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Review - Markov Random Fields

• Example: �label smoothing� grid

Unary potential

0    1
0  0    K
1  K    0

Pairwise Potential

0: -logP(yi = 0 ; data)
1: -logP(yi = 1 ; data) 
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Review - Solving MRFs 
with graph cuts

Main idea:
• Construct a graph such that every st-cut corresponds to a 

joint assignment to the variables y

• The cost of the cut should be equal to the energy of the 
assignment, E(y; data)�. 

• The minimum-cut then corresponds to the minimum 
energy assignment, y� = argminy E(y; data). 

S.	Gould
� Requires non-negative energies

Source (Label 0)

Sink (Label 1)

Cost to assign to 1

Cost to assign to 0

Cost to split nodes
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Review - Solving MRFs 
with graph cuts
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Review - Solving MRFs 
with graph cuts

Code for Image Segmentation

E(x) = ∑ ci xi + ∑ dij |xi-xj|
i i,j

Global Minimum (x*)

x
x* = arg min E(x)

How to minimize E(x)?

E: {0,1}n → R
0 → fg

1 → bg
n = number of 

pixels

P.	Kohli

Review - How does the code look 
like?

Sink (1)

Source (0) 

P.	Kohli

Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

a1 a2

fgCost(a1)

Sink (1)

Source (0) 

fgCost(a2)

bgCost(a1) bgCost(a2)

Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P.	Kohli

Review - How does the code look 
like?



a1 a2

fgCost(a1)

Sink (1)

Source (0) 

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P.	Kohli

Review - How does the code look 
like?

a1 a2

fgCost(a1)

Sink (1)

Source (0) 

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

a1 = bg  a2 = fg

Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p),fgCost(p),

bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p),nodeID(q),

cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P.	Kohli

Review - How does the code look 
like?

Review - Random Fields in 
Vision

4-connected; 
pairwise MRF 

Higher-order MRF 

E(x) = ∑ θij (xi,xj)
i,j Є N4

higher(8)-connected; 
pairwise MRF 

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2 Order 2 Order n

E(x) = ∑ θij (xi,xj)

+θ(x1,…,xn)
i,j Є N4

MRF with 
global variables 

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2

C.	Rother

Review - MRF with global potential
GrabCut model [Rother et. al. ‘04]

Fi = -log Pr(zi|θF) Bi= -log Pr(zi|θB)

Background

Foreground G

R

θF/B Gaussian 
Mixture models

E(x,θF,θB) =

Problem: for unknown x,θF,θB the optimization is NP-hard! [Vicente et al. ‘09] 

Image z Output x

∑ Fi(θF)xi+ Bi(θB)(1-xi) + ∑ |xi-xj|
i,j Є Ni

C.	Rother

θF/B



Review - GrabCut: Iterated Graph Cuts
[Rother et al. Siggraph ‘04]

Learning of the 
colour distributions

Graph cut to infer 
segmentation

F

xmin E(x, θF, θB) 
θF,θB

min E(x, θF, θB) 

B

Most systems with global variables work like that  
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. ’06, LayoutCRF Winn et al. ’06]

θF/B

C.	Rother

Review - Random Fields in 
Vision

4-connected; 
pairwise MRF 

Higher-order MRF 

E(x) = ∑ θij (xi,xj)
i,j Є N4

higher(8)-connected; 
pairwise MRF 

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2 Order 2 Order n

E(x) = ∑ θij (xi,xj)

+θ(x1,…,xn)
i,j Є N4

MRF with 
global variables 

E(x) = ∑ θij (xi,xj)
i,j Є N8

Order 2

C.	Rother

Review - Why Higher-order 
Functions?

In general θ(x1,x2,x3) ≠ θ(x1,x2) + θ(x1,x3) + θ(x2,x3) 

Reasons for higher-order RFs:

1. Even better image(texture) models:
– Field-of Expert [FoE, Roth et al. ‘05]

– Curvature [Woodford et al. ‘08]

2. Use global Priors:
– Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09]

– Better encoding label statistics [Woodford et al. ‘09]

– Convert global variables to global factors [Vicente et al. ‘09] 

C.	Rother

Semantic Segmentation

• Joint recognition & segmentation
– segmenting all the objects in a given image and 

identifying their visual categories
• aka scene parsing or image parsing

• Early studies aim at segmenting out a single 
object of a known category 
– Borenstein & Ullman, 2002, Liebe & Schiele, 2003, 



Early Studies of Semantic 
Segmentation

• Given an image and object category, to segment the 
object

• Segmentation should (ideally) be
• shaped like the object e.g. cow-like
• obtained efficiently in an unsupervised manner
• able to handle self-occlusion

Segmentation

Object
Category 

Model

Cow Image Segmented Cow

M.	P.	Kumar

Early Studies of Semantic 
Segmentation

R.	Fergus

Early Studies of Semantic 
Segmentation

R.	Fergus

Early Studies of Semantic 
Segmentation

Using Normalized Cuts, Shi & Malik, 1997

R.	Fergus



Early Studies of Semantic 
Segmentation

R.	Fergus

Using Normalized Cuts, Shi & Malik, 1997

Borenstein and Ullman, ECCV 2002

Jigsaw approach: Borenstein and 
Ullman, 2002

R.	Fergus

Implicit Shape Model - Liebe and 
Schiele, 2003

Backprojected
Hypotheses

Interest Points Matched Codebook 
Entries

Probabilistic 
Voting

Voting Space
(continuous)

Backprojection
of Maxima

Segmentation

Refined Hypotheses
(uniform sampling) R.	Fergus

Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihood

)|(),|()|,(),|( θθθθ hphIphIpIhp =∝

Posterior Joint

R.	Fergus



Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihood

)|(),|()|,(),|( θθθθ hphIphIpIhp =∝

Posterior Joint

1. Generative approach models joint 
à Markov random field (MRF)

2. Discriminative approach models posterior directly
à Conditional random field (CRF)

R.	Fergus

I (pixels)
Image Plane

h (labels)
{foreground,
background}

hi

hj Unary Potential
ϕi(I|hi, θi)

Pairwise Potential (MRF)
Ψij(hi, hj|θij)
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MRF PriorLikelihood

Generative Markov Random 
Field 

)|(),|()|,( θθθ hphIpIhp =

Prior has no 
dependency on I

R.	Fergus

i

j

Conditional Random Field
Lafferty, McCallum and Pereira 2001
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• Dependency on I allows introduction of 
pairwise terms that make use of image.

