BIL 717 Image Processing Mar. 28, 2016 Image Deblurring

Erkut Erdem

Acknowledgement: The slides are adapted from the course "Recent Advances in Image Deblurring" given by Seungyong Lee and Sunghyun Cho @ Siggraph Asia 2013. Hacettepe University Computer Vision Lab (HUCVL) Introduction Blind Deconvolution Non-blind Deconvolution

blur [bl3:(r)]

- Long exposure
- Moving objects
- Camera motion
 - panning shot

blur [bl3:(r)]

- Often degrades image/video quality severely
- Unavoidable under dim light circumstances

Various Kinds of Blurs

Camera shake (Camera motion blur)

Object movement (Object motion blur)

Out of focus (Defocus blur)

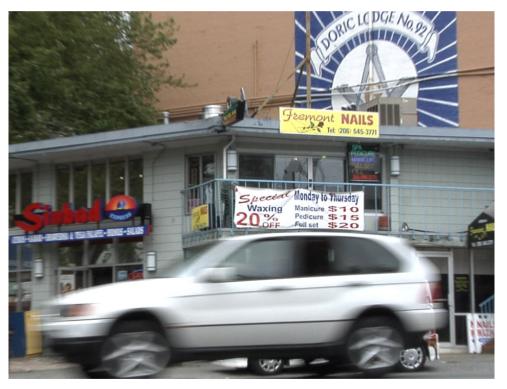
Combinations (vibration & motion, ...)

Camera Motion Blur

- Caused by camera shakes during exposure time
 - Motion can be represented as a camera trajectory

Object Motion Blur

• Caused by object motions during exposure time

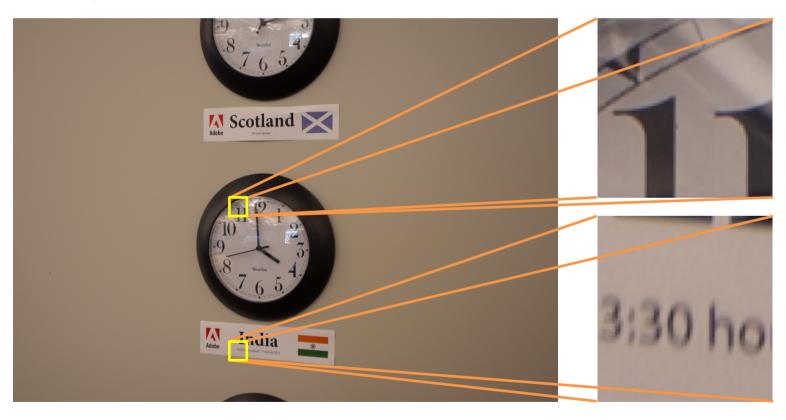


Defocus Blur

• Caused by the limited depth of field of a camera

Optical Lens Blur

• Caused by lens aberration



Deblurring?

• Remove blur and restore a latent sharp image

from a given blurred image

find its latent sharp image

Deblurring: Old Problem!

- Trott, T., "The Effect of Motion of Resolution", *Photogrammetric Engineering*, Vol. 26, pp. 819-827, **1960**.
- Slepian, D., "Restoration of Photographs Blurred by Image Motion", *Bell System Tech.*, Vol. 46, No. 10, pp. 2353-2362, **1967**.

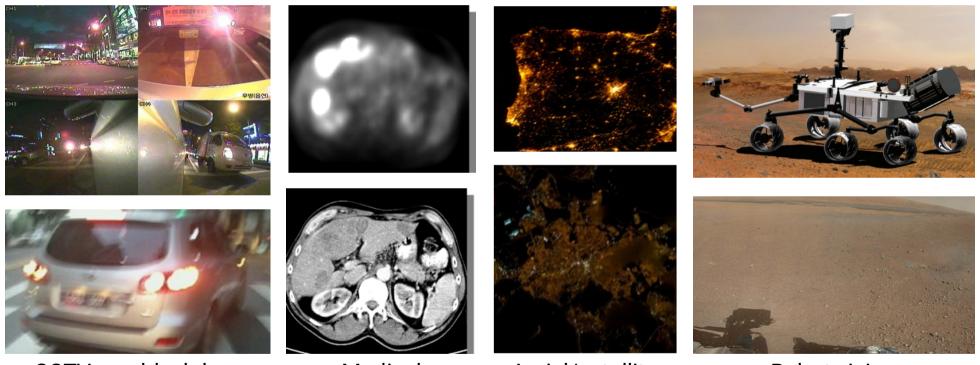
Google 학술 검색 deconvolution 결색 책		
학술 검색 모든 날짜 ▼ 인용문 포함 ▼ <mark>> 이메일 알림 만들기</mark>	전체 약 267,000 중 결과	1 - 1
도움말: <u>한국어 검색결과만 보기</u> . <u>한술검색 환경설정</u> .에서 검색 언어를 선택할 수 있습니다.		
An information-maximization approach to blind separation and blind deconvolution AJ Bell Neural computation, 1995 - MIT Press We derive a new self-organizing learning algorithm that maximizes the information transferred in a network of nonlinear units. The al- gorithm does not assume any knowledge of the input	n	
distributions, and is defined here for the zero-noise limit. Under these conditions, 4768회 인용 - 관련 학습자료 - 전체 41개의 버전	[PDF] (
Blind image deconvolution D Kundur Signal Processing Magazine, IEEE, 1996 - ieeexplore.ieee.org Blind image deconvolution We introduce the problem of blind deconvolution for images, pro an overview of the basic principles and methodologies behind the existing algorithms, and examine the current trends and the potential of this difficult signal processing problem 617회 인용 - 관련 확승자로 - 전체 7개의 비전	Find more @ POSTECH	
On minimum entropy deconvolution DL Donoho - Proc 2nd Applied Time Series Symp, 1981 - mendeley.com In this article deconvolution of ultraspoin pulse-scho data acquired from attenuative layered media.	Find more @ POSTECH	

Why is it **important**?

- Image/video in our daily lives
 - Sometimes a retake is difficult!

Why is it *important*?

• Strong demand for high quality deblurring



CCTV, car black box

Medical imaging

Aerial/satellite photography

Robot vision

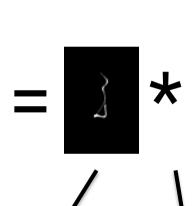
Deblurring

from a given blurred image

find its latent sharp image

Commonly Used Blur Model

Blurred image



Latent sharp image

Blur kernel or Point Spread Function (PSF) Convolution operator

Blind Deconvolution

Blurred image

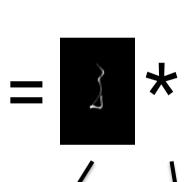
=

Latent sharp image

Blur kernel or Point Spread Function (PSF) Convolution operator

Non-blind Deconvolution

Blurred image



Latent sharp image

Blur kernel or Point Spread Function (PSF) Convolution operator

Uniform vs. Non-uniform Blur

Uniform blur

- Every pixel is blurred in the same way
- Convolution based blur model

Uniform vs. Non-uniform Blur

Non-uniform blur

- Spatially-varying blur
- Pixels are blurred differently
- More faithful to real camera shakes

Most Blurs Are Non-Uniform

Camera shake (Camera motion blur)

Object movement (Object motion blur)

Out of focus (Defocus blur)

Combinations (vibration & motion, ...)

Introduction Blind Deconvolution Non-blind Deconvolution

Introduction Blind Deconvolution Non-blind Deconvolution

- Introduction
- Recent popular approaches
- Non-uniform blur

Blind Deconvolution (Uniform Blur)

Blurred image

Blur kernel or Point Spread Function (PSF)

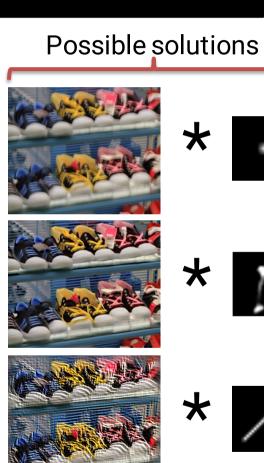
Latent sharp image

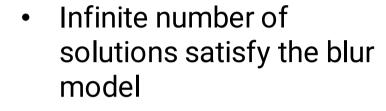
Convolution operator

*

Key challenge: Ill-posedness!

Blurredimage

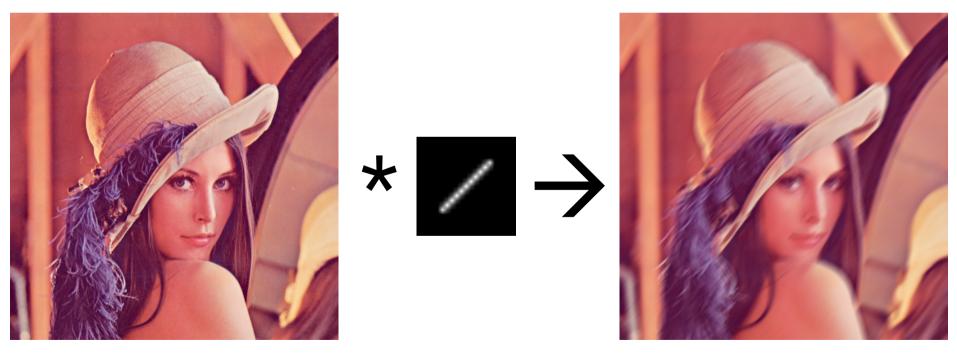




Analogous to

In The Past...

