu, CVPR 2008

– Estimate blur kernels for every pixel from a single image
– Severely ill-posed
– Parametric blur kernels



Pixel-wise Blur Model
• Tai et al. CVPR 2008

– Hybrid camera to capture hi-res image & low-res video
– Estimate per-pixel blur kernels using low-res video

time

Hi-res. 
image

Low-res. 
video



Patch-wise Blur Model
• Sorel and Sroubek, ICIP 2009

– Estimate per-patch blur kernels from a blurred image and an 
underexposed noisy image



Patch-wise Blur Model
• Hirsch et al. CVPR 2010

– Efficient filter flow (EFF) framework
– More accurate approximation than the naïve patch-wise blur model

• Harmeling et al. NIPS 2010
– Estimate per-patch blur kernels based on EFF from a single image



Patch-wise Blur Model
• Approximation

– More patches à more accurate
• Computationally efficient

– Patch-wise uniform blur
– FFTs can be used

• Physically implausible blurs
– Adjacent blur kernels cannot be

very different from each other



Benchmark [Köhler et al. ECCV 2012]
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Uniform blur 
methods

Spatially-varying 
blur methods

Due to high 
dimensionality, spatially-
varying blur methods are 
less stable.



Summary
• Different blur models

• More realistic than uniform blur model
• Still approximations

– Real camera motions: 6 DoF + more (zoom-in, depth, etc…)
• High dimensionality

– Less stable & slower than uniform blur model

Patch based
Efficient but no global 

constraint

Projective Motion Path
Globally consistent but inefficient

Hybrid
Efficient & globally consistent



Remaining Challenges
• All methods still fail quite often
• Noise
• Outliers
• Non-uniform blur
• Limited amount of edges
• Speed…
• Etc…

Failure example of Photoshop Shake Reduction



Introduction
Blind Deconvolution

Non-blind Deconvolution



Introduction
Blind Deconvolution

Non-blind 
Deconvolution

• Introduction
• Natural image 

statistics
• High-order natural 

image statistics
• Ringing artifacts
• Outliers



Non-blind Deconvolution (Uniform Blur)

=     *

Blurred image Latent sharp image
Blur kernel Convolution 

operator



Non-blind Deconvolution
• Key component in many deblurring systems

– For example, in MAP based blind deconvolution:

Input blurred 
image 𝑏

Latent image 𝑙
estimation

Blur kernel 𝑘
estimation

Output 𝑙

Non-blind deconvolution
There can be additional final 

non-blind deconvolution for the 
final output



Non-blind Deconvolution

§ Wiener filter
§ Richardson-Lucy deconvolution
§ Rudin et al. Physica 1992
§ Bar et al. IJCV 2006
§ Levin et al. SIGGRAPH 2007
§ Shan et al. SIGGRAPH 2008
§ Yuan et al. SIGGRAPH 2008
§ Harmeling et al. ICIP 2010
§ Etc…



Ill-Posed Problem
• Even if we know the true blur kernel, we cannot restore the latent 

image perfectly, because:

• Loss of high-freq info & noise ≈ denoising & super-resolution

= * +

Blur destroys
High-freq info Noise



Ill-Posed Problem
• Deconvolution amplifies noise 

as well as sharpens edges
• Ringing artifacts

– Inaccurate blur kernels, 
outliers cause ringing artifacts



Classical Methods
• Popular methods

– Wiener filtering
– Richardson-Lucy deconvolution
– Constrained least squares

• Matlab Image Processing Toolbox
– deconvwnr, deconvlucy, deconvreg

• Simple assumption on noise and 
latent images
– Simple & fast
– Prone to noise & artifacts



Introduction
Blind Deconvolution

Non-blind 
Deconvolution

• Introduction

• Natural image 
statistics

• High-order natural 
image statistics

• Ringing artifacts
• Outliers



Natural Image Statistics
• Non-blind deconvolution: ill-posed problem
• We need to assume something on the latent image to constrain the 

problem.

