
CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

CMP 717 – Programming Assignment 1: Boundary Detection via Sketch
Tokens1

Due date: Tuesday, 2017-03-14, 11:59 PM

Figure 1: From left to right: (1) input image (2) boundary strength based on the average of many
Canny edge detections (3) results from this project (4) average human boundary annotations. The
Canny detector responds strongly to the interior texture of the giraffe instead of its boundary
against the background. The Sketch Token result agrees more with human boundary annotation.
The multitude of weaker boundary detections are not a problem as long as they are less confident
than the correct boundaries.

Overview

Boundary detection is an important, well-studied computer vision problem. Clearly it would be
nice to have algorithms which know where one object stops and another starts. But boundary
detection from a single image is fundamentally difficult. Determining boundaries could require
object-specific reasoning (E.g. I know this is a boundary because I recognize this as an elephant)
making boundary detection ”vision hard”.

Classical edge detection algorithms, including the Canny and Sobel baselines we will compare
against, look for intensity discontinuities. The more recent Pb boundary detectors (e.g. Martin,
Fowlkes, and Malik, 2004) significantly outperform these classical methods by considering tex-
ture and color gradients in addition to intensity. Much of this performance jump comes from the
ability of the Pb algorithm to suppress false positives that the classical methods produce in tex-
tured regions. The more recent ”global” Pb (gPb) method of Arbelaez, Maire, Fowlkes, and Malik
2011 improves boundary detection further by reasoning about longer range relationships between
contours. This work is still very near state of the art performance.

The Sketch Tokens approach (Lim, Zitnick, and Dollar, 2013) differs from the gPb algorithm in
several ways. (1) Sketch Tokens is an entirely local algorithm. Each boundary decision is based

1This assignment is based on project 5 of the CS143 course at Brown - http://cs.brown.edu/courses/cs143/
proj5.

Page 1



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

on local patch statistics without any sort of global or long range reasoning. (2) Sketch Tokens uses
relatively simple gradient and color features instead of the relatively complex, hand designed tex-
ture half-disc descriptor of Pb. (3) Sketch Tokens relies heavily on machine learning to determine
the mapping from image structure to boundary scores, while Pb does not. The Sketch Tokens
algorithm far exceeds the performance of the local Pb algorithm and matches the performance of
the more complex ”global” Pb.

In this assignment, you will implement a slightly simplified version of Sketch Tokens.

Berkeley Segmentation Data Set

Before we go into more details about the algorithm you will implement, we will discuss the data
set you will use for learning and evaluation. The BSDS 500 data set is included with your starter
code. It contains 500 images – 200 training images, 100 validation images, and 200 test images.
You don’t need to use the validation images for this project.

Each of the 500 images has 4 or more ”ground truth” human segmentations. We don’t actually
care about the segments for this project but instead the boundaries between them. These bound-
ary maps are stored in Matlab readable .mat files. These are the ”Sketches” from which ”Sketch
Tokens” are derived. You will use some or all of the 200 training images to train a classifier. You
will run this classifier on every pixel of the test set images and create boundary images. These
boundary images will be passed to code from the Berkeley Segmentation Data Set to compute
the precision-recall and F measure of your algorithm. Unfortunately, this evaluation method is
quite slow because it uses a complex correspondence algorithm to relate your detected edges to
the human drawn boundaries. This is preferable to a naive metric which simply checks per-pixel
overlap.

By default, the starter code only measures performance on 10 of the 200 test images to speed up
testing and evaluation. However, if you want a more trustworthy evaluation you should run your
algorithm and the evaluation on the full test set. If you want to ”win” the performance competi-
tion for this project you must report a score on the full test set.

The BSDS evaluation computes a precision-recall curve (a sample precision-recall curve is shown
in Figure 2). In the boundary detection community one typically reports the highest ”F-measure”
of any point on the curve, where F-measure is the harmonic mean of precision and recall. F-
measure may be preferred because certain boundary detection algorithms have trouble producing
a full precision recall curve, and those algorithms would be heavily penalized by average preci-
sion. On the other hand, optimizing only for F-measure seems to have led to algorithms that don’t
perform especially well in high precision or high recall regimes, because those parts of the curve
would never have high F-score. The Sketch Tokens paper reports average precision and it is quite
possible that you beat most of the start of the art methods in boundary detection according to
average precision.

The Sketch Token Algorithm

This project is a fairly faithful implementation of the Sketch Tokens algorithm. Therefore it is
important that you read the paper through Section 3!

Page 2



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

Figure 2: Dotted lines are copied from figure 17 in Arbelaez et al. 2011. Solid lines come from our
implementations. Light green lines are iso-F measure lines.

Your Implementation

We suggest implementing the Sketch Tokens algorithm in a particular order to make debugging
easier. In particular, we recommend skipping the entire concept of Sketch Tokens with your first
implementation! Instead you will first train a binary classifier which recognizes boundary versus
non-boundary.