- Parametric blur kernels
 - [Yitzhakey et al. 1998], [Rav-Acha and Peleg 2005], ...
 - Directional blur kernels defined by (length, angle)

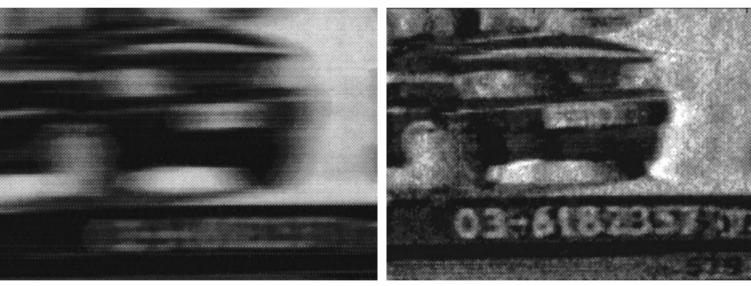


In The Past...

• But real camera shakes are much more complex

In The Past...

- Parametric blur kernels
 - Very restrictive assumption
 - Often failed, poor quality

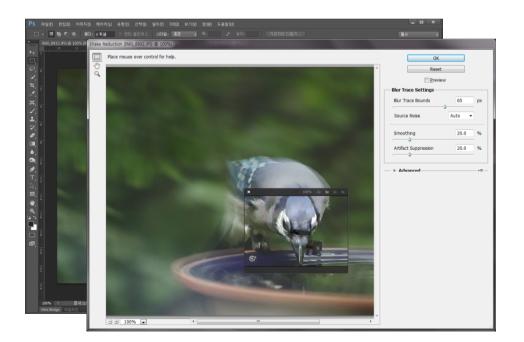


Blurredimage

Latent sharp image * Images from [Yitzhaky et al. 1998]

Nowadays...

- Some successful approaches have been introduced...
 - [Fergus et al. SIGGRAPH 2006], [Shan et al. SIGGRAPH 2008],
 [Cho and Lee, SIGGRAPH Asia 2009], ...
 - More realistic blur kernels
 - Better quality
 - More robust
- Commercial software
 - Photoshop CC Shake reduction



Introduction Blind Deconvolution Non-blind Deconvolution

- Introduction
- Recent popular approaches
- Non-uniform blur

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

- [Shan et al. SIGGRAPH 2008], [Krishnan et al. CVPR 2011], [Xu et al. CVPR 2013], ...
- Seek the most probable solution, which maximizes a posterior distribution
- Easy to understand
- Convergence problem

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

- [Fergus et al. SIGGRAPH 2006],
 [Levin et al. CVPR 2009],
 [Levin et al. CVPR 2011],...
- Not seek for one most probable solution, but consider all possible solutions
- Theoretically more robust
- Slow

Maximum Posterior (MAP) based

Variational Bayesian based

Edge Prediction based

- [Cho & Lee. SIGGRAPH Asia 2009], [Xu et al. ECCV 2010], [Hirsch et al. ICCV 2011], ...
- Explicitly try to recover sharp edges using heuristic image filters
- Fast
- Proven to be effective in practice, but hard to analyze because of heuristic steps

Maximum Posterior (MAP) based

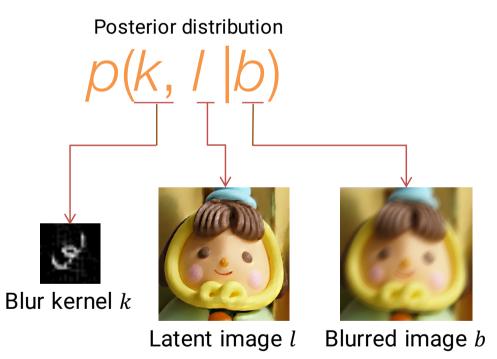
Variational Bayesian based

Edge Prediction based

- [Shan et al. SIGGRAPH 2008], [Krishnan et al. CVPR 2011], [Xu et al. CVPR 2013], ...
- Seek the most probable solution, which maximizes a posterior distribution
- Easy to understand
- Convergence problem

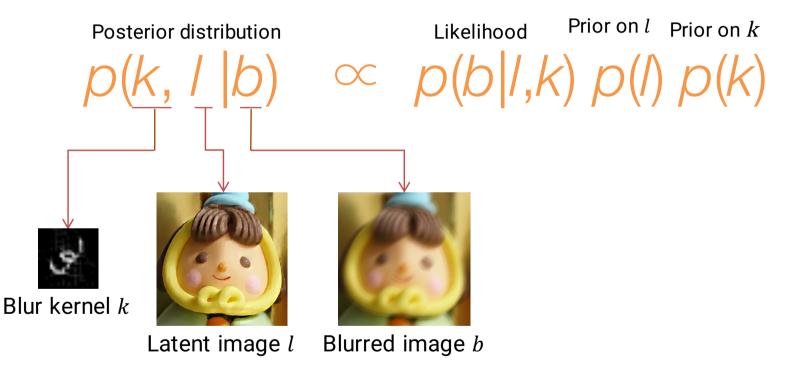
MAP based Approaches

Maximize a joint posterior probability with respect to k and l



MAP based Approaches

Bayes rule:



MAP based Approaches

Negative log-posterior:

$$-\log p(k,l|b) \Rightarrow -\log p(b|k,l) - \log p(l) - \log p(k)$$

$$\Rightarrow ||k * l - b||^{2} + \rho_{l}(l) + \rho_{k}(k)$$

Data fitting term
Regularization on latent image l
Regularization on blur kernel k

MAP based Approaches

Negative log-posterior:

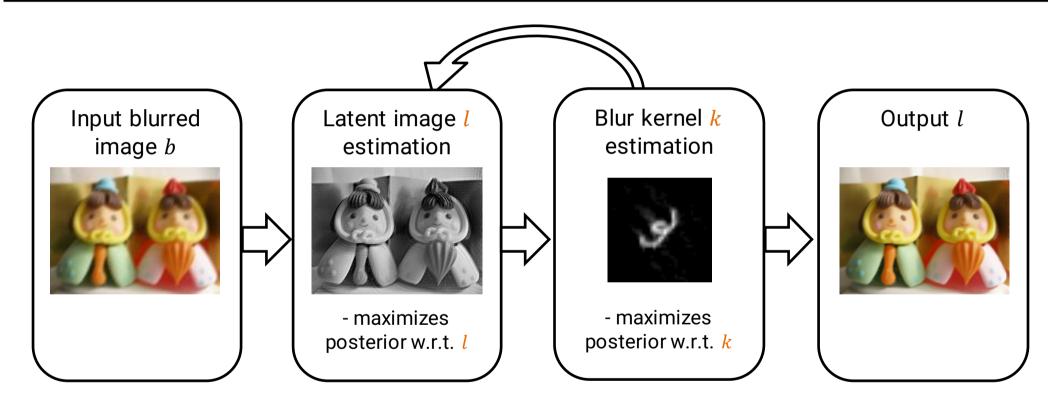
$$-\log p(k, l|b) \Rightarrow -\log p(b|k, l) - \log p(l) - \log p(k)$$

$$\Rightarrow ||k * l - b||^{2} + \rho_{l}(l) + \rho_{k}(k)$$

Data fitting term
Regularization on
latent image l
Regularization on
blur kernel k

Alternatingly minimize the energy function w.r.t. k and l

MAP based Approaches



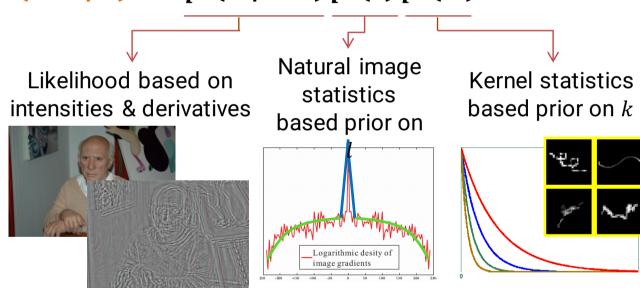
SIGGRAPH ASIA2013 HONG KONG

MAP based Approaches

- Chan and Wong, TIP 1998
 - Total variation based priors for estimating a parametric blur kernel
- Shan et al. SIGGRAPH 2008
 - First MAP based method to estimate a nonparametric blur kernel
- Krishnan et al. CVPR 2011
 - Normalized sparsity measure, a novel prior on latent images
- Xu et al. CVPR 2013
 - L0 norm based prior on latent images