= * +



Natural Image Statistics
• Natural images have a heavy-tailed distribution on gradient 

magnitudes
– Mostly zero & a few edges
– Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008,

Krishnan & Fergus, NIPS 2009



Natural Image Statistics
• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on image 
gradients

Lo
g 

pr
ob

xx

Gaussian: -x2

Laplacian: -|x|-|x|0.5

-|x|0.25

Derivative histogram from a 
natural image

Parametric models

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

– Propose a parametric model for natural image priors based on image 
gradients

Lo
g 

pr
ob

xx

Gaussian: -x2

Laplacian: -|x|
-|x|0.5

-|x|0.25

Derivative histogram from a 
natural image

Parametric models

Proposed prior

log݌ ݔ = െ෍
௜
௜ݔߘ ఈ

where:
• image :ݔ
• ߙ ,model parameter :ߙ < 1

120



Natural Image Statistics
• Levin et al. SIGGRAPH 2007

_ 2
+

_ +
2

?

?

High 

Low 
Equal convolution error

*

*

Data term Prior

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

݈ = argmin௟ ݇ כ ݈ െ ܾ ଶ + ߣ σ௜ ௜݈ߘ ఈ ߙ < 1

_ 2
+

_ +
2

?

?

High 

Low 
Equal convolution error

*

*

Data term Prior
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Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients

Natural Image Statistics
• Levin et al. SIGGRAPH 2007

Input Richardson-Lucy Gaussian prior

“spread” gradients

Sparse prior

“localizes” gradients

෍
௜
௜݈ߘ ଶ ෍

௜
௜݈ߘ ଴.଼

122
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Blind Deconvolution

Non-blind 
Deconvolution

• Introduction
• Natural image 

statistics

• High-order 
natural image 
statistics

• Ringing artifacts
• Outliers



High-order Natural Image Priors
• Patches, large neighborhoods, …
• Effective for various kinds of image restoration problems

– Denoising, inpainting, super-resolution, deblurring, …



High-order Natural Image Priors
• Schmidt et al. CVPR 2011

– Fields of Experts
• Zoran & Weiss, ICCV 2011

– Trained Gaussian mixture model for natural image patches
• Schuler et al. CVPR 2013

– Trained Multi-layer perceptron to remove artifacts and to restore sharp 
patches

• Schmidt et al. CVPR 2013
– Trained regression tree fields for 5x5 neighborhoods



High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Gaussian Mixture Model (GMM) learned from natural images

Natural images Collected patches GMM

Collect
patches K-means



High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the GMM.
– Deconvolution can be done by solving:

argmin
9

𝑘 ∗ 𝑙 − 𝑏 < − 𝜆>log𝑝 𝑙@
@

High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

– Given a patch, we can compute its likelihood based on the GMM.

– Deconvolution can be done by solving:

argmin௟ ݇ כ ݈ െ ܾ ଶ െ ෍ߣ
௜
log݌ ݈௜

Log-likelihood of a patch ݈௜ at ݅-th pixel 

based on GMM

129



High-order Natural Image Priors
• Zoran & Weiss, ICCV 2011

Denoising Deblurring

Blurred image Krishnan & Fergus
PSNR: 26.38

Zoran & Weiss
PSNR: 27.70



Introduction
Blind Deconvolution

Non-blind 
Deconvolution

• Introduction
• Natural image 

statistics
• High-order natural 

image statistics

• Ringing artifacts
• Outliers



Ringing Artifacts
• Wave-like artifacts around strong edges
• Caused by

– Inaccurate blur kernels
– Nonlinear response curve
– Etc…



Ringing Artifacts
• Noise

– High-freq
– Independent and identical 

distribution
– Priors on image gradients 

work well

• Ringing
– Mid-freq
– Spatial correlation
– Priors on image gradients are 

not very effective



Ringing Artifacts
• Yuan et al. SIGGRAPH 2007

– Residual deconvolution & de-ringing
• Yuan et al. SIGGRAPH 2008

– Multi-scale deconvolution framework based on residual deconvolution

Blurred image Richardson-Lucy Yuan et al. SIGGRAPH 2008



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

Blurred image Guide image Residual deconvolution result 
with less ringing artifacts

• Relatively accurate edges, but less details
• Obtained from a deconvolution result from a smaller scale



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

*-

Deconvolution

+

Blurred image Guide image Residual blur

Guide image Detail layer Result



Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

• Residual deconvolution

Blurred image Deblurred image

Residual blur Detail layer = 
deblurred residual

Guide image
+ detail layer

Severe ringing

Less ringing

Guide image



Progressive Inter-scale & Intra-scale 
Deconvolution [Yuan et al. SIGGRAPH 2008]

• Progressive inter-scale & intra-scale deconvolution



Blurred image Richardson-Lucy TV regularization

Levin et al. SIGGRAPH 2007 Wavelet regularization Yuan et al. SIGGRAPH 
2008



Introduction
Blind Deconvolution

Non-blind 
Deconvolution

• Introduction
• Natural image 

statistics
• High-order natural 

image statistics
• Ringing artifacts

• Outliers



Outliers
• A main source of severe ringing artifacts

Blurred image with outliers Deblurring result
[Levin et al. SIGGRAPH 2007]



Outliers
• Saturated pixels caused by limited dynamic range of sensors

Incoming light to 
sensors

Ca
m

er
a 

re
sp

on
se

Dynamic 
range 

of a camera

Information 
loss!