Part one: Image representation in get channels.m. First you need to be able to represent im-
age patches as the Sketch Tokens algorithm does. As described Section 2.2.1 in the paper, you
need a function to convert an RGB image to 14 particular channels: 3 LUV color channels, 3 over-
all gradient magnitude channels, and 8 oriented gradient magnitude channels. You can use the
function rgbConvert(I,’luv’) in Piotr’s Toolbox to create the color channels. For the gradi-
ent magnitude images you want to blur the image by the appropriate amount (Gaussians with
sigmas 1.5, and 5 and no blur [sigma=0]) and then compute the gradient magnitude at each pixel
(i.e. the square root of the squared x and y derivatives). For the blurs of sigma 0 and 1.5 you want
to compute oriented gradient magnitude, as well, for orientations of 0, pi/4, pi/2, and 3pi/4.
We are interested in gradient magnitude not the signed gradient, thus computing the gradient
magnitude at pi/2 and 3pi/2 would be redundant. You can create the the gradient channels with
imfilter and appropriate oriented filters (e.g. Sobel-like filters at particular orientations). You
should use imfilter’s ’symmetric’ option to minimize boundary artifacts, although some are
unavoidable. You could, alternatively, compute the gradient magnitude at particular orientations
analytically by projecting the x and y gradients onto vectors at the appropriate orientation. You
are not required to implement the ”self similarity” features described in Sketch Tokens, although
you may do so for extra credit. You are not allowed to use Piotr’s toolbox channel functions other
than imPad and rgbConvert.

Page 3



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

Debugging tips: Make sure that the channels you compute aren’t somehow degenerate (e.g. cer-
tain channels are all zero). Check that rgbConvert is returning valid images. Make sure you are
taking the absolute value of the oriented gradient responses because we want gradient magnitude.

Part two: Creating training data based on BSDS annotations in get sketch tokens.m. The
starter code provides an example of loading a BSDS annotation file for a particular image. The
annotations you will use are simply binary images with pixels=1 for boundaries and pixels=0 for
non-boundaries. There are 4 or more annotations for every training and test image. You need a
function which loops through the training images and pulls out positive and negative training
examples. A positive training example is a NxN patch of the 14 channels you computed in part
one which is centered on a pixel that has been annotated as a boundary. Negative training exam-
ples are the other patches. You want to use a single call to get channels.m for each training
image. If you call get channels.m for every patch then the resulting representation could be
dominated by image filtering boundary effects. You want to be able to specify the ratio of nega-
tive and positive training examples – you’ll get a more accurate classifier if your training data is
close to a 50/50 split than if it follows the natural distribution of edges and non-edges. For initial
experiments, you should keep the patches small because otherwise they use a lot of memory (e.g.
a 35x35 patch of 14 channels, as used in the paper, has 17150 dimensions). 15x15 patches should
be fine for initial testing. While more training data is always better, 30 thousand training samples
is enough for initial testing.

Debugging tips: Check that you’re cutting out the correct patches. Many students make mistakes
in the indexing and think they are cutting out positive examples but instead are cutting out ar-
bitrary patches because they didn’t take into account padding they added to the training image.
You don’t necessarily need to pad the training image here, you could instead cut out training
examples only from the valid central region of the training images. It is important that your train-
ing examples be diverse. Using 100,000 training examples can lead to poor performance if they
all come from two training images. Ideally you would randomly sample all 200 training exam-
ples. For debugging, though, you might get away with sampling from 20 or 40 images. You also
don’t want to simply sample the boundary and non-boundary examples in scanline order. This
will also lead to training examples that are overly redundant. Sampling random training exam-
ples from each image works well. You should be able to eyeball the training features returned
by get sketch tokens (using a visualization such as imagesc) and see the difference between
boundary and non-boundary training examples. Non-boundary training examples should have
slightly lower gradient magnitude on average. Also make sure that your labels are ’1’ (non-
boundary) and ’2’ (boundary). There will be more labels in part five once we try to recognize
sketch tokens.

Part three: Training a random forest classifier. As argued in the paper, a random forest classifier
is well suited to our boundary detection task. Random forest classifiers are powerful (they are
non-linear, unlike the linear SVMs) yet they are still very fast to evaluate. That is important when
you need to make decisions about tens of millions of pixels! However, training a random forest
can be quite slow. This will depend a great deal on the particular parameters you choose. You will
use the forestTrain function to train a classifier to distinguish boundary and non-boundary
features. Although there are many parameters, the defaults work fairly well. You will want to
use more than 1 tree, though. 20 is a reasonable number. Experiment with the other parameters
once you have things working. You do not need to make multiple passes through the training
data to train and combine multiple decision trees as is done in the Sketch Tokens paper. You can
get reasonable performance with however many training samples you can fit into memory at once.