Shan et al. SIGGRAPH 2008

- Carefully designed likelihood & priors
 - $p(k,l|b) \propto p(b|l,k)p(l)p(k)$



Shan et al. SIGGRAPH 2008

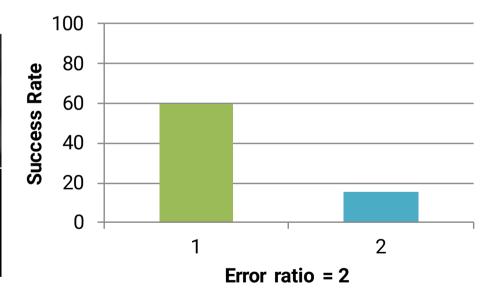
- A few minutes for a small image
- High-quality results

Shan et al. SIGGRAPH 2008

- Convergence problem
 - Often converge to the no-blur solution [Levin et al. CVPR 2009]
 - Natural image priors prefer blurry images

Shan et al. SIGGRAPH 2008

Fergus et al. SIGGRAPH 2006 (variational Bayesian based)



Recent Popular Approaches

Maximum Posterior (MAP) based

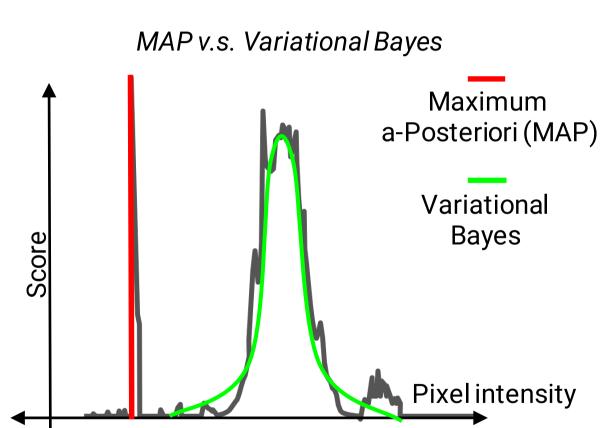
Variational Bayesian based

Edge Prediction based

Which one is better?

- [Fergus et al. SIGGRAPH 2006],
 [Levin et al. CVPR 2009],
 [Levin et al. CVPR 2011],...
- Not seek for one most probable solution, but consider all possible solutions
- Theoretically more robust
- Slow

Variational Bayesian



- MAP
 - Find the most probable solution
 - May converge to a wrong solution
- Variational Bayesian
 - Approximate the underlying distribution and find the mean
 - More stable
 - Slower

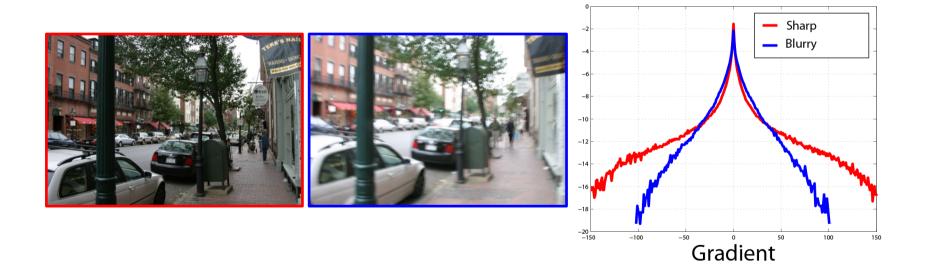
Variational Bayesian

- Fergus et al. SIGGRAPH 2006
 - First approach to handle non-parametric blur kernels
- Levin et al. CVPR 2009
 - Show that variational Bayesian approaches can perform more robustly than MAP based approaches
- Levin et al. CVPR 2010
 - EM based efficient approximation to variational Bayesian approach

Fergus et al. SIGGRAPH 2006

• Posterior distribution

$p(k, l|b) \propto p(b|k, l)p(l)p(k)$



Fergus et al. SIGGRAPH 2006

Find an approximate distribution by minimizing Kullback-Leibler (KL) divergence

 $\underset{q(k),q(l),q(\sigma^{-2})}{\arg\min} KL(q(k)q(l)q(\sigma^{-2}) \| p(k,l|b))$

approximate distributions for blur kernel k, latent image l, and noise variance σ^2

- cf) MAP based approach:

 $\arg\min_{k,l} p(k,l|b)$

Fergus et al. SIGGRAPH 2006

- First method to estimate a nonparametric blur kernel
- Complex optimization
- Slow: more than an hour for a small image

Recent Popular Approaches

Maximum Posterior (MAP) based

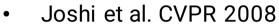
Variational Bayesian based

Edge Prediction based

Which one is better?

- [Cho et al. SIGGRAPH Asia 2009], [Xu et al. ECCV 2010], [Hirsch et al. ICCV 2011], ...
- Explicitly try to recover sharp edges using heuristic image filters
- Fast
- Proven to be effective in practice, but hard to analyze because of heuristic steps

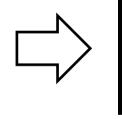
Edge Prediction based Approaches



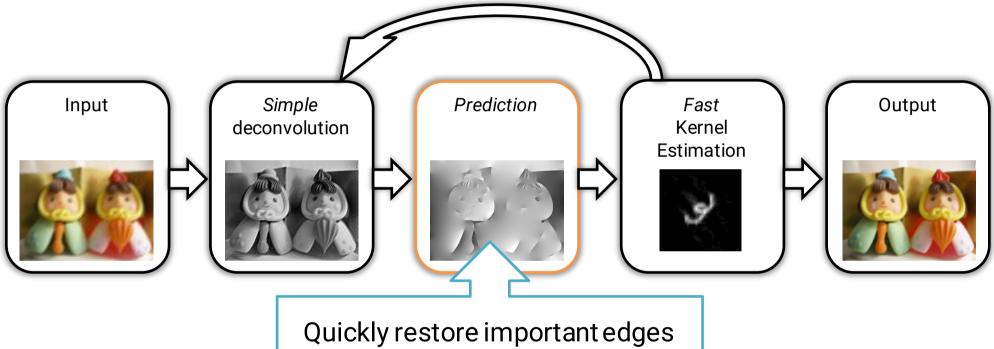
- Proposed sharp edge prediction to estimate blur kernels
- No iterative estimation
- Limited to small scale blur kernels
- Cho & Lee, SIGGRAPH Asia 2009
 - Proposed sharp edge prediction to estimate large blur kernels
 - Iterative framework
 - State-of-the-art results & very fast
- Cho et al. CVPR 2010
 - Applied Radon transform to estimate a blur kernel from blurry edge profiles
 - Small scale blur kernels
- Xu et al. ECCV 2010
 - Proposed a prediction scheme based on structure scales as well as gradient magnitudes
- Hirsch et al. ICCV 2011
 - Applied a prediction scheme to estimate spatially-varying camera shakes

- Key idea: blur can be estimated from a few edges
- ➔ No need to restore every detail for kernel estimation

Blurred image



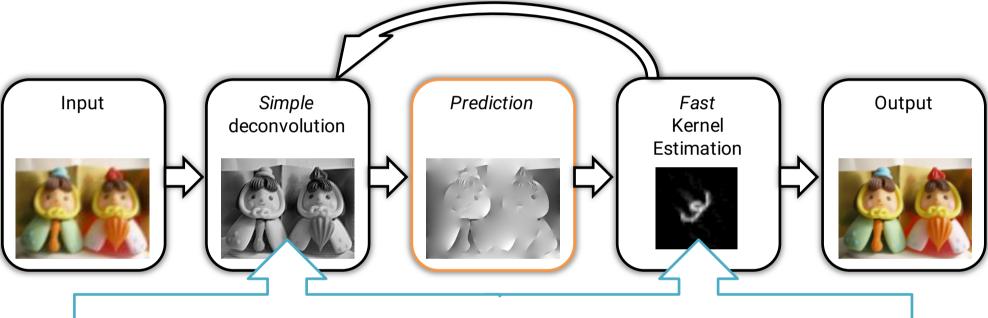
Latent image with only a few edges and no texture