• For example, neighboring labels 
should be similar only if pixel colors are 
similar à Contrast term

Discriminative approach

e.g Kumar and Hebert 2003

R.	Fergus

I (pixels)
Image Plane

i

j

hi

hj

Levin & Weiss [ECCV 2006]  
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Segmentation 
alignment with 
image edges

Resulting min-cut 
segmentation

Consistency with 
fragments 

segmentation 

R.	Fergus



E(x,w) = ∑ |T(w)i-xi| + ∑ θij (xi,xj)
i i,j Є N4

E(x,w): {0,1}n x {Exemplar} → R

Large set of example segmentation:

T(1) T(2) T(3)

1

Up to 2.000.000 shape 
templates

Goal: Detect and  segment test image:

“Hamming distance”

[Lempitsky et al. ECCV ’08]

w

Semantic Segmentation
Joint Object recognition & segmentation

C.	Rother

UIUC dataset; 98.8% 
accuracy

Semantic Segmentation
Joint Object recognition & segmentation

C.	Rother[Lempitsky et al. ECCV ’08]

E(x,ω) = ∑ θi (ω, xi) +∑ θi (xi) +∑ θi ( xi) + ∑ θij (xi,xj)
i,ji i i(color) (location)

Building

Sky

Tree
Grass

(class)

xi � {1,…,K} for K object classes

(edge aware 
Ising prior)

Class (boosted textons)Location

sky grass

Semantic Segmentation
Joint Object recognition & segmentation

[TextonBoost; Shotton et al, ‘06] C.	Rother

Class+
location

+ edges + color

Semantic Segmentation
Joint Object recognition & segmentation

[TextonBoost; Shotton et al, ‘06] C.	Rother



[TextonBoost; Shotton et al, ‘06]

Good results …

Semantic Segmentation
Joint Object recognition & segmentation

C.	Rother

Failure cases…

Semantic Segmentation
Joint Object recognition & segmentation

C.	Rother

Nonparametric Scene Parsing via Label 
Transfer (Liu et al. TPAMI’12)

smoothness) into a robust annotation. Promising experi-
mental results are achieved on images from the LabelMe
database [39].

Our goal is to explore the performance of scene parsing
through the transfer of labels from existing annotated images,
rather than building a comprehensive object recognition
system. We show, however, that the performance of our
system outperforms existing approaches [8], [43] on our
databases. Our code and databases can be downloaded at
http://people.csail.mit.edu/celiu/LabelTransfer/.

This paper is organized as follows: In Section 2, we briefly
survey the object recognition and detection literature. After
giving a system overview in Section 3, we describe, in detail,
each component of our system in Section 4. Thorough
experiments are conducted in Section 5 for evaluation, and
in-depth discussion is provided in Section 6. We conclude
our paper in Section 7.

2 RELATED WORK

Object recognition is an area of research that has greatly
evolved over the last decade. Many works focusing on
single-class modeling, such as faces [11], [48], [49], digits,
characters, and pedestrians [2], [8], [25], have been proven
successful and, in some cases, the problems have been
mostly deemed as solved. Recent efforts have turned to
mainly focusing in the area of multiclass object recognition.
In creating an object detection system, there are many basic
building blocks to take into account; feature description and
extraction is the first stepping stone. Examples of descrip-
tors include gradient-based features such as SIFT [30] and
HOG [8], shape context [2], and patch statistics [42].
Consequently, selected feature descriptors can be further
applied to images in either a sparse [2], [16], [19] manner by
selecting the top key points containing the highest response
from the feature descriptor, or densely by observing feature
statistics across the image [40], [51].

Sparse key point representations are often matched
among pairs of images. Since the generic problem of
matching two sets of key points is NP-hard, approximation
algorithms have been developed to efficiently compute key
point matches minimizing error rates (e.g., the pyramid
match kernel [19] and vocabulary trees [32], [33]). On the

other hand, dense representations have been handled by
modeling distributions of the visual features over neighbor-
hoods in the image or in the image as a whole [24], [40], [51].
We chose the dense representation in the paper due to
recent advances in dense image matching [28], [29].

At a higher level, we can also distinguish two types of
object recognition approaches: parametric approaches that
consist of learning generative/discriminative models, and
nonparametric approaches that rely on image retrieval and
matching. In the parametric family we can find numerous
template-matching methods, where classifiers are trained to
discriminate between an image window containing an object
or a background [8]. However, these methods assume that
objects are mostly rigid and are susceptible to little or no
deformation. To account for articulated objects, constellation
models have been designed to model objects as ensembles of
parts [13], [14], [15], [50], considering spatial information [7],
depth ordering information [53], and multiresolution modes
[35]. Recently, a new idea of integrating humans in the loop
via crowd sourcing for visual recognition of specialized
classes such as plants and animal species has emerged [5];
this method integrates the description of an object in less
than 20 discriminative questions that humans can answer
after visually inspecting the image.

In the realm of nonparametric methods we find systems
such as Video Google [44], a system that allows users to
specify a visual query of an object in a video and subse-
quently retrieve instances of the same object across the movie.
Another nonparametric system is the one in [38], where a
previously unknown query image is matched against a
densely labeled image database; the nearest neighbors are
used to build a label probability map for the query, which is
further used to prune out object detectors of classes that are
unlikely to take place in the image. Nonparametric methods
have also been widely used in web data to retrieve similar
images. For example, in [17], a customized distance function
is used at a retrieval stage to compute the distance between a
query image and images in the training set, which subse-
quently cast votes to infer the object class of the query. In the
same spirit, our nonparametric label transfer system avoids
modeling object appearances explicitly as our system parses a
query image using the annotation of similar images in a
training database and dense image correspondences.

Recently, several works have also considered contextual
information in object detections to clean and reinforce
individual results. Among contextual cues that have been
used are object-level co-occurrences, spatial relationships
[6], [9], [18], [31], [36], and 3D scene layout [23]. For a more
detailed and comprehensive study and benchmark of
contextual works, we refer to [10]. Instead of explicitly
modeling context, our model incorporates context implicitly
as object co-occurrences and spatial relationships are
retained in label transfer.