Blurred image [Levin et al. 2007]



Outliers
• Hot pixels, dead pixels, compression artifacts, etc…

Hot pixel
Blurred image with outliers [Levin et al. 2007]



Outlier Handling

Latent image
𝑙

Blurred image
𝑏

Gaussian noise 
𝑛

Motion blur
𝑘 ∗ 𝑙

Outlier Handling
• Most common blur model:

ܾ = ݇ כ ݈ + ݊
Equivalent to

Latent image
݈

Blurred image
ܾ

Gaussian noise 
݊

Motion blur
݇ כ ݈

small amount of Gaussian noise
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Outlier HandlingOutlier Handling
• An energy function derived from this model:

ܧ ݈ = ݇ כ ݈ െ ܾ ଶ + (݈)ߩ

• More robust norms to outliers

– …ଵ-norm, other robust statisticsܮ

ܧ ݈ = ݇ כ ݈ െ ܾ ଵ + (݈)ߩ
– Bar et al. IJCV 2006, Xu et al. ECCV 2010, …

 :ଶ-norm based data termܮ

known to be vulnerable to 

outliers

Regularization term on 

a latent image ݈
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Outlier Handling
• 𝐿C-norm based data term

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146
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• ଵ-norm based data termܮ
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Outlier Handling
• ଵ-norm based data termܮ

– Simple & efficient
– Effective on salt & pepper noise
– Not effective on saturated pixels

ଶ-norm based data termܮ

ଵ-norm based data termܮ 146



Cho et al. ICCV 2011
• More accurate blur model reflecting outliers

Blurred 
image
𝑏

Noise
& outliers

𝑐 𝑘 ∗ 𝑙 + 𝒏

Clipping

𝑐(𝑘 ∗ 𝑙)

Motion blur

𝑘 ∗ 𝑙

Latent image

𝑙

Cho et al. ICCV 2011
• More accurate blur model reflecting outliers

Blurred 
image
ܾ

Noise
& outliers

ܿ ݇ כ ݈ + ࢔

Clipping

ܿ(݇ כ ݈)
Motion blur

݇ כ ݈
Latent image

݈

(ݑ)ܿ = ቐ
ݑ if ݑ א DynamicRange

LowerBound if ݑ < LowerBound
UpperBound if ݑ > UpperBound
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Cho et al. ICCV 2011
• Classification mask

Blurred image 𝑏 Classification mask 𝑚

Cho et al. ICCV 2011
• Classification mask

Blurred image ܾ Classification mask ݉

݉ ݔ = ቊ1 if (ݔ)ܾ is an inlier
0 if ܾ ݔ is an outlier

148



Cho et al. ICCV 2011
• MAP estimation

Given 𝑏 & 𝑘, find the most probable 𝑙

Classification 
mask 𝑚

Cho et al. ICCV 2011
• MAP estimation

Given ܾ & ݇, find the most probable ݈

= argmax
௟

෍
௠אெ

݌ ܾ ݉, ݇, ݈ ,݇|݉)݌ (݈)݌(݈

݈ெ஺௉ = argmax
௟
(݇,ܾ|݈)݌

Classification 
mask ݉
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Cho et al. ICCV 2011
• EM based optimization

M-step updates 𝑙
(Deconvolution using inliers)

E-step computes 𝐸 𝑚
(Outlier detection)



Blurred image

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011]

[Levin et al. 2007]Blurred image



Blurred image

L1-norm based deconv. [Harmeling et al. 2010] [Cho et al. ICCV 2011]

[Levin et al. 2007]Blurred image



Summary & Remaining Challenges
• Ill-posed problem - Noise & blur
• Noise

– High-freq & unstructured
– Natural image priors

• Ringing
– Mid-freq & structured
– More difficult to handle

• Outliers
– Cause severe ringing artifacts
– More accurate blur model

• Speed
– More complex model à Slower

• Many source codes are available on the authors’ website