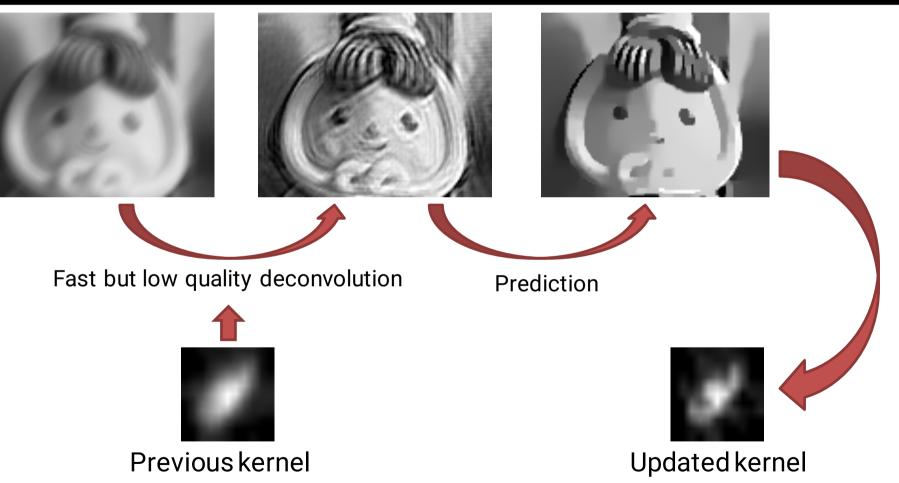
SIGGRAP

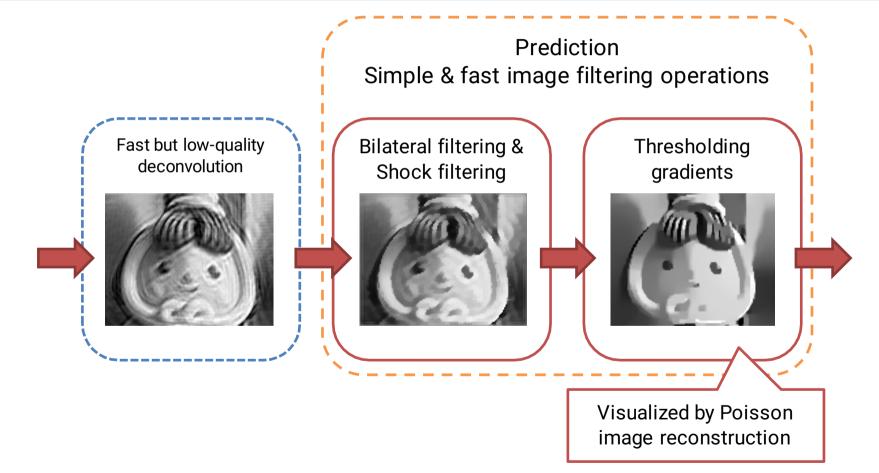
DNGKONG

uickly restore important edges using simple image filters



Do not need complex priors for the latent image and the blur kernel → Significantly reduce the computation time





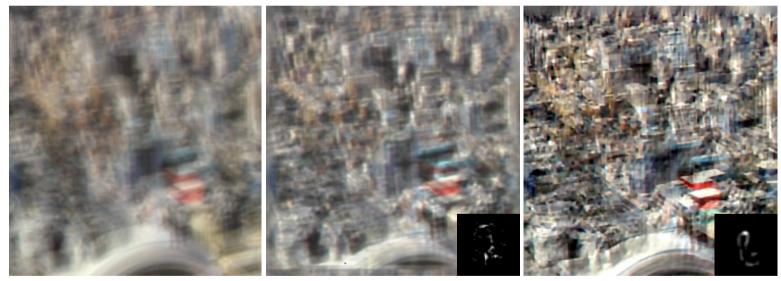
- State of the art results
- A few seconds
- 1Mpix image
- in C++

Blurry input

Deblurring result

Blur kernel

• Extended edge prediction to handle blur larger than image structures

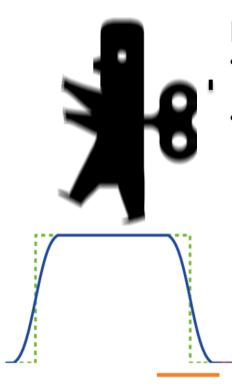


For this complex scene, most methods fail to estimate a correct blur kernel. Why?

Blurred image

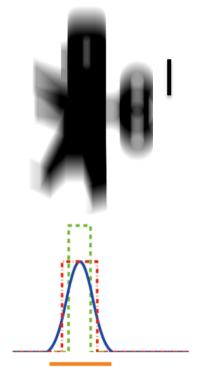
Fergus et al. SIGGRAPH 2006

Shan et al. SIGGRAPH 2008



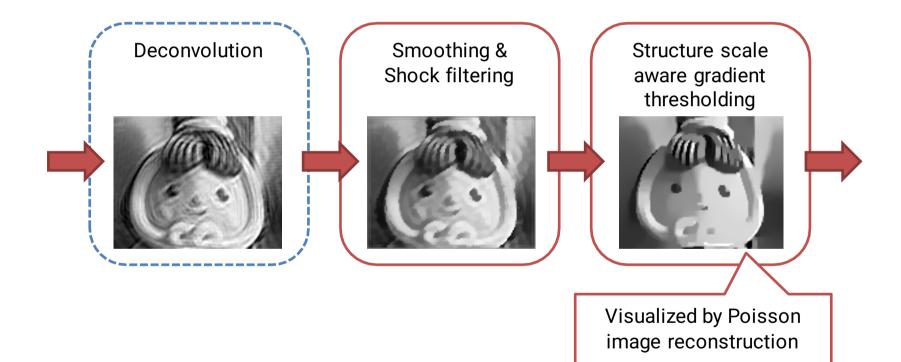
Blur < structures

- Each blurry pixel is caused by one edge
- Easy to figure out the original sharp structure



Blur > structures

- Hard to tell which blur is caused by which edge
- Most method fails





Blurred image

Fergus et al. SIGGRAPH 2006 Shan et al. SIGGRAPH 2008 Xu & Jia, ECCV 2010

Recent Popular Approaches

Maximum Posterior (MAP) based

Variational Bayesian based

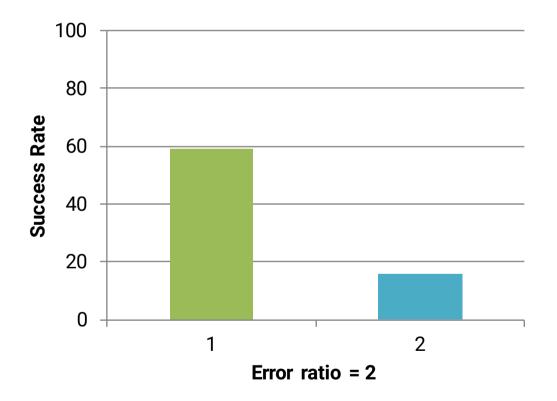
Edge Prediction based

Which one is better?

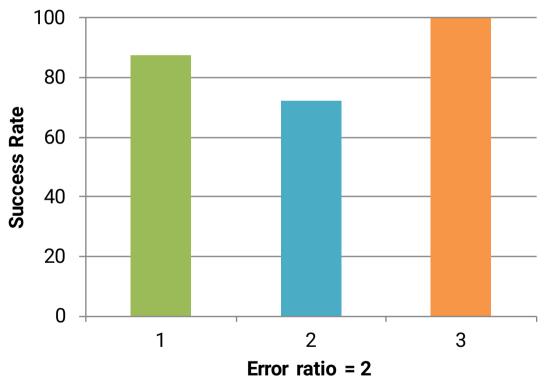
- Many different methods...
- Which one is the best?
 - Quality
 - Speed
- Different works report different benchmark results
 - Depending on test data
 - Levin et al. CVPR 2009, 2010
 - Köhler et al. ECCV 2012

- Levin et al. CVPR 2009
 - Provide a dataset
 - 32 test images
 - 4 clear images (255x255)
 - 8 blur kernels (10x10 ~ 25x25)
 - One of the most widely used datasets
 - Evaluate blind deconvolution methods using the dataset

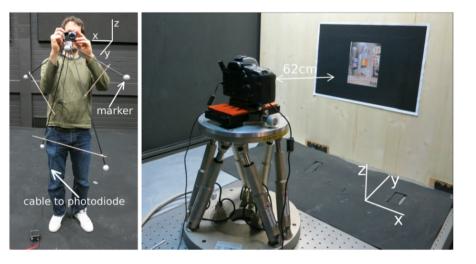
- Levin et al. CVPR 2009
 - Counted the number of successful results



- Cho & Lee, SIGGRAPH Asia 2009
 - Comparison based on Levin et al.'s dataset
 - Slightly different parameter settings

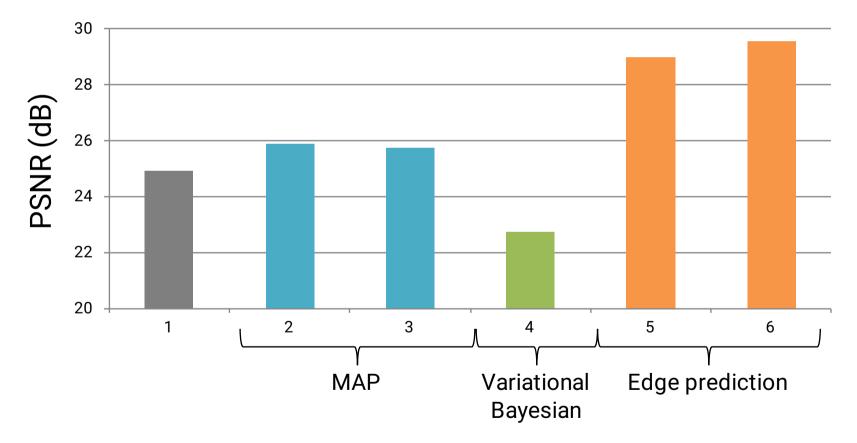


- Köhler et al. ECCV 2012
 - Record and analyze real camera motions
 - Recorded 6D camera shakes in the 3D space using markers
 - Played back camera shakes using a robot arm
 - Provide a benchmark dataset based on real camera shakes
 - Provide benchmark results for recent state-of-the-art methods



