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Review - Markov Random Fields
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« Example: “label smoothing” grid

D. Hoiem

Review - Solving MRFs
with graph cuts

Main idea:

» Construct a graph such that every st-cut corresponds to a
joint assignment to the variables y

* The cost of the cut should be equal to the energy of the
assignment, E(y; data)*.

* The minimum-cut then corresponds to the minimum
energy assignment, y* = argmin, E(y; data).

*Requires non-negative energies
S. Gould

Review - Solving MRFs
with graph cuts
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Review - Solving MRFs
with graph cuts
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Code for Image Segmentation
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x" =arg min E(x)
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How to minimize E(x)?

Global Minimum (X)

P. Kohli

Review - How does the code look
like?

| Graph *g; |

For all pixels p

. Source (0)

/* Add a node to the graph x*/
nodeID(p) = g->add_node();

/* Set cost of terminal edges =/
set_weights (nodeID(p), fgCost(p),
bgCost(p)) ;

end

for all adjacent pixels p,q
add_weights (nodeID(p),nodeID(q),

cost(p,q));
end
B sk

g->compute_maxflow() ;

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

Review - How does the code look
like?

r

\

Graph *g;
For all pixels p )
Source (0)
/* Add a node to the graph x*/
nodeID(p) = g->add_node();
/* Set cost of terminal edges x/ bgCOSt(a1) bgCOSt(aQ)

set_weights (nodeID(p), fgCost(p),
bgCost(p)) ;

a a
) =Q Ok

for all adjacent pixels p,q
add_weights (nodeID(p),nodeID(q), fgCost(a,) fgCost(a,)

cost(p,q));
B sk

end
g->compute_maxflow() ;

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli




Review - How does the code look
like?

Graph *g;

For all pixels p s (O)
ource

/* Add a node to the graph =*/
nodeID(p) = g->add_node();

/* Set cost of terminal edges x/ bgCOSt(a1) bgCOSt(az)
set_weights (nodeID(p), fgCost(p),
bgCost(p)); COSt(D,CI)
8.1 ———————— 8'2
end —
for all adjacent pixels p,q
add_weights (nodeID(p),nodeID(q), faCost(a fgCost(a
cost(p,q)); g ( 1) g ( 2)
end

B sk

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

P. Kohli

Review - How does the code look
like?

Graph *g;

For all pixels p s (O)
ource

/* Add a node to the graph =*/
nodeID(p) = g->add_node();

bgCost(a1) bgCost(a,)

/* Set cost of terminal edges x*/
set_weights(nodeID(p), fgCost(p),
bgCost(p)) ;

end

for all adjacent pixels p,q
add_weights (nodeID(p),nodeID(q), fgCost(aw)
cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1) |a1: bg azzfg |

P. Kohli

Review - Random Fields in
Vision
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C. Rother

Review - MRF with global potential

GrabCut model [Rother et. al. ‘04] oF/e

E(x,0F,08) = Z F(O")x+ B(BB)(1-x) +H;\|Xi'xj|
F. = -log Pr(z|6" B -log Pr(z(68)

R

Background

4 y, ;/Foreground G

Image z Output x BB Gaussian
Mixture models

for unknown x,06F,08 the optimization is NP-hard! yicente etal. ‘09]

C. Rother




Review - GrabCut: Iterated Graph Cuts

[Rother et al. Siggraph ‘04] o

min E(x, 6F, 68) min E(x, 6F, 68)
or,68 X

Most systems with global variables work like that
e.g. [ObjCut Kumar et. al. ‘05, PoseCut Bray et al. '06, LayoutCRF Winn et al. '06]

C. Rother

Review - Random Fields in

Vision
' N
4-connected; higher(8)-connected; MRF with Higher-order MRF
pairwise MRF pairwise MRF global variables
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C. Rother

Review - Why Higher-order
Functions?

