Recognition Using Visual Phrases

<u>Ali Farhadi</u>, <u>Mohammad Amin Sadeghi</u> University of Illinois at Urbana-Champaign

CVPR'11, Best Student Paper

Parts, Poselets and Attributes

High literature, For example; (Fergus, Perona, Zisserman, 2003), (Bourdev, Malik 2009),..

What is a Visual Phrase ?

What is a Visual Phrase ?

- Part of image natural to cut out
- Corresponds to chunk of meaning bigger than object and smaller than scene
- Example: Person lying on a sofa, Dog jumping

Visual Phrases

 Corresponds to chunk of meaning bigger than object and smaller than scene

Visual Phrases

A person riding a horse

Objects + Interactions

A woman drinks from a water bottle

Visual Phrases

Object + Activity

"a person riding a horse"?

Participating in Phrases affects the appearance of the objects

Change in Appearance A few postures One leg not visible

 Visual composites might be much easier to detect than their participant components.

Characteristic Appearance

Adding Visual Phrases to The Vocabulary of Recognition

Learn to detect visual phrases

Person riding horse, dog lying on sofa

Potential Concerns:

- Combinatorial number of visual phrases
 - Not all possible combinations of words make a visual phrase
- Lack of training data
 - No need for several training examples
 - Visual phrases are less complex, easy to detect.

Phrasal Recognition Dataset

Individual Objects that are well studied

- Pascal Objects
- Person, bike, car, dog, horse, bottle, sofa, and chair

Phrases

 person riding horse; person sitting on sofa; person sitting on chair; person lying on sofa; person lying on beach; person riding bicycle; horse and rider jumping; person next to horse; person next to bicycle; bicycle next to car; person jumping; person next to car; dog lying on sofa; dog running; dog jumping; person running; and person drinking from a bottle

- 8 Objects from Pascal
- 17 visual phrases
- 2769 images'120 per categ.
- 5067 examples 1796 visual phr. + 3271 objects

Training the Detectors

Visual Phrases :

- Deformable part models [P. F. Felzenszwalb et. al. 2010 v4]
- On Phrasal Recognition Dataset
- 50 examples per visual phrase

person drinking bottle

person sitting on sofa

person riding horse

person riding bicycle

person jumping

Appearance Models

Visual Phrase Detectors

Visual Phrase Detectors

Baseline

Baseline:

• Upper bound on how well one can detect a visual phrase by detecting participating objects

Fine tune the baseline to perform as best as it could potentially do

Unfair Advantages to the baseline

Training the Detectors

*****Objects:

State of the art detectors

V 4.0 of deformable part models

Trained on thousands of examples

Heavily fine tuned

Train deformable part models on Phrasal Recognition dataset

Baseline: From Detected Objects to Visual Phrase Detections

Quantitative Results

Average Precision

Phrases	Phrase	Baseline	Gain
(Trained with 50 positive images)	(AP)	(AP)	(AP)
Person next to bicycle	0.466	0.252	0.214
Person lying on sofa	0.249	0.022	0.227
Horse and rider jumping	0.870	0.035	0.835
Person drinking from bottle	0.279	0.010	0.269
Person sitting on sofa	0.262	0.033	0.229
Person riding horse	0.787	0.262	0.525
Person riding bicycle	0.669	0.188	0.481
Person next to car	0.443	0.340	0.103
Dog lying on sofa	0.235	0.069	0.166
Bicycle next to car	0.448	0.461	-0.013
Dog Jumping	0.072	0.134	-0.062
Person sitting on chair	0.201	0.141	0.060
Person running	0.718	0.484	0.234
Person lying on beach	0.179	0.140	0.039
Person jumping	0.317	0.036	0.281
Person next to horse	0.351	0.287	0.064
Dog running	0.504	0.160	0.344

Optimistic upper-bound on how well one can detect visual phrases by individually detecting participating objects then Modeling the relation.