- Köhler et al. ECCV 2012
 - Dataset
 - 48 test images
 - 4 sharp images
 - 12 non-uniform camera shakes

• Köhler et al. ECCV 2012



- Benchmark results depend on
 - Implementation details & tricks
 - Benchmark datasets
 - Parameters used in benchmarks
- But, in general, more recent one shows better quality
- Speed?
 - Edge prediction > MAP >> Variational Bayesian

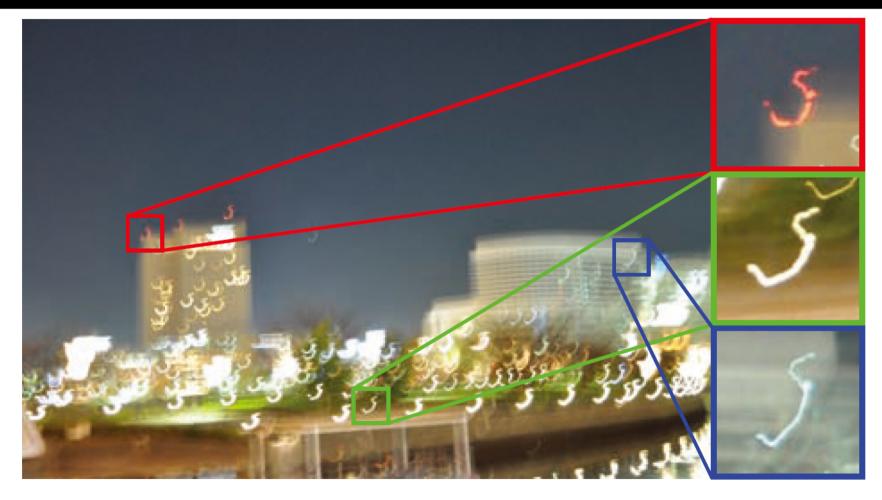
Introduction Blind Deconvolution Non-blind Deconvolution Advanced Issues

- Introduction
- Recent popular approaches
- Non-uniform blur

Convolution based Blur Model

• Uniform and spatially invariant blur

Real Camera Shakes: Spatially Variant!



Uniform Blur Model Assumes

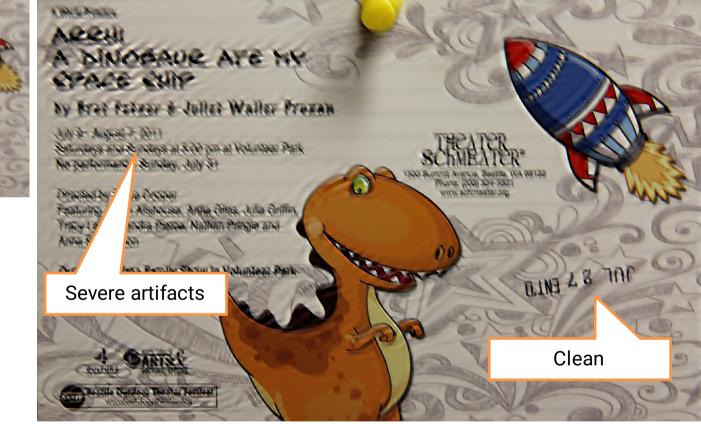
x & y translational camera shakes

Real Camera Shakes

6D real camera motion

Real Blurred Image

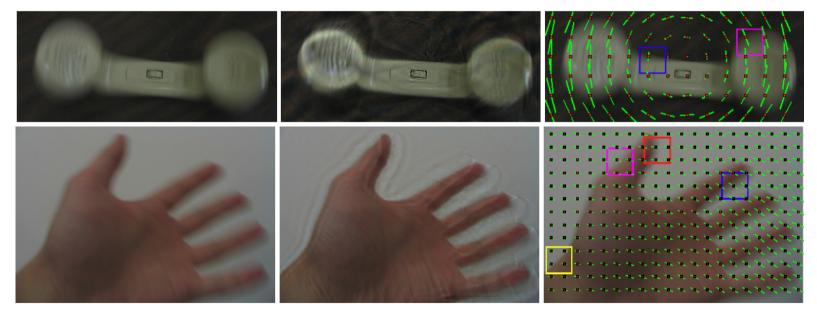
Non-uniformly blurred image



Uniform deblurring result

Pixel-wise Blur Model

- Dai and Wu, CVPR 2008
 - Estimate blur kernels for every pixel from a single image
 - Severely ill-posed
 - Parametric blur kernels



Pixel-wise Blur Model

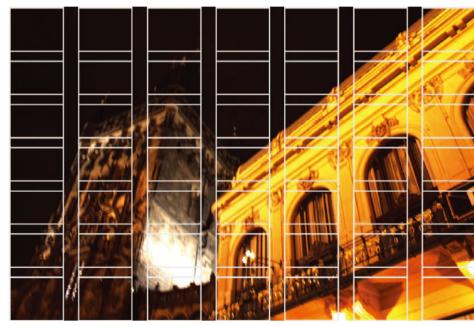
- Tai et al. CVPR 2008
 - Hybrid camera to capture hi-res image & low-res video
 - Estimate per-pixel blur kernels using low-res video

Low-res. video

time

Patch-wise Blur Model

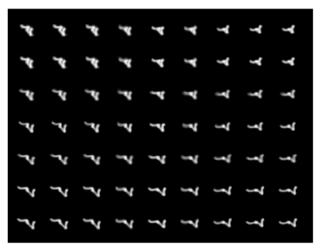
- Sorel and Sroubek, ICIP 2009
 - Estimate per-patch blur kernels from a blurred image and an underexposed noisy image

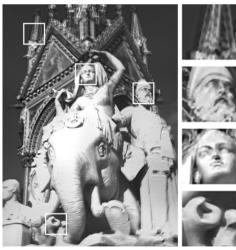


SIGGRAPH ASIA 2013 HONG KONG

Patch-wise Blur Model

- Hirsch et al. CVPR 2010
 - Efficient filter flow (EFF) framework
 - More accurate approximation than the naïve patch-wise blur model
- Harmeling et al. NIPS 2010
 - Estimate per-patch blur kernels based on EFF from a single image



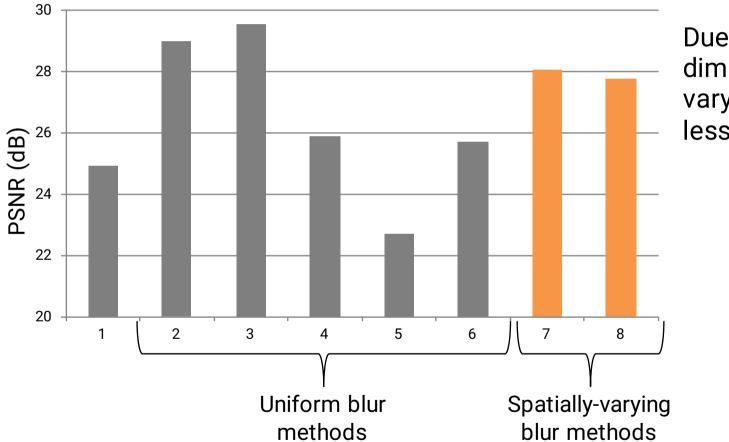


Patch-wise Blur Model

- Approximation
 - − More patches \rightarrow more accurate
- Computationally efficient
 - Patch-wise uniform blur
 - FFTs can be used
- Physically implausible blurs
 - Adjacent blur kernels cannot be very different from each other

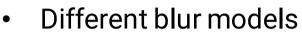


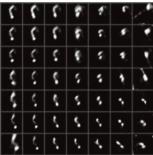
Benchmark [Köhler et al. ECCV 2012]



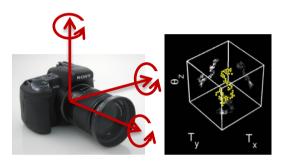
Due to high dimensionality, spatiallyvarying blur methods are less stable.

Summary

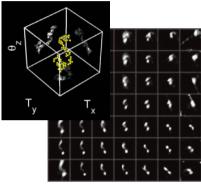




Patch based Efficient but no global constraint



Projective Motion Path Globally consistent but inefficient



Hybrid Efficient & globally consistent

- More realistic than uniform blur model
- Still approximations
 - Real camera motions: 6 DoF + more (zoom-in, depth, etc...)
- High dimensionality
 - Less stable & slower than uniform blur model

Remaining Challenges

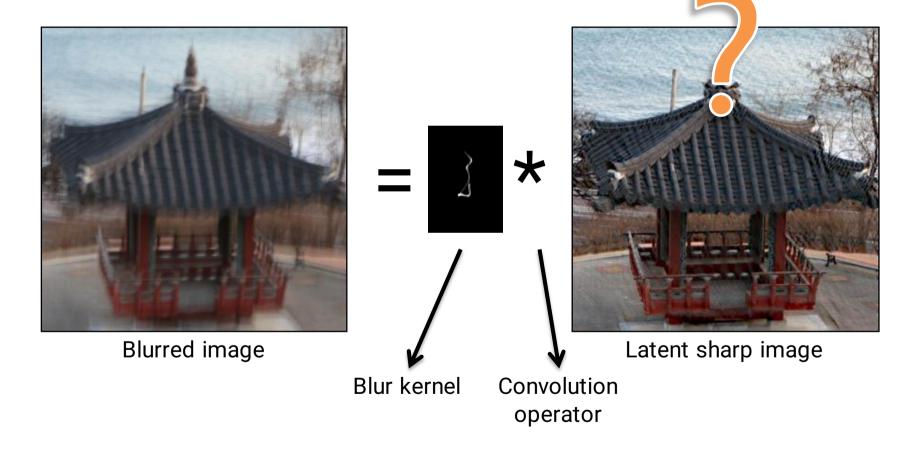
Failure example of Photoshop Shake Reduction

- All methods still fail quite often
- Noise
- Outliers
- Non-uniform blur
- Limited amount of edges
- Speed...
- Etc...