In general B8(x4,X2,X3) # 8(x4,X2) + B(x4,X3) + O(Xz,X3)

Reasons for higher-order RFs:

1. Even better image(texture) models:
—  Field-of Expert [FoE, Roth et al. ‘05]
—  Curvature [Woodford et al. ‘08]

2. Use global Priors:
—  Connectivity [Vicente et al. ‘08, Nowozin et al. ‘09
— Better encoding label statistics [woodford et al. ‘09]
— Convert global variables to global factors [Vicenteet al. ‘09

C. Rother

Semantic Segmentation

« Joint recognition & segmentation

— segmenting all the objects in a given image and
identifying their visual categories

» aka scene parsing or image parsing

 Early studies aim at segmenting out a single
object of a known category
— Borenstein & Ullman, 2002, Liebe & Schiele, 2003,




Early Studies of Semantic
Segmentation

» Given an image and object category, to segment the
object

Object
Category

Cow Image Segmented Cow

» Segmentation should (ideally) be
* shaped like the object e.g. cow-like
e obtained efficiently in an unsupervised manner
e able to handle self-occlusion

Early Studies of Semantic
Segmentation

M. P. Kumar R. Fergus
Early Studies of Semantic Early Studies of Semantic
Segmentation Segmentation
Using Normalized Cuts, Shi & Malik, 1997
Input Bottom-up
R. Fergus R. Fergus




Early Studies of Semantic
Segmentation

Using Normalized Cuts, Shi & Malik, 1997

Input ~ Bottom-up Top- down

Borenstein and Ullman, ECCV 2002

R. Fergus

Jigsaw approach: Borenstein and
Ullman, 2002
b Pl .

Am20
= 8] k] =

Input images Segmemation

R. Fergus

Implicit Shape Model - Liebe and
Schiele, 2003

Interest Points Matched Codebook Probabilistic
Entries \oting

PR o}‘@;;

Voting Space
(continuous)
Refined Hypotheses Backprojected Backprojection

(uniform sampling) Hypotheses of Maxima R. Fergus

Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
0 = Parameters

p(h|1,0)
%f_/

Posterior

R. Fergus




Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
6 = Parameters

p(h|1,0) = p(I,h|0) = p(I|h,0)p(h|0)
N ~ J N ~ AN ~ J \ J

Posterior Joint Prior

1. Generative approach models joint
- Markov random field (MRF)

2. Discriminative approach models posterior directly

-> Conditional random field (CRF)
R. Fergus

Generative Markov Random

Field
p(h,116)= p(l | h,0)p(h|6)

Z(e) ﬂ¢( |hl,e)ﬂw,](h,,h 16,)

N J
MRF Prior
h (abels) Pairwise Potential (MRF)
{foreground, < L’Uij(hh hj|9ij)
background}
Prior has no
I (pixels) . dependency on |
Image Plane

R. Fergus

Conditional Random Field

Discriminative approach Lafferty, McGallum and Pereira 2001

PILO= 1‘[¢(h,,l|e>]‘[w,,<h,,h@

AN

Unary PalrW|se

e Dependency on | allows introduction of
pairwise terms that make use of image.

® For example, neighboring labels
should be similar only if pixel colors are
similar > Contrastterm

S
]

Image Plane

e.g Kumar and Hebert 2003 | (pixels)
IX

R. Fergus

Levin & Weiss [ECCV 2006]

Segmentation
alignment with
image edges

Consistency with
fragments
segmentation

Resulting min-cut
segmentation

R. Fergus




Semantic Segmentation

Joint Object recognition & segmentation
Goal: Detect and segment test image:

Up to 2.000.000 shape
templates

E(x,w): {0,1}"x {Exemplar} > R
Ex,w) = Z [T(wW)i-xi| + .?3 s‘xiyxj)

“Hamming distance”

[Lempitsky et al. ECCV *08] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

= 2

W )

UIUC dataset; 98.8%

accuracy
[Lempitsky et al. ECCV '08] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

Efxw) =2 6w, %) +2 8(x) +2 6(x) + 2 8 ()
i (color) I(location) ' (class) Y (edge aware
Ising prior)
x € {1,...,K} for K object classes

Location Class (boosted textons)

. .j - rectangle r

Sky g rass () Input image (b) Texton map (c) Feature pair = (rt)  (d) Superimposed rectangles

[TextonBoost; Shotton et al, ‘06] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

(a) (b) 69.6% (c) 70.3% (d) 72.2%
Class+ + edges + color
location
[TextonBoost; Shotton et al, ‘06] C. Rother




Semantic Segmentation
Joint Object recognition & segmentation
Good results ...