An earlier version of our work appeared at [27]; in this
paper, we will explore the label-transfer framework in-
depth with more thorough experiments and insights. Other
recent papers have also introduced similar ideas. For
instance, in [46], oversegmentation is performed to the
query image and segment-based classifiers trained on the
nearest neighbors are applied to recognize each segment. In
[37], scene boundaries are discovered by the common edges
shared by nearest neighbors.
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Fig. 1. For a query image (a), our system finds the top matches (b) (three
are shown here) using scene retrieval and a SIFT flow matching
algorithm [28], [29]. The annotations of the top matches (c) are
transferred and integrated to parse the input image, as shown in (d).
For comparison, the ground-truth user annotation of (a) is shown in (e).

input

retrieved images and their 
annotations

result                groundtruth

A non-parametric 
formulation

Nonparametric Scene Parsing via 
Label Transfer 

• Framework consists of three main modules:
1. Scene retrieval: finding nearest neighbors (k-NN 

approach)
2. Dense scene alignment: dense scene matching (SIFT 

Flow)
3. Label transfer: using a MRF model to label input image

3 SYSTEM OVERVIEW

The core idea of our nonparametric scene parsing system is
recognition-by-matching. To parse an input image, we
match the visual objects in the input image to the images in
a database. If images in the database are annotated with
object category labels and if the matching is semantically
meaningful, i.e., building corresponds to building, window to
window, person to person, then we can simply transfer the
labels of the images in the database to parse the input.
Nevertheless, we need to deal with many practical issues in
order to build a reliable system.

Fig. 2 shows the pipeline of our system, which consists of
the following three algorithmic modules:

. Scene retrieval: Given a query image, use scene
retrieval techniques to find a set of nearest neighbors
that share similar scene configuration (including
objects and their relationships) with the query.

. Dense scene alignment: Establish dense scene corre-
spondence between the query image and each of the
retrieved nearest neighbors. Choose the nearest
neighbors with the top matching scores as voting
candidates.

. Label transfer: Warp the annotations from the
voting candidates to the query image according to
estimated dense correspondence. Reconcile multiple
labeling and impose spatial smoothness under a
Markov random field (MRF) model.

Although we are going to choose concrete algorithms for
each module in this paper, any algorithm that fits to the
module can be plugged into our nonparametric scene
parsing system. For example, we use SIFT flow for dense
scene alignment, but it would also suffice to use sparse
feature matching and then propagate sparse correspon-
dences to produce dense counterparts.

A key component of our system is a large, dense, and
annotated image database.1 In this paper, we use two sets of
databases, both annotated using the LabelMe online
annotation tool [39], to build and evaluate our system.
The first is the LabelMe Outdoor (LMO) database [27],
containing 2,688 fully annotated images, most of which are
outdoor scenes including street, beach, mountains, fields,
and buildings. The second is the SUN database [52],
containing 9,566 fully annotated images, covering both
indoor and outdoor scenes; in fact, LMO is a subset of SUN.

We use the LMO database to explore our system in-depth,
and also report the results on the SUN database.

Before jumping into the details of our system, it is helpful
to look at the statistics of the LMO database. The 2,688
images in LMO are randomly split into 2,488 for training
and 200 for testing. We chose the top 33 object categories
with the most labeled pixels. The pixels that are not labeled,
or labeled as other object categories, are treated as the
34th category: “unlabeled.” The per pixel frequency count
of these object categories in the training set is shown at the
top of Fig. 3. The color of each bar is the average RGB value
of the corresponding object category from the training data
with saturation and brightness boosted for visualization
purposes. The top 10 object categories are sky, building,
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1. Other scene parsing and image understanding systems also require
such a database. We do not require more than others.

Fig. 2. System pipeline. There are three key algorithmic components (rectangles) in our system: scene retrieval, dense scene alignment, and label
transfer. The ovals denote data representations.

Fig. 3. Top: The per-pixel frequency counts of the object categories in
our data set (sorted in descending order). The color of each bar is the
average RGB value of each object category from the training data with
saturation and brightness boosted for visualization. Bottom: The spatial
priors of the object categories in the database. White means zero and
the saturated color means high probability.



Dense Scene Alignment 
via SIFT Flow

• SIFT Flow (Liu et al., ECCV 2008)
– Finds semantically meaningful correspondences among 

two images by matching local SIFT descriptors

RGB

SIFT

Query                      Best match                                               Query & warped 
best match

Flow Field

Dense Scene Alignment 
via SIFT Flow

• SIFT Flow (Liu et al., ECCV 2008)
– Finds semantically meaningful correspondences among 

two images by matching local SIFT descriptors

mountain, tree, unlabeled, road, sea, field, grass, and river. The
spatial priors of these object categories are displayed at the
bottom of Fig. 3, where white denotes zero probability and
the saturation of color is directly proportional to its
probability. Note that, consistent with common knowledge,
sky occupies the upper part of the image grid and field
occupies the lower part. Furthermore, there are only limited
samples for the sun, cow, bird, and moon classes.

4 SYSTEM DESIGN

In this section, we will describe each module of our
nonparametric scene parsing system.

4.1 Scene Retrieval

The objective of scene retrieval is to retrieve a set of nearest
neighbors in the database for a given query image. There
exist several ways for defining a nearest neighbor set. The
most common definition consists of taking the K closest
points to the query (K-NN). Another model, !-NN, widely
used in texture synthesis [12], [26], considers all of the
neighbors within ð1þ !Þ times the minimum distance from
the query. We generalize these two types to hK; !i-NN, and
define it as

N ðxÞ ¼ fyi j distðx; yiÞ % ð1þ !Þdistðx; y1Þ;
y1 ¼ arg min distðx; yiÞ; i % Kg:

ð1Þ

As !!1, hK;1i-NN is reduced to K-NN. As K !1,
h1; !i-NN is reduced to !-NN. However, hK; !i-NN
representation gives us the flexibility to deal with the
density variation of the graph, as shown in Fig. 5. We will
show how K affects the performance in the experimental
section. In practice, we found that ! ¼ 5 is a good parameter
and we will use it through our experiments. Nevertheless,
dramatic improvement of hK; !i-NN over K-NN is not
expected as sparse samples are few in our databases.