Page 4



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

Debugging tips: The starter code by default reports the training error of your random forest classi-
fier. Because a random forest classifier is non-linear with an arbitrary number of model parame-
ters, it tends to have very low training error. If your training error is not high (.9 average precision
or more) then there may be something degenerate in your features (e.g. they are all near zero or
all near duplicate). If your training error is low your test error could still be high. Unlike the
linear SVMs used in previous projects, the random forest is able to overfit to whichever training
data you provide it (even random noise). As you sample a bigger, more diverse set of training
examples you might see your training error increase while your testing error decreases. That’s
fine. Don’t try to optimize training error. The starter code only evaluates training error as a san-
ity check. To better assess how accurate your random forest is without going through the entire
boundary detection pipeline you can create a validation set by taking a new random sample from
the training images or even better a sample from the BSDS validation set. The starter code in-
cludes some placeholder code for this purpose.

Part four: Boundary classification in detect sketch tokens.m. Now you need to create a
function which takes as input test image and returns a real-valued boundary likelihood image.
This is fairly easy, actually, because our random forest classifier natively returns likelihoods. Sim-
ply invert the probability of the background class as returned from forestApply or equivalently
sum the likelihoods of the non background classes (this is equation 1 in the Sketch Tokens paper).
Your boundary image needs to be the same height and width as each test image, so you need to
pad the boundaries of the test image in order to build features centered around each pixel. You
can use imPad for this purpose if you want. You can call forestApply once per pixel to find the
boundary likelihood, but that is somewhat slow. To make your code faster you can convert the
image to the channel features and stack the patches into rows of a large matrix and make one call
(memory permitting) to forestApply. If you don’t have enough memory to do this, you can
call forestApply on groups of patches (e.g. all of the patch features from a single row of the test
image) and this will still be fast. You can use reshape() to convert a 1d array of likelihoods to
a 2d image. The boundary image generated by applying your classifier to each pixel will look a
bit blurrier than you might expect. You should apply non-maximum suppression to it using the
provided function stToEdges.m

Debugging tips: Make sure that you are computing the ’channels’ exactly the same was at test time
as you did at training time. If you divide the input image by 255 at training time but not at test
time (or vice versa) your performance will be terrible because the image features will be drasti-
cally different. Make sure that you flatten the patches from the channel images in the same way
at training and testing time.

At this point you have a complete boundary detection method. With some parameter tuning, it
can work extremely well! Don’t move on to the next parts until you’re beating the Canny baseline
(F score above 0.58). Now, let’s define and detect ”Sketch Tokens”.

Part five: cluster annotations into Sketch Tokens and use them during classifier learning. In-
stead of just sampling image features from the training set, you now need to sample the human
annotations as well. You should convert human annotation images into the DAISY representation
with a call to compute daisy.m. compute daisy.m returns a structure containing a DAISY de-
scriptor centered on each pixel in the image. To get a particular DAISY descriptor use the function
get descriptor.m. You can implement this as a modification to get sketch tokens.m or as
a separate function. It is probably easiest to sample the image features and the sketch features
simultaneously, but this strategy may not generalize as well to more advanced training methods.

Page 5



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

E.g. if you want to sample a particular number of image features for each sketch token then you
may want to have a vocabulary of sketch tokens decided on already. Once you have enough im-
age and sketch samples, e.g. 30 thousand of each from the same locations in the same images, you
will run k-means on the DAISY descriptors and then the cluster membership of those sketches
implies the Sketch Token categories of the corresponding image features. These labels can simply
be passed to the forestTrain function without further modification because the forestTrain
natively supports multiway classification. This is one of the advantages of using a random de-
cision forest rather than the SVMs we have used for prior projects (even though we did, in fact,
use SVMs for multiway classification). Instead of having two labels (e.g. 1 for background, 2 for
boundary) you will have K labels (e.g. 1 for background, 2 through 17 for 16 sketch token classes).
Your detection function may need to change, as well, to sum up the probabilities of the individual
sketch tokens. Alternatively you can simply use 1 minus the background probability returned
from forestApply and thus your detector code doesn’t even change.

Starter Code

To make this project easier for you we’ve included four different packages. Unfortunately, each
of these relies on mex’d C or C++ code which means it is not easily cross platform. We’ve tried
to precompile everything for Windows, Linux, and MacOS. If you get an error saying that a par-
ticular function isn’t found, e.g. ”Undefined function ’mex compute all descriptors’
for input arguments of type ’single’" then you may need to compile the function ac-
cording to the instructions below.

• The Berkeley Segmentation Data Set evaluation method in folder bench. This relies on a
mexed function, correspondPixels. Compile it with build.m in bench/source if you need
to. We went through considerable effort to create a version that compiles in Windows.