Introduction Blind Deconvolution Non-blind Deconvolution

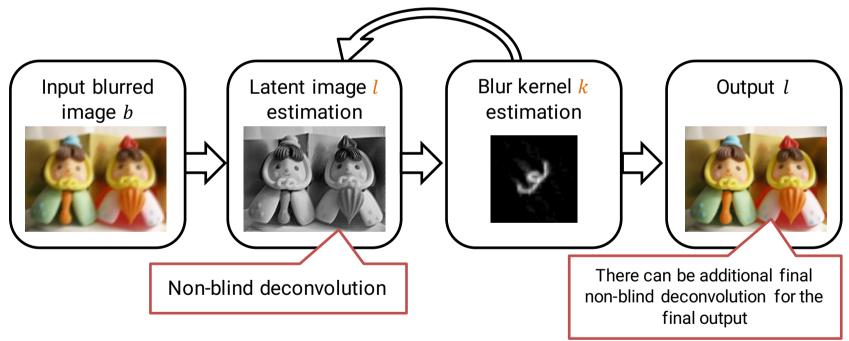
Introduction Blind Deconvolution Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers



Non-blind Deconvolution

- Key component in many deblurring systems
 - For example, in MAP based blind deconvolution:



Non-blind Deconvolution

- Wiener filter
- Richardson-Lucy deconvolution
- Rudin et al. Physica 1992
- Bar et al. IJCV 2006
- Levin et al. SIGGRAPH 2007
- Shan et al. SIGGRAPH 2008
- Yuan et al. SIGGRAPH 2008
- Harmeling et al. ICIP 2010
- Etc...

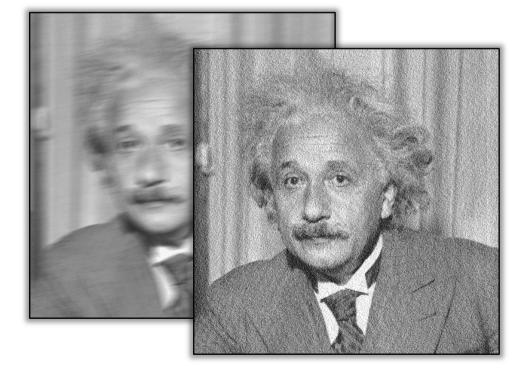
III-Posed Problem

• Even if we know the true blur kernel, we cannot restore the latent image perfectly, because:

• Loss of high-freq info & noise \approx denoising & super-resolution

III-Posed Problem

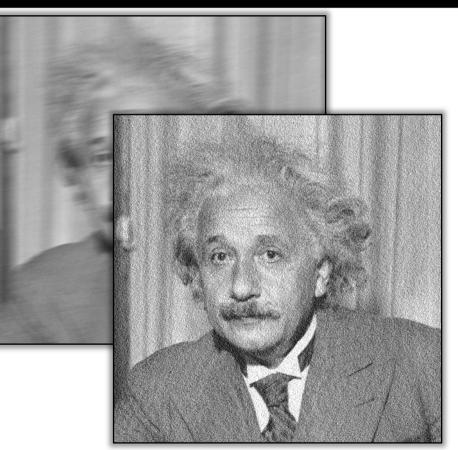
 Deconvolution amplifies noise as well as sharpens edges



- Ringing artifacts
 - Inaccurate blur kernels, outliers cause ringing artifacts

Classical Methods

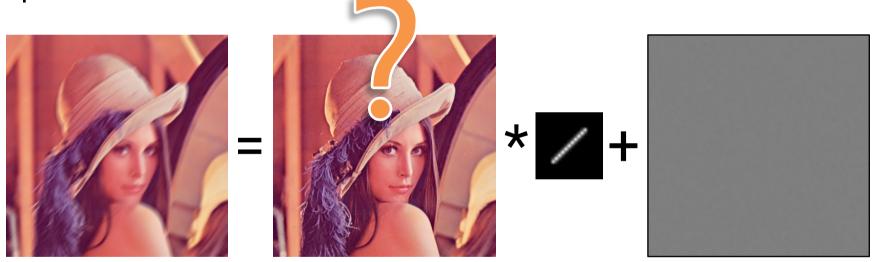
- Popular methods
 - Wiener filtering
 - Richardson-Lucy deconvolution
 - Constrained least squares
- Matlab Image Processing Toolbox
 - deconvwnr, deconvlucy, deconvreg
- Simple assumption on noise and latent images
 - Simple & fast
 - Prone to noise & artifacts



Introduction Blind Deconvolution Non-blind Deconvolution

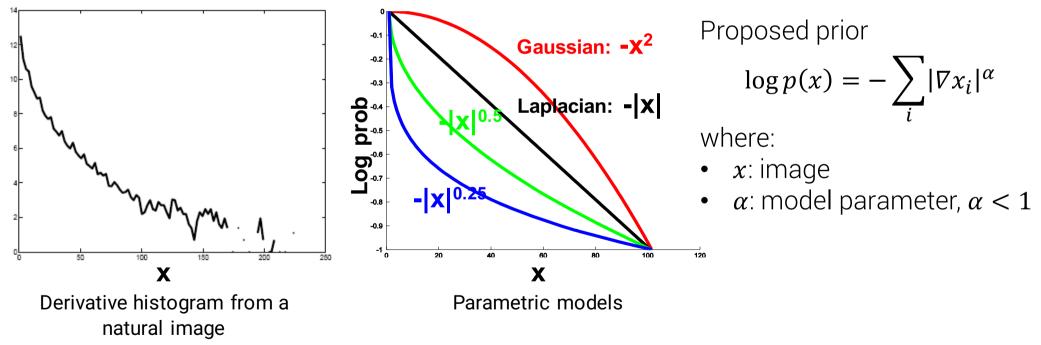
- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

- Non-blind deconvolution: ill-posed problem
- We need to assume something on the latent image to constrain the problem.



- Natural images have a heavy-tailed distribution on gradient magnitudes
 - Mostly zero & a few edges
 - Levin et al. SIGGRAPH 2007, Shan et al. SIGGRAPH 2008, Krishnan & Fergus, NIPS 2009

- Levin et al. SIGGRAPH 2007
 - Propose a parametric model for natural image priors based on image gradients



• Levin et al. SIGGRAPH 2007

$$l = \arg \min_{l} \{ \|k * l - b\|^{2} + \lambda \sum_{i} |\nabla l_{i}|^{\alpha} \} \quad (\alpha < 1)$$

$$Prior$$

$$Prior$$

$$Equal convolution error$$

$$Prior$$

• Levin et al. SIGGRAPH 2007

Input

Richardson-Lucy

"spread" gradients

Gaussian prior

 $\sum_{i} |\nabla l_i|^2$

"localizes" gradients

Sparse prior $|\nabla l_i|^{0.8}$

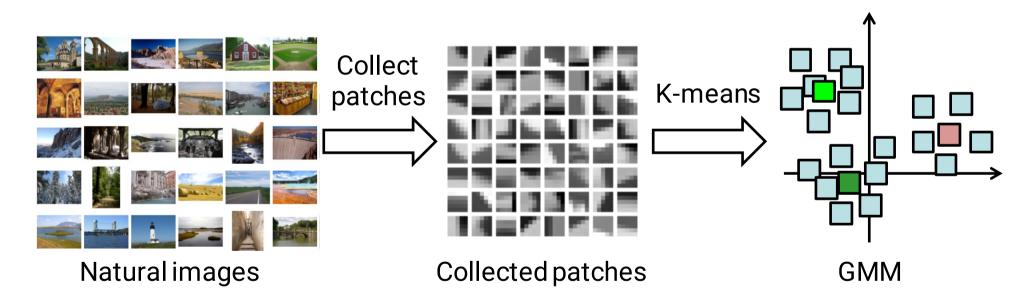
Introduction Blind Deconvolution Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

- Patches, large neighborhoods, ...
- Effective for various kinds of image restoration problems
 - Denoising, inpainting, super-resolution, deblurring, ...