We have not yet defined the distance function distð&; &Þ
between two images. Measuring image similarities/dis-
tances is still an active research area; a systematic study of
image features for scene recognition can be found in [52]. In
this paper, three distances are used: euclidean distance of
GIST [34], spatial pyramid histogram intersection of HOG
visual words [24], and spatial pyramid histogram intersec-
tion of the ground-truth annotation. For the HOG distance,
we use the standard pipeline of computing HOG features on
a dense grid and quantizing features to visual words over a
set of images using k-means clustering. The ground truth-
based distance metric is used to estimate an upper bound of
our system for evaluation purposes. Both the HOG and the
ground truth distances are computed in the same manner.
The ground truth distance is computed by building histo-
grams of pixel-wise labels. To include spatial information,
the histograms are computed by dividing an image into 2' 2
windows and concatenating the four histograms into a single
vector. Histogram intersection is used to compute the
ground truth distance. We obtain the HOG distance by
replacing pixel-wise labels with HOG visual words.

In Fig. 4, we show the importance of the distance metric as
it defines the neighborhood structure of the large image
database. We randomly selected 200 images from the LMO

database and computed pair-wise image distances using
GIST (top) and the ground-truth annotation (bottom). Then,
we use multidimensional scaling (MDS) [4] to map these
images to points on a 2D grid for visualization. Although the
GIST descriptor is able to form a reasonably meaningful
image space where semantically similar images are clustered,
the image space defined by the ground-truth annotation truly
reveals the underlying structures of the image database. This
will be further examined in the experimental section.

4.2 SIFT Flow for Dense Scene Alignment

As our goal is to transfer the labels of existing samples to
parse an input image, it is essential to find the dense
correspondence for images across scenes. In our previous
work [29], we have demonstrated that SIFT flow is capable
of establishing semantically meaningful correspondences
among two images by matching local SIFT descriptors. We
further extended SIFT flow into a hierarchical computa-
tional framework to improve the performance [27]. In this
section, we will provide a brief explanation of the
algorithm; for a detailed description, we refer to [28].

Similarly to optical flow, the task of SIFT flow is to find
dense correspondence between two images. Let p ¼ ðx; yÞ
contain the spatial coordinate of a pixel, and wðpÞ ¼
ðuðpÞ; vðpÞÞ be the flow vector at p. Denote s1 and s2 as the
per-pixel SIFT descriptor [30] for two images,2 and " contains
all the spatial neighborhood (a four-neighbor system is
used). The energy function for SIFT flow is defined as:

EðwÞ ¼
X

p

minðks1ðpÞ ( s2ðpþwðpÞÞk1; tÞ þ ð2Þ

X

p

"ðjuðpÞjþ jvðpÞjÞ þ ð3Þ

X

ðp;qÞ2"
minð#juðpÞ ( uðqÞj; dÞþ

minð#jvðpÞ ( vðqÞj; dÞ;
ð4Þ

which contains a data term, small displacement term, and
smoothness term (a.k.a. spatial regularization). The data term
in (2) constrains the SIFT descriptors to be matched along
with the flow vector wðpÞ. The small displacement term in (3)
constrains the flow vectors to be as small as possible when
no other information is available. The smoothness term in (4)
constrains the flow vectors of adjacent pixels to be similar.
In this objective function, truncated L1 norms are used in
both the data term and the smoothness term to account for
matching outliers and flow discontinuities, with t and d as
the threshold, respectively.

While SIFT flow has demonstrated the potential for
aligning images across scenes [29], the original implementa-
tion scales poorly with respect to the image size. In SIFT flow,
a pixel in one image can literally match to any other pixel in
another image. Suppose the image has h2 pixels, then the
time and space complexity of the belief propagation
algorithm to estimate the SIFT flow is Oðh4Þ. As reported

LIU ET AL.: NONPARAMETRIC SCENE PARSING VIA LABEL TRANSFER 2371

2. SIFT descriptors are computed at each pixel using a 16' 16 window.
The window is divided into 4' 4 cells, and image gradients within each cell
are quantized into a 8-bin histogram. Therefore, the pixel-wise SIFT feature
is a 128D vector.

data term

small displacement 
term

smoothness 
term

w(p)=(u(p), v(p)) : flow vector at point p

Label Transfer
• A set of voting candidates {si;ci;wi}i=1:M is obtained from the 

retrieved images with si , ci , and wi denoting the SIFT image, 
annotation, and SIFT flow field of the ith voting candidate.

• A probabilistic MRF model is built to integrate 
– multiple category labels, 
– prior object (category) information 
– spatial smoothness of category labels

significantly faster, but also achieves lower energies most of
the time compared to the ordinary matching algorithm.

Some SIFT flow examples are shown in Fig. 8, where
dense SIFT flow fields (Fig. 8f) are obtained between the
query images (Fig. 8a) and the nearest neighbors (Fig. 8c). It
is trial to verify that the warped SIFT images (Fig. 8h) based
on the SIFT flows (Fig. 8f) look very similar to the SIFT images
(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields
(Fig. 8f) are piecewise smooth. The essence of SIFT flow is
manifested in Fig. 8g, where the same flow field is applied to
warp the RGB image of the nearest neighbor to the query.
SIFT flow is trying to hallucinate the structure of the query
image by smoothly shuffling the pixels of the nearest
neighbors. Because of the intrinsic similarities within each
object categories, it is not surprising that, through aligning
image structures, objects of the same categories are often
matched. In addition, it is worth noting that one object in the
nearest neighbor can correspond to multiple objects in the
query since the flow is asymmetric. This allows reuse of labels
to parse multiple object instances.

4.3 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and
a technique for establishing dense correspondences across
scenes, we can transfer the existing annotations to parse a
query image through dense scene alignment. For a given
query image, we retrieve a set of hK; !i-nearest neighbors in
our database using GIST matching [34]. We then compute
the SIFT flow from the query to each nearest neighbor, and
use the achieved minimum energy (defined in (4)) to rerank
the hK; !i-nearest neighbors. We further select the top
M reranked retrievals (M ! K) to create our voting
candidate set. This voting set will be used to transfer its
contained annotations into the query image. This procedure
is illustrated in Fig. 7.

Under this setup, scene parsing can be formulated as the
following label transfer problem: For a query image I with
its corresponding SIFT image s, we have a set of voting
candidates fsi; ci;wigi¼1:M , where si, ci, and wi are the SIFT
image, annotation, and SIFT flow field (from s to si) of the
ith voting candidate, respectively. ci is an integer image
where ciðpÞ 2 f1; . . . ; Lg is the index of object category for
pixel p. We want to obtain the annotation c for the query
image by transferring ci to the query image according to the
dense correspondence wi.