SKi
tree | £14%

building o
body—> road aeroplane building

grass grass grass road

tree building

bike building

road

Object Building Grass Tree Cow Sheep Sky Aeroplane = Water
classes
Bike Flower  Sign | Bird Book Chair Road  Cat Body

[TextonBoost; Shotton et al, ‘06] C. Rother

Semantic Segmentation
Joint Object recognition & segmentation

Failure cases...

) —

building

sign
road |road Npuild

C. Rother

Nonparametric Scene Parsing via Label
Transfer (Liu et al. TPAMI’12)

A non-parametric
formulation

result groundtruth

-window
Mltree
-sky

I:] road

- pole
Hcar
Mlbuilding
- unlabeled

retrieved images and their
annotations

Nonparametric Scene Parsing via
Label Transfer

* Framework consists of three main modules:

1. Scene retrieval: finding nearest neighbors (k-NN
approach)

2. Dense scene alignment: dense scene matching (SIFT
Flow)




Dense Scene Alignment
via SIFT Flow

- SIFT Flow (Liu et al., ECCV 2008)

— Finds semantically meaningful correspondences among
two images by matching local SIFT descriptors

Flow Field

Best match Query & warped

best match

Dense Scene Alignment
via SIFT Flow

- SIFT Flow (Liu et al., ECCV 2008)

— Finds semantically meaningful correspondences among
two images by matching local SIFT descriptors

= "min(||s1(p) — s2(p + w(p)) ;. ) + data term
P
Zn [u(p)| + [v(p)]) + small displacement
term

E min(Au(p) — w(q)|,d)+
(p.a)es

) smoothness
min(Alo(p) — v(q)], d), term

w(p)=(u(p), v(p)) : flow vector at point p

Label Transfer

« A set of voting candidates {s;c;w;}1. is Obtained from the
retrieved images with s;, ¢;, and w; denoting the SIFT image,
annotation, and SIFT flow field of the ith voting candidate.

* A probabilistic MRF model is built to integrate
— multiple category labels,
— prior object (category) information
— spatial smoothness of category labels

—log P(c|I, s, {si,c;,w;}) = Z@b(C(P);S, {si})
+OéZ/\ (p)) + 8 Z ); 1) +1log Z

{pajee

Label Transfer
» Likelihood term:

min ||s(p) — si(p +w(p))|l, Qpi # 0,
c — — ’LEQPZ
w( (P) l) { 0

T, Qp,l =Y,

o O = {i;ci(p+w(p) =1} where/=7,...,L indicates
the index set of the voting candidates whose label
is | after being warped to pixel p.

T is set to be the value of the maximum difference
of SIFT feature: 7 = max;, 4, pl|s1(p) — s2(P)||




Label Transfer

* Prior term :

)\(c(p) = l) = — log hist;(p)

» The prior probability that the object category /
appears at pixel p.

— obtained by counting the occurrence of each object
category at each location in the training set

— Location prior

Label Transfer

» Spatial smoothness term:

eI ~I(a)l
B(c(p), () = 8le(p) # () (5 a )

£+1

» The neighboring pixels into having the same label
with the probability depending on the image
edges:

— Stronger the contrast, the more likely it is that the
neighboring pixels may have different labels.

Parsing Results

query image result groundtruth

retrievedimages and annotations  flow field  warped images and annotations

Parsing Results

query image result groundtruth

(R

retrievedimages and annotations  flow field  warped images and annotations




Parsing Results
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