- Schmidt et al. CVPR 2011
 - Fields of Experts
- Zoran & Weiss, ICCV 2011
 - Trained Gaussian mixture model for natural image patches
- Schuler et al. CVPR 2013
 - Trained Multi-layer perceptron to remove artifacts and to restore sharp patches
- Schmidt et al. CVPR 2013
 - Trained regression tree fields for 5x5 neighborhoods

- Zoran & Weiss, ICCV 2011
 - Gaussian Mixture Model (GMM) learned from natural images



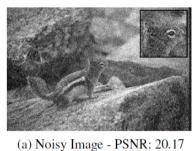
- Zoran & Weiss, ICCV 2011
 - Given a patch, we can compute its likelihood based on the GMM.
 - Deconvolution can be done by solving:

$$\arg\min_{l} \left\{ \|k * l - b\|^{2} - \lambda \sum_{i} \log \left\{ \|k \cdot k \right\} \right\}$$

Log-likelihood of a patch l_i at *i*-th pixel based on GMM

• Zoran & Weiss, ICCV 2011

Denoising



(b) KSVD - PSNR: 28.72

(c) LLSC - PSNR: 29.30

(d) EPLL GMM - PSNR: 29.39

Blurred image

Krishnan & Fergus PSNR: 26.38

IONG KONG

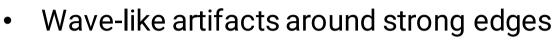
Zoran & Weiss PSNR: 27.70

Deblurring

Introduction Blind Deconvolution Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

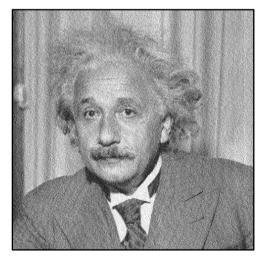
Ringing Artifacts



- Caused by
 - Inaccurate blur kernels
 - Nonlinear response curve
 - Etc...

Ringing Artifacts

- Noise
 - High-freq
 - Independent and identical distribution
 - Priors on image gradients work well



- Ringing
 - Mid-freq
 - Spatial correlation
 - Priors on image gradients are not very effective

Ringing Artifacts

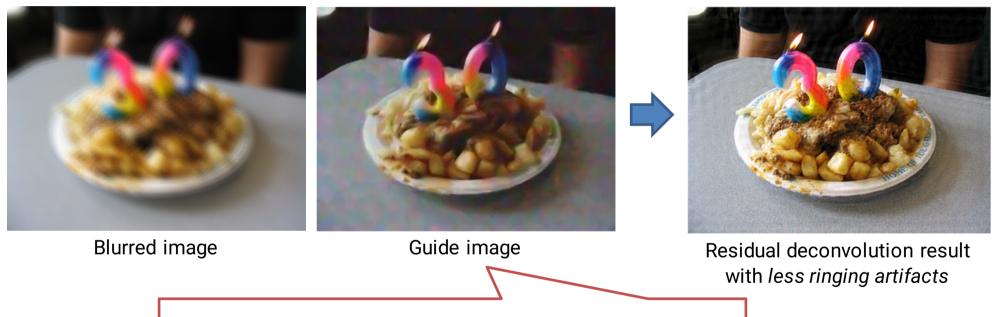
- Yuan et al. SIGGRAPH 2007
 - Residual deconvolution & de-ringing
- Yuan et al. SIGGRAPH 2008
 - Multi-scale deconvolution framework based on residual deconvolution

Blurred image

Richardson-Lucy

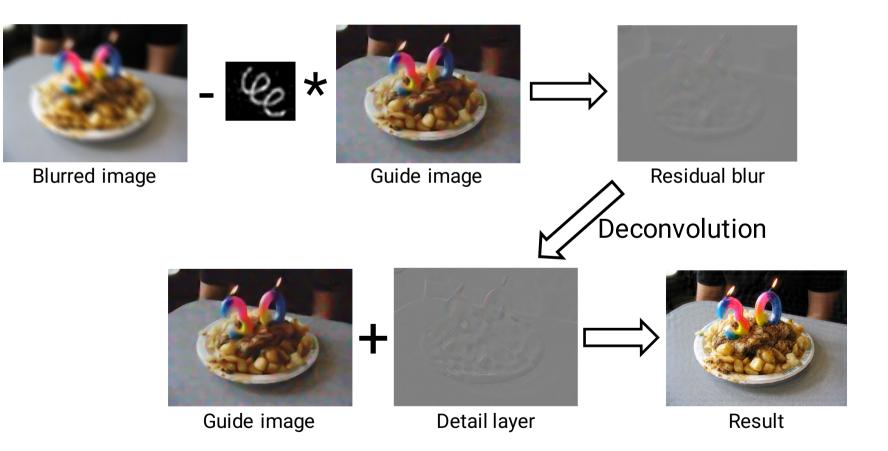
Yuan et al. SIGGRAPH 2008

Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]

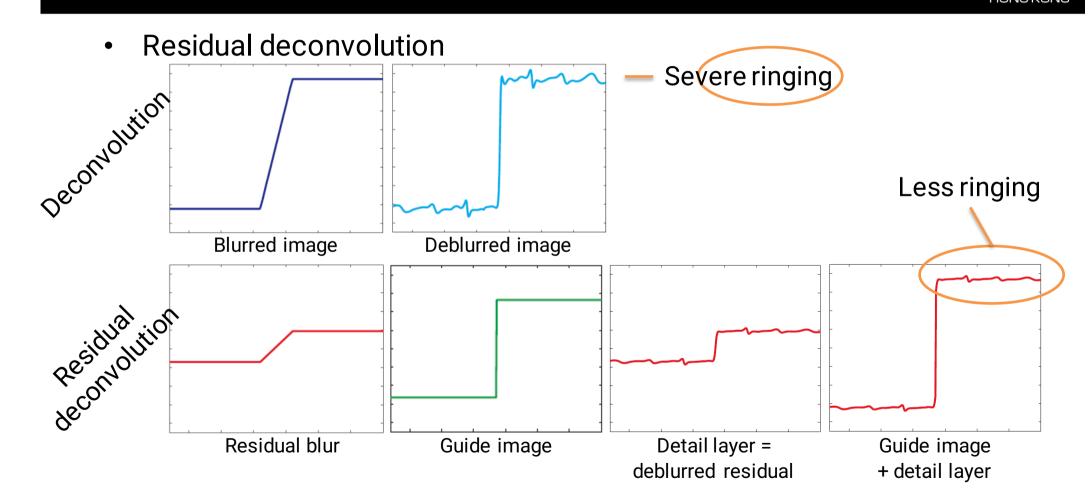


- Relatively accurate edges, but less details
- Obtained from a deconvolution result from a smaller scale

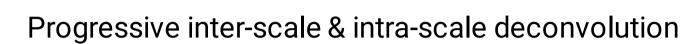
Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]



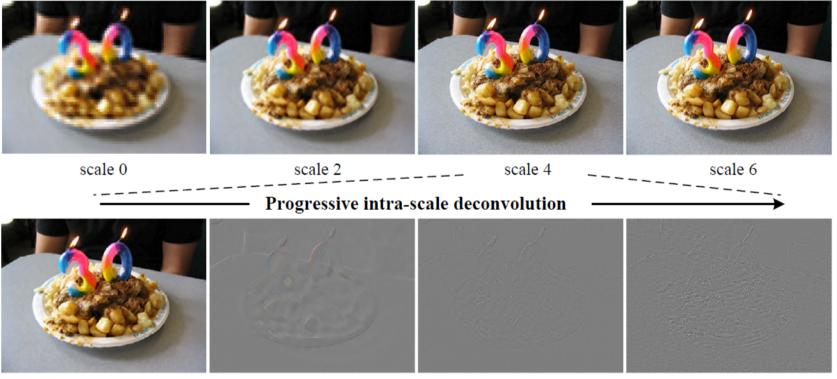
Residual Deconvolution [Yuan et al. SIGGRAPH 2007, 2008]



Progressive Inter-scale & Intra-scale Deconvolution [Yuan et al. SIGGRAPH 2008]



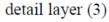
Progressive inter-scale deconvolution

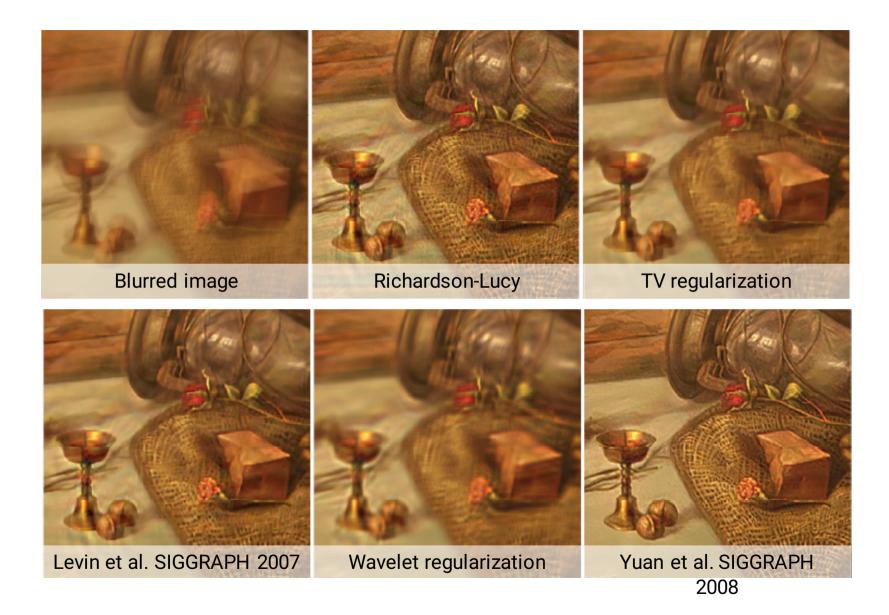


guide image

detail layer (1)

detail layer (2)