We build a probabilistic Markov random field model to
integrate multiple labels, prior information of object
category, and spatial smoothness of the annotation to parse
image I. Similarly to that of [43], the posterior probability is
defined as:
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where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.

The likelihood term is defined as
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where !p;l ¼ fi; ciðpþwðpÞÞ ¼ lg, l ¼ 1; . . . ; L, is the index
set of the voting candidates whose label is l after being
warped to pixel p. & is set to be the value of the maximum
difference of SIFT feature: & ¼ maxs1;s2;pks1ðpÞ % s2ðpÞk.

The prior term #ðcðpÞ ¼ lÞ indicates the prior probability
that object category l appears at pixel p. This is obtained
from counting the occurrence of each object category at each
location in the training set:
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where histlðpÞ is the spatial histogram of object category l.
The smoothness term is defined to bias the neighboring

pixels into having the same label in the event that no other
information is available, and the probability depends on the
edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
labels:
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where ) ¼ ð2 < kIðpÞ % IðqÞk2 >Þ%1 [43].
Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and " and $ that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; !i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.

Label Transfer

significantly faster, but also achieves lower energies most of
the time compared to the ordinary matching algorithm.

Some SIFT flow examples are shown in Fig. 8, where
dense SIFT flow fields (Fig. 8f) are obtained between the
query images (Fig. 8a) and the nearest neighbors (Fig. 8c). It
is trial to verify that the warped SIFT images (Fig. 8h) based
on the SIFT flows (Fig. 8f) look very similar to the SIFT images
(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields
(Fig. 8f) are piecewise smooth. The essence of SIFT flow is
manifested in Fig. 8g, where the same flow field is applied to
warp the RGB image of the nearest neighbor to the query.
SIFT flow is trying to hallucinate the structure of the query
image by smoothly shuffling the pixels of the nearest
neighbors. Because of the intrinsic similarities within each
object categories, it is not surprising that, through aligning
image structures, objects of the same categories are often
matched. In addition, it is worth noting that one object in the
nearest neighbor can correspond to multiple objects in the
query since the flow is asymmetric. This allows reuse of labels
to parse multiple object instances.

4.3 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and
a technique for establishing dense correspondences across
scenes, we can transfer the existing annotations to parse a
query image through dense scene alignment. For a given
query image, we retrieve a set of hK; !i-nearest neighbors in
our database using GIST matching [34]. We then compute
the SIFT flow from the query to each nearest neighbor, and
use the achieved minimum energy (defined in (4)) to rerank
the hK; !i-nearest neighbors. We further select the top
M reranked retrievals (M ! K) to create our voting
candidate set. This voting set will be used to transfer its
contained annotations into the query image. This procedure
is illustrated in Fig. 7.

Under this setup, scene parsing can be formulated as the
following label transfer problem: For a query image I with
its corresponding SIFT image s, we have a set of voting
candidates fsi; ci;wigi¼1:M , where si, ci, and wi are the SIFT
image, annotation, and SIFT flow field (from s to si) of the
ith voting candidate, respectively. ci is an integer image
where ciðpÞ 2 f1; . . . ; Lg is the index of object category for
pixel p. We want to obtain the annotation c for the query
image by transferring ci to the query image according to the
dense correspondence wi.

We build a probabilistic Markov random field model to
integrate multiple labels, prior information of object
category, and spatial smoothness of the annotation to parse
image I. Similarly to that of [43], the posterior probability is
defined as:
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where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.

The likelihood term is defined as
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where !p;l ¼ fi; ciðpþwðpÞÞ ¼ lg, l ¼ 1; . . . ; L, is the index
set of the voting candidates whose label is l after being
warped to pixel p. & is set to be the value of the maximum
difference of SIFT feature: & ¼ maxs1;s2;pks1ðpÞ % s2ðpÞk.

The prior term #ðcðpÞ ¼ lÞ indicates the prior probability
that object category l appears at pixel p. This is obtained
from counting the occurrence of each object category at each
location in the training set:

#
!
cðpÞ ¼ l

"
¼ % log histlðpÞ; ð7Þ

where histlðpÞ is the spatial histogram of object category l.
The smoothness term is defined to bias the neighboring

pixels into having the same label in the event that no other
information is available, and the probability depends on the
edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
labels:
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where ) ¼ ð2 < kIðpÞ % IðqÞk2 >Þ%1 [43].
Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and " and $ that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; !i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.

• Likelihood term:

• where l=1,...,L indicates 
the index set of the voting candidates whose label 
is l after being warped to pixel p. 

• τ is set to be the value of the maximum difference 
of SIFT feature: 

significantly faster, but also achieves lower energies most of
the time compared to the ordinary matching algorithm.

Some SIFT flow examples are shown in Fig. 8, where
dense SIFT flow fields (Fig. 8f) are obtained between the
query images (Fig. 8a) and the nearest neighbors (Fig. 8c). It
is trial to verify that the warped SIFT images (Fig. 8h) based
on the SIFT flows (Fig. 8f) look very similar to the SIFT images
(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields
(Fig. 8f) are piecewise smooth. The essence of SIFT flow is
manifested in Fig. 8g, where the same flow field is applied to
warp the RGB image of the nearest neighbor to the query.
SIFT flow is trying to hallucinate the structure of the query
image by smoothly shuffling the pixels of the nearest
neighbors. Because of the intrinsic similarities within each
object categories, it is not surprising that, through aligning
image structures, objects of the same categories are often
matched. In addition, it is worth noting that one object in the
nearest neighbor can correspond to multiple objects in the
query since the flow is asymmetric. This allows reuse of labels
to parse multiple object instances.

4.3 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and
a technique for establishing dense correspondences across
scenes, we can transfer the existing annotations to parse a
query image through dense scene alignment. For a given
query image, we retrieve a set of hK; !i-nearest neighbors in
our database using GIST matching [34]. We then compute
the SIFT flow from the query to each nearest neighbor, and
use the achieved minimum energy (defined in (4)) to rerank
the hK; !i-nearest neighbors. We further select the top
M reranked retrievals (M ! K) to create our voting
candidate set. This voting set will be used to transfer its
contained annotations into the query image. This procedure
is illustrated in Fig. 7.