Multiple Independent Detectors

Multiple Independent Detectors

Decoding Multiple Detectors

Design a Visual Phrase Detector

Feature Representation

• Well designed feature representations should make it unnecessary to account for pairwise interactions

• All detectors should be aware of responses of other detectors in a vicinity

Design a Visual Phrase Detector

Person Horse P rides H

Non-maximum suppression

What's wrong with NMS

We could have done better if visual phrase plays a role

> Maybe remove this because some person is riding a horse and there shouldn't be another person under the horse

What's wrong with NMS

We could have done better if visual phrase plays a role

> If person detector gives a low confidence, but we are pretty sure there are horse and person riding it, confidence for this person should go up

Need a better method that take into account the relationship between objects

NMS to Decoder

Our current pipeline

Novel decoding procedure

"Recognition Using Visual Phrases" Mohammad Sadeghi, Ali Farhadi

NMS to Decoder

Our current pipeline

Novel decoding procedure

"Recognition Using Visual Phrases" Mohammad Sadeghi, Ali Farhadi

Redefine Feature

- Decoding needs more info from features
- Goal: a new representation of feature that is aware of the surrounding features

Consider this "person" bounding box Suppose this is feature x_1

Now let's consider x_1 in relation with other surrounding

()

()

0.4

0.2

Consider this "person" bounding box Suppose this is feature x_1

Now let's consider x_1 in relation with other surrounding "horse"

Consider this "person" bounding box Suppose this is feature x_1

Now let's consider x_1 in relation with other surrounding "P rides

feature vector x₁ (class "person")

0

1.2

Interaction of x₁with 0.2 0.4 0 "person" 0 0 \mathbf{O}

0 0 0 0 0 ()

()

()

0.8

0 \mathbf{O} ()0 () \mathbf{O} 1.8 0.9 0.6

0.7

Interaction of x₁with "horse"

Interaction of x_1 with

"P rides H"

Decoding

$$\min_{w} \sum_{c \in \{0,...,K\}} \frac{1}{2} \| w_{c} \|_{2}^{2} + (3)$$

$$\lambda \sum_{n}^{N} \sum_{i}^{M} w_{c_{i}}^{T} (\phi(X_{n}, h_{n,i}^{*}) - \phi(X_{n}, y_{n,i})) + L(H_{n}^{*}, Y_{n})$$
s.t. $H_{n}^{*} = \arg \max_{H_{n}} \sum_{i}^{M} w_{c_{i}}^{T} \phi(X_{n}, h_{n,i}) + L(H_{n}, Y_{n})$ (4)

Before and After

Before and After

	bicycle	bottle	car	chair	dog	horse	person	sofa
detectors of [8]	0.434	0.429	0.329	0.213	0.316	0.438	0.295	0.204
[2] without phrases	0.431	0.425	0.191	0.225	0.297	0.475	0.204	0.167
[2] with phrases	0.449	0.435	0.228	0.217	0.316	0.462	0.286	0.204
Our decoding without phrases	0.437	0.434	0.330	0.216	0.329	0.440	0.297	0.218
Our decoding with phrases	0.457	0.435	0.344	0.227	0.335	0.485	0.302	0.260

This method outperforms state-of-the-art object detector and state-of-the-art multiclass recognition method of C. F. C. Desai, D. Ramana.

	bicycle	bottle	car	chair	dog	horse	person	sofa
detectors of [8]	0.434	0.429	0.329	0.213	0.316	0.438	0.295	0.204
[2] without phrases	0.431	0.425	0.191	0.225	0.297	0.475	0.204	0.167
[2] with phrases	0.449	0.435	0.228	0.217	0.316	0.462	0.286	0.204

	bicycle	bottle	car	chair	dog	horse	person	sofa
detectors of [8]	0.434	0.429	0.329	0.213	0.316	0.438	0.295	0.204
Our decoding without phrases	0.437	0.434	0.330	0.216	0.329	0.440	0.297	0.218
Our decoding with phrases	0.457	0.435	0.344	0.227	0.335	0.485	0.302	0.260

	bicycle	bottle	car	chair	dog	horse	person	sofa
detectors of [8]	0.434	0.429	0.329	0.213	0.316	0.438	0.295	0.204
[2] without phrases	0.431	0.425	0.191	0.225	0.297	0.475	0.204	0.167
[2] with phrases	0.449	0.435	0.228	0.217	0.316	0.462	0.286	0.204
Our decoding without phrases	0.437	0.434	0.330	0.216	0.329	0.440	0.297	0.218
Our decoding with phrases	0.457	0.435	0.344	0.227	0.335	0.485	0.302	0.260

This method outperforms state-of-the-art object detector and state-of-the-art multiclass recognition method of C. F. C. Desai, D. Ramana.

Conclusion

- Visual Phrases
 - Bigger than objects and smaller than scenes
 - Substantial gain in understanding images
- Phrasal recognition help object recognition
 - Including to the vocabulary of recognition
 - Decoding
- What should we recognize
 - Semantic spectrum of elements of recognition
- Visual phrases in practice, limitations

Images used in presentation are taken from web and UIUC Phrasal Recognition Dataset, Slides based on authors' presentation