Introduction Blind Deconvolution Non-blind Deconvolution

- Introduction
- Natural image statistics
- High-order natural image statistics
- Ringing artifacts
- Outliers

Outliers

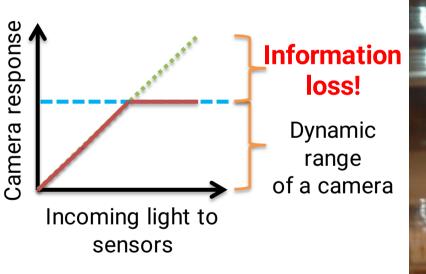
• A main source of severe ringing artifacts

Blurred image with outliers

Deblurring result [Levin et al. SIGGRAPH 2007]

Outliers

• Saturated pixels caused by limited dynamic range of sensors

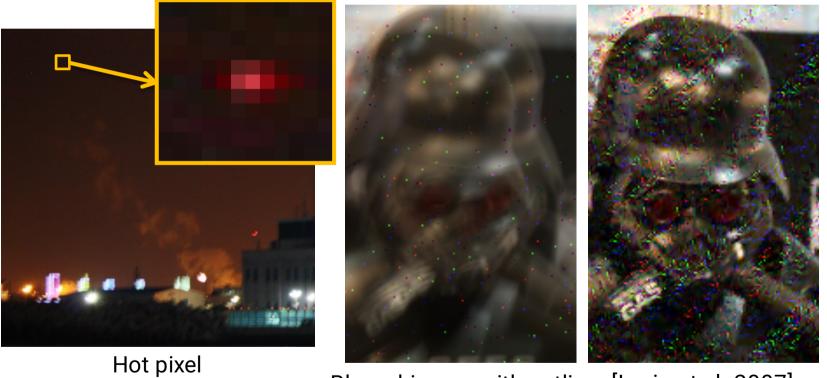


Blurredimage

[Levin et al. 2007]

Outliers

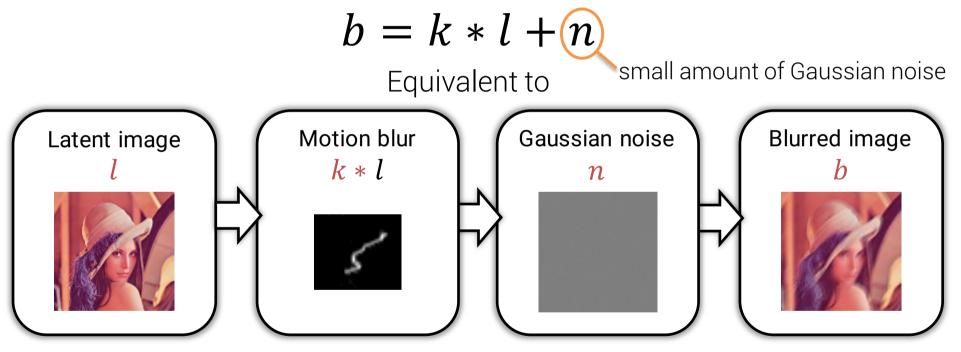
• Hot pixels, dead pixels, compression artifacts, etc...



Blurred image with outliers [Levin et al. 2007]

Outlier Handling

• Most common blur model:



Outlier Handling

• An energy function derived from this model:

$$E(l) = ||k * l - b||^{2} + \rho(l)$$

L²-norm based data term: known to be vulnerable to outliers Regularization term on a latent image *l*

- More robust norms to outliers
 - L¹-norm, other robust statistics...

$$E(l) = \|k * l - b\|_{1} + \rho(l)$$

– Bar et al. IJCV 2006, Xu et al. ECCV 2010, ...

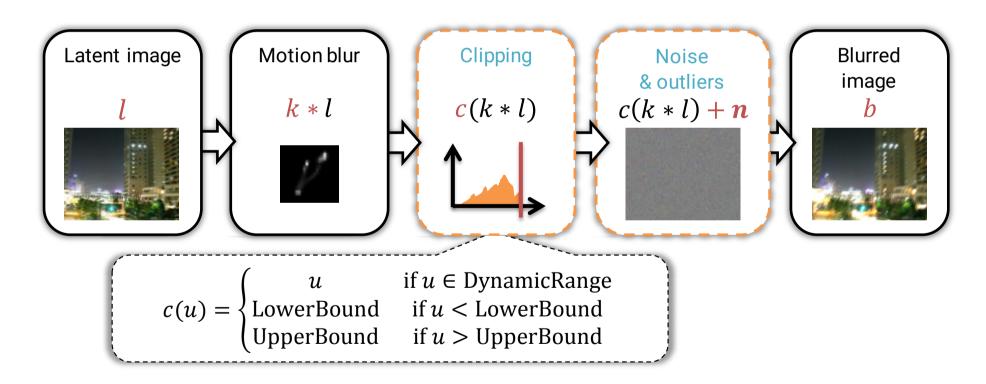
Outlier Handling

- L^1 -rm based data term
 - Simple & efficient
 - Effective on salt & pepper noise
 - Not effective on saturated pixels

 L^2 -norm based data term

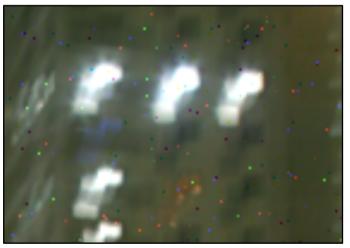
 L^1 -norm based data term

• More accurate blur model reflecting outliers

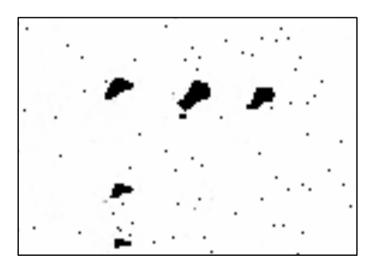


Classification mask

$$m(x) = \begin{cases} 1 & \text{if } b(x) \text{ is an inlier} \\ 0 & \text{if } b(x) \text{ is an outlier} \end{cases}$$



Blurred image *b*



Classification mask m

• MAP estimation

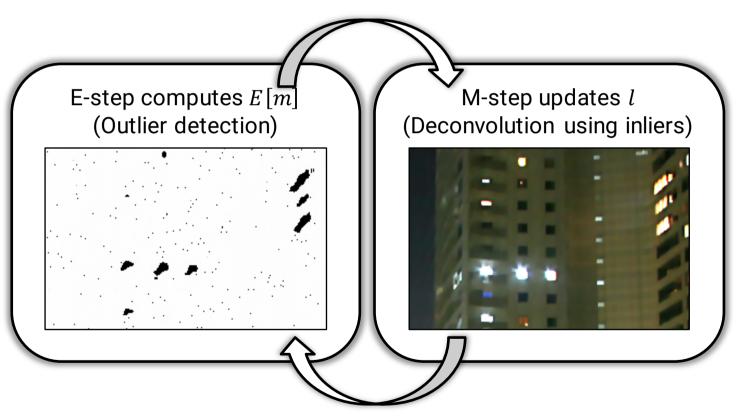
Given b & k, find the most probable l

$$\sum_{l \in M} l_{MAP} = \arg \max_{l} p(l|b,k)$$

$$= \arg \max_{l} \sum_{m \in M} p(b|m,k,l)p(m|k,l)p(l)$$

Classification mask *m*

• EM based optimization



Blurred image

Blurred image

[Levin et al. 2007]

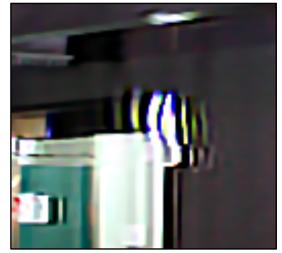
L1-norm based deconv.

[Harmeling et al. 2010]

[Cho et al. ICCV 2011]

Blurred image

Blurred image



[Levin et al. 2007]

L1-norm based deconv.

[Harmeling et al. 2010]

[Cho et al. ICCV 2011]

Allenges siggrap

Summary & Remaining Challenges

- Ill-posed problem Noise & blur
- Noise
 - High-freq & unstructured
 - Natural image priors
- Ringing
 - Mid-freq & structured
 - More difficult to handle
- Outliers
 - Cause severe ringing artifacts
 - More accurate blur model
- Speed
 - More complex model \rightarrow Slower
- Many source codes are available on the authors' website