Under this setup, scene parsing can be formulated as the
following label transfer problem: For a query image I with
its corresponding SIFT image s, we have a set of voting
candidates fsi; ci;wigi¼1:M , where si, ci, and wi are the SIFT
image, annotation, and SIFT flow field (from s to si) of the
ith voting candidate, respectively. ci is an integer image
where ciðpÞ 2 f1; . . . ; Lg is the index of object category for
pixel p. We want to obtain the annotation c for the query
image by transferring ci to the query image according to the
dense correspondence wi.

We build a probabilistic Markov random field model to
integrate multiple labels, prior information of object
category, and spatial smoothness of the annotation to parse
image I. Similarly to that of [43], the posterior probability is
defined as:
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where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.

The likelihood term is defined as
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where !p;l ¼ fi; ciðpþwðpÞÞ ¼ lg, l ¼ 1; . . . ; L, is the index
set of the voting candidates whose label is l after being
warped to pixel p. & is set to be the value of the maximum
difference of SIFT feature: & ¼ maxs1;s2;pks1ðpÞ % s2ðpÞk.

The prior term #ðcðpÞ ¼ lÞ indicates the prior probability
that object category l appears at pixel p. This is obtained
from counting the occurrence of each object category at each
location in the training set:

#
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where histlðpÞ is the spatial histogram of object category l.
The smoothness term is defined to bias the neighboring

pixels into having the same label in the event that no other
information is available, and the probability depends on the
edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
labels:
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where ) ¼ ð2 < kIðpÞ % IðqÞk2 >Þ%1 [43].
Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and " and $ that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; !i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.

significantly faster, but also achieves lower energies most of
the time compared to the ordinary matching algorithm.

Some SIFT flow examples are shown in Fig. 8, where
dense SIFT flow fields (Fig. 8f) are obtained between the
query images (Fig. 8a) and the nearest neighbors (Fig. 8c). It
is trial to verify that the warped SIFT images (Fig. 8h) based
on the SIFT flows (Fig. 8f) look very similar to the SIFT images
(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields
(Fig. 8f) are piecewise smooth. The essence of SIFT flow is
manifested in Fig. 8g, where the same flow field is applied to
warp the RGB image of the nearest neighbor to the query.
SIFT flow is trying to hallucinate the structure of the query
image by smoothly shuffling the pixels of the nearest
neighbors. Because of the intrinsic similarities within each
object categories, it is not surprising that, through aligning
image structures, objects of the same categories are often
matched. In addition, it is worth noting that one object in the
nearest neighbor can correspond to multiple objects in the
query since the flow is asymmetric. This allows reuse of labels
to parse multiple object instances.

4.3 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and
a technique for establishing dense correspondences across
scenes, we can transfer the existing annotations to parse a
query image through dense scene alignment. For a given
query image, we retrieve a set of hK; !i-nearest neighbors in
our database using GIST matching [34]. We then compute
the SIFT flow from the query to each nearest neighbor, and
use the achieved minimum energy (defined in (4)) to rerank
the hK; !i-nearest neighbors. We further select the top
M reranked retrievals (M ! K) to create our voting
candidate set. This voting set will be used to transfer its
contained annotations into the query image. This procedure
is illustrated in Fig. 7.

Under this setup, scene parsing can be formulated as the
following label transfer problem: For a query image I with
its corresponding SIFT image s, we have a set of voting
candidates fsi; ci;wigi¼1:M , where si, ci, and wi are the SIFT
image, annotation, and SIFT flow field (from s to si) of the
ith voting candidate, respectively. ci is an integer image
where ciðpÞ 2 f1; . . . ; Lg is the index of object category for
pixel p. We want to obtain the annotation c for the query
image by transferring ci to the query image according to the
dense correspondence wi.

We build a probabilistic Markov random field model to
integrate multiple labels, prior information of object
category, and spatial smoothness of the annotation to parse
image I. Similarly to that of [43], the posterior probability is
defined as:
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where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.

The likelihood term is defined as
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where !p;l ¼ fi; ciðpþwðpÞÞ ¼ lg, l ¼ 1; . . . ; L, is the index
set of the voting candidates whose label is l after being
warped to pixel p. & is set to be the value of the maximum
difference of SIFT feature: & ¼ maxs1;s2;pks1ðpÞ % s2ðpÞk.

The prior term #ðcðpÞ ¼ lÞ indicates the prior probability
that object category l appears at pixel p. This is obtained
from counting the occurrence of each object category at each
location in the training set:
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where histlðpÞ is the spatial histogram of object category l.
The smoothness term is defined to bias the neighboring

pixels into having the same label in the event that no other
information is available, and the probability depends on the
edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
labels:
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where ) ¼ ð2 < kIðpÞ % IðqÞk2 >Þ%1 [43].
Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and " and $ that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; !i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.



Label Transfer

significantly faster, but also achieves lower energies most of
the time compared to the ordinary matching algorithm.

Some SIFT flow examples are shown in Fig. 8, where
dense SIFT flow fields (Fig. 8f) are obtained between the
query images (Fig. 8a) and the nearest neighbors (Fig. 8c). It
is trial to verify that the warped SIFT images (Fig. 8h) based
on the SIFT flows (Fig. 8f) look very similar to the SIFT images
(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields
(Fig. 8f) are piecewise smooth. The essence of SIFT flow is
manifested in Fig. 8g, where the same flow field is applied to
warp the RGB image of the nearest neighbor to the query.
SIFT flow is trying to hallucinate the structure of the query
image by smoothly shuffling the pixels of the nearest
neighbors. Because of the intrinsic similarities within each
object categories, it is not surprising that, through aligning
image structures, objects of the same categories are often
matched. In addition, it is worth noting that one object in the
nearest neighbor can correspond to multiple objects in the
query since the flow is asymmetric. This allows reuse of labels
to parse multiple object instances.

4.3 Scene Parsing through Label Transfer

Now that we have a large database of annotated images and
a technique for establishing dense correspondences across
scenes, we can transfer the existing annotations to parse a
query image through dense scene alignment. For a given
query image, we retrieve a set of hK; !i-nearest neighbors in
our database using GIST matching [34]. We then compute
the SIFT flow from the query to each nearest neighbor, and
use the achieved minimum energy (defined in (4)) to rerank
the hK; !i-nearest neighbors. We further select the top
M reranked retrievals (M ! K) to create our voting
candidate set. This voting set will be used to transfer its
contained annotations into the query image. This procedure
is illustrated in Fig. 7.

Under this setup, scene parsing can be formulated as the
following label transfer problem: For a query image I with
its corresponding SIFT image s, we have a set of voting
candidates fsi; ci;wigi¼1:M , where si, ci, and wi are the SIFT
image, annotation, and SIFT flow field (from s to si) of the
ith voting candidate, respectively. ci is an integer image
where ciðpÞ 2 f1; . . . ; Lg is the index of object category for
pixel p. We want to obtain the annotation c for the query
image by transferring ci to the query image according to the
dense correspondence wi.

We build a probabilistic Markov random field model to
integrate multiple labels, prior information of object
category, and spatial smoothness of the annotation to parse
image I. Similarly to that of [43], the posterior probability is
defined as:
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where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.

The likelihood term is defined as
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where !p;l ¼ fi; ciðpþwðpÞÞ ¼ lg, l ¼ 1; . . . ; L, is the index
set of the voting candidates whose label is l after being
warped to pixel p. & is set to be the value of the maximum
difference of SIFT feature: & ¼ maxs1;s2;pks1ðpÞ % s2ðpÞk.

The prior term #ðcðpÞ ¼ lÞ indicates the prior probability
that object category l appears at pixel p. This is obtained
from counting the occurrence of each object category at each
location in the training set:
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where histlðpÞ is the spatial histogram of object category l.
The smoothness term is defined to bias the neighboring

pixels into having the same label in the event that no other
information is available, and the probability depends on the
edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
labels:
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where ) ¼ ð2 < kIðpÞ % IðqÞk2 >Þ%1 [43].
Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and " and $ that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; !i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.
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significantly faster, but also achieves lower energies most of
the time compared to the ordinary matching algorithm.
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(Fig. 8b) of the inputs (Fig. 8a), and that the SIFT flow fields
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Now that we have a large database of annotated images and
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where Z is the normalization constant of the probability.
This posterior contains three components, i.e., likelihood,
prior, and spatial smoothness.
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edge of the image: The stronger luminance edge, the more
likely it is that the neighboring pixels may have different
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Notice that the energy function is controlled by four

parameters, K and M that decide the mode of the model
and " and $ that control the influence of spatial prior and
smoothness. Once the parameters are fixed, we again use
the BP-S algorithm to minimize the energy. The algorithm
converges in two seconds on a workstation with two quad-
core 2.67 GHz Intel Xeon CPUs.

A significant difference between our model and that in
[43] is that we have fewer parameters because of the
nonparametric nature of our approach, whereas classifiers
were trained in [43]. In addition, color information is not
included in our model at the present as the color distribution
for each object category is diverse in our databases.

5 EXPERIMENTS

Extensive experiments were conducted to evaluate our
system. We shall first report the results on a small scale
database which we will refer to as the LabelMe Outdoor
(LMD) database in Section 5.1; this database will aid us for
an in-depth exploration of our model. Furthermore, we will
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Fig. 7. For a query image, we first find a hK; !i-nearest neighbor set in
the database using GIST matching [34]. The nearest neighbors are
reranked using SIFT flow matching scores, and form a top M-voting
candidate set. The annotations are transferred from the voting
candidates to parse the query image.
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Parsing Results

report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into
2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in
Fig. 8. The system retrieves a hK; !i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For
illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates
are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and
saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very
close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system
outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate !r (similar to
precision or true positive) to evaluate the performance of
our system, computed as

!r ¼ 1P
i mi
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where, for pixel p in image i, the ground-truth annotation is
aðpÞ and system output is oðpÞ; for unlabeled pixels,
aðpÞ ¼ 0. Notation "i is the image lattice for test image i,
and mi ¼

P
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1ðaðpÞ > 0Þ is the number of labeled pixels
for image i (some pixels are unlabeled). We also compute
the per-class average rate rl as
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5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input
image from the test set is displayed in Fig. 10a. We show the
best match, its corresponding annotation, and the warped
best match in Figs. 10b, 10c, and 10d, respectively. While the
final labeling constitutes the integration of the top
M matches, the best match can provide the reader an
intuition of the process and final result. Notice how the
warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
image structures. The scene parsing results output by our
system are listed in Fig. 10e with parameter setting
K ¼ 85;M ¼ 9;" ¼ 0:06;# ¼ 20. The ground-truth user
annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).

report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into
2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in
Fig. 8. The system retrieves a hK; !i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For
illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates
are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and
saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very
close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system
outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate !r (similar to
precision or true positive) to evaluate the performance of
our system, computed as
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5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input
image from the test set is displayed in Fig. 10a. We show the
best match, its corresponding annotation, and the warped
best match in Figs. 10b, 10c, and 10d, respectively. While the
final labeling constitutes the integration of the top
M matches, the best match can provide the reader an
intuition of the process and final result. Notice how the
warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
image structures. The scene parsing results output by our
system are listed in Fig. 10e with parameter setting
K ¼ 85;M ¼ 9;" ¼ 0:06;# ¼ 20. The ground-truth user
annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).

report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into
2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in
Fig. 8. The system retrieves a hK; !i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For
illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates
are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and
saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very
close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system
outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate !r (similar to
precision or true positive) to evaluate the performance of
our system, computed as
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aðpÞ ¼ 0. Notation "i is the image lattice for test image i,
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5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input
image from the test set is displayed in Fig. 10a. We show the
best match, its corresponding annotation, and the warped
best match in Figs. 10b, 10c, and 10d, respectively. While the
final labeling constitutes the integration of the top
M matches, the best match can provide the reader an
intuition of the process and final result. Notice how the
warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
image structures. The scene parsing results output by our
system are listed in Fig. 10e with parameter setting
K ¼ 85;M ¼ 9;" ¼ 0:06;# ¼ 20. The ground-truth user
annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).

report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into
2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in
Fig. 8. The system retrieves a hK; !i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For
illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates
are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and
saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very
close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system
outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate !r (similar to
precision or true positive) to evaluate the performance of
our system, computed as
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1ðaðpÞ > 0Þ is the number of labeled pixels
for image i (some pixels are unlabeled). We also compute
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5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input
image from the test set is displayed in Fig. 10a. We show the
best match, its corresponding annotation, and the warped
best match in Figs. 10b, 10c, and 10d, respectively. While the
final labeling constitutes the integration of the top
M matches, the best match can provide the reader an
intuition of the process and final result. Notice how the
warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
image structures. The scene parsing results output by our
system are listed in Fig. 10e with parameter setting
K ¼ 85;M ¼ 9;" ¼ 0:06;# ¼ 20. The ground-truth user
annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).
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report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into
2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in
Fig. 8. The system retrieves a hK; !i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For
illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates
are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and
saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very
close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system
outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate !r (similar to
precision or true positive) to evaluate the performance of
our system, computed as
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5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input
image from the test set is displayed in Fig. 10a. We show the
best match, its corresponding annotation, and the warped
best match in Figs. 10b, 10c, and 10d, respectively. While the
final labeling constitutes the integration of the top
M matches, the best match can provide the reader an
intuition of the process and final result. Notice how the
warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
image structures. The scene parsing results output by our
system are listed in Fig. 10e with parameter setting
K ¼ 85;M ¼ 9;" ¼ 0:06;# ¼ 20. The ground-truth user
annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).

report results on the SUN database, a larger and more
challenging data set in Section 5.2.

5.1 LabelMe Outdoor Database

As mentioned in Section 3, the LMO database consists of
2,688 outdoor images, which have been randomly split into
2,466 training and 200 test images. The images are densely
labeled with 33 object categories using the LabelMe online
annotation tool. Our scene parsing system is illustrated in
Fig. 8. The system retrieves a hK; !i-nearest neighbor set for
the query image (Fig. 8a), and further selects M voting
candidates containing minimum SIFT matching scores. For
illustration purposes, we set M ¼ 3 here. The original RGB
image, SIFT image, and annotation of the voting candidates
are shown in Figs. 8c, 8d, and 8e, respectively. The SIFT
flow field is visualized in Fig. 8f using the same visualiza-
tion scheme as in [29], where hue indicates orientation and
saturation indicates magnitude. After we warp the voting
candidates into the query with respect to the flow field, the
warped RGB (Fig. 8g) and SIFT image (Fig. 8h) are very
close to the query Fig. 8a and Fig. 8b, respectively.
Combining the warped annotations in Fig. 8i, the system
outputs the parsing of the query in Fig. 8j, which is close to
the ground-truth annotation in Fig. 8k.

5.1.1 Evaluation Criterion

We use average pixel-wise recognition rate !r (similar to
precision or true positive) to evaluate the performance of
our system, computed as
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5.1.2 Results and Comparisons

Some label transfer results are shown in Fig. 10. The input
image from the test set is displayed in Fig. 10a. We show the
best match, its corresponding annotation, and the warped
best match in Figs. 10b, 10c, and 10d, respectively. While the
final labeling constitutes the integration of the top
M matches, the best match can provide the reader an
intuition of the process and final result. Notice how the
warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
image structures. The scene parsing results output by our
system are listed in Fig. 10e with parameter setting
K ¼ 85;M ¼ 9;" ¼ 0:06;# ¼ 20. The ground-truth user
annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).
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database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).
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warped image (Fig. 10d) looks similar to the input
(Fig. 10a), indicating that SIFT flow successfully matches
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annotation is listed in Fig. 10f. Notice that the gray pixels
in Fig. 10f are “unlabeled,” but our system does not
generate “unlabeled” output. For samples 1, 5, 6, 8, and 9,
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Fig. 8. System overview. For a query image, our system uses scene retrieval techniques such as [34] to find hK; !i-nearest neighbors in our
database. We apply coarse-to-fine SIFT flow to align the query image to the nearest neighbors, and obtain top M as voting candidates (M ¼ 3
here). (c), (d), (e): The RGB image, SIFT image and user annotation of the voting candidates. (f): The inferred SIFT flow field, visualized using the
color scheme shown on the left (hue: orientation; saturation: magnitude). (g), (h), and (i) are the warped version of (c), (d), (e) with respect to the
SIFT flow in (f). Notice the similarity between (a) and (g), (b) and (h). Our system combines the voting from multiple candidates and generates
scene parsing in (j) by optimizing the posterior. (k): The ground-truth annotation of (a).
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Parsing Results

Because the regularity of the database is the key to the
success, we remove the SIFT flow matching, i.e., set the
flow vector to be zero for every pixel, and obtain an
average recognition rate of 61.23 percent without MRF and
67.96 percent with MRF, shown in Figs. 12d and 12f,
respectively. This result is significant because SIFT flow is
the bottleneck of the system in terms of speed. A fast
implementation of our system consists of removing the
dense scene alignment module, and simply performing a
grid-to-grid label transfer (the likelihood term in the label
transfer module still comes from SIFT descriptor distance).

How would different scene retrieval techniques affect our
system? Other than the GIST distance used for retrieving
nearest neighbors for the results in Fig. 12, we also use the
spatial pyramid histogram intersection of HOG visual words
and of the ground-truth annotation, with the corresponding
per-class recognition rate displayed in Figs. 12g and 12h,
respectively. For this database, GIST performs slightly better
than HOG visual words. We also explore an upper bound of
the label transfer framework in the ideal scenario of having
access to perfect scene matching. In particular, we retrieve
the nearest neighbors for each image using their ground

2376 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011

Fig. 11. Some typical failures. Our system fails when no good matches can be retrieved in the database. In (2), for example, since the best matches
do not contain river, the input image is mistakenly parsed as a scene of grass, tree, and mountain in (e). The ground-truth annotation is in (f). The
failure may also come from ambiguous annotations, for instance in (3), where the system outputs field for the bottom part, whereas the ground-truth
annotation is mountain.

Fig. 10. Some scene parsing results output from our system. (a): Query image, (b): the best match from nearest neighbors, (c): the annotation of the
best match, (d): the warped version of (b) according to the SIFT flow field, (e): the inferred per-pixel parsing after combining multiple voting
candidates, (f): the ground truth annotation of (a). The dark gray pixels in (f) are “unlabeled.” Notice how our system generates a reasonable parsing
even for these “unlabeled” pixels.