• Piotr Dollar’s Image and Video Matlab Toolbox in folder will be used to train random
forest classifiers (specifically the function forestTrain). The toolbox includes binaries
for Windows and Linux. The function toolboxCompile can be used for other operating
systems.

• The DAISY descriptor is a SIFT-like descriptor with a ring structure that is used to cluster
human annotations into Sketch Tokens. We provide a modified version of the code in folder
daisy. The code is compiled for Windows 64 and Linux 64, but you can use the build.m
function for other operating systems.

• VLFeat is once again provided. You can use it for k-means or simply use Matlab’s built
in version. The starter code provides an outline of the pipeline and provides examples of
image loading and visualization. If you run the starter code unchanged, it will use Sobel
and Canny based methods to detect boundaries in a small test set and then evaluate those
results with respect to the BSDS ground truth. The average of Canny edge detections with
different parameter settings is a non-trivial baseline, but you can beat it!

Performance Tips

This section contains suggestions for achieving higher accuracy. Everything proposed here is op-
tional. By considering the issues below, we were able to achieve a best performance of F=0.73,
matching the Sketch Tokens paper and gPb. However, as long as you are beating the Canny base-
line then you can get full credit for this project.

Page 6



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

While it may seem as if boundaries should be relatively simple structures (at least compared to
previous visual phenomena that we’ve tried to recognize such as scenes and objects), it turns
out that the Sketch Token algorithm depends heavily on having rich image features and large
amounts of training data. This makes it computational difficult to achieve the highest perfor-
mance. For example, our reference implementation achieved an F-score of 0.70 only by using 150
thousand training samples of 10 thousand dimensional features. That’s 6GB of training data! The
Sketch Token paper used even more training data by training decision trees independently with
different random samples of the training data and then combining them into a final decision for-
est. Multiple trees (or forests of trees) learned with forestTrain can simply be concatenated
together (e.g. forest = [forest1; forest2]). If you’re going to adopt this stategy it is
recommended that you save the intermediate forests to disk using save() and then read them
and combine them later. You’re not required to independently learn and combine classifiers. You
should debug your system with smaller amounts of training data and lower dimensional features.
For example, 11x11 patches of the various channels can achieve an F score of 0.67 with enough
training data.

Even though a key concept of the Sketch Tokens paper is, obviously, the Sketch Tokens, you may
not see much performance gain by using them. The simpler alternative of not clustering the anno-
tations and simply training a boundary versus background classifier can work well. For different
choices of features, training data, and learning parameters we saw the use of Sketch Tokens de-
crease or increase performance by about 0.02. The paper reports an increase in F-score of 0.05 by
using sketch tokens but we could not match that. Maybe you can!

To make development easier, make use of code cell structures and consider saving the learned
decision forests for future reuse. The learned forests are relatively compact. You don’t want to try
and debug your detector while having to resample training data and relearn the classifier each
time.

Many parts of the code can be parallelized in Matlab (see help parfor). This can provide a sig-
nificant speedup on a multicore system but it can make debugging more difficult.

You might benefit from some careful treatment of the training data (part two, above). For ex-
ample, what do you do when one human annotator labels a pixel as a boundary but another (or
perhaps, all four other) annotator does not? Also, should the pixel directly adjacent to a human-
labeled boundary be treated as negative training data? Maybe it is actually a boundary because
the humans weren’t pixel-perfect accurate. You can try different strategies for deciding which
annotations to trust as negative and positive training data. Luckily the naive approach will not
break things catastrophically.

Blurring the probability of boundary estimate that your decision forest produces before running
non-maximum suppression can improve performance and make the results look far better quali-
tatively.

Writeup

For this project you must do a project report in HTML. In the report you will describe your algo-
rithm and any decisions you made to write your algorithm a particular way. Discuss any extra
credit you did, and clearly show what contribution it had on the results (e.g. performance with
and without each extra credit component). For this project you should include the precision recall
plot of your best performing variant as well as the reported F-score (maximum harmonic mean of

Page 7



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

precision and recall). You should also include some input / output pairs. You might (optionally)
want to include examples of learned sketch tokens (as in Figure 1 of the Sketch Tokens paper).
To create such a visualization store the image patch representation of each boundary sample and
then average them according to the kmeans Sketch Token cluster assignments. To visualize the
learned classifiers you can show the detections of individual sketch tokens in a test image.

Main Steps of the Assignment

• Represent images with the appropriate gradient and color channels

• Sample boundary and non-boundary training image patches from the BSDS and convert
them into the appropriate local feature representation

• Sample boundary annotations at the same locations and convert them into the DAISY fea-
ture representation. Cluster boundary samples into Sketch Tokens and use the cluster as-
signments as training labels for learning

• Learn to recognize Sketch Tokens using a random decision forest

• Detect boundaries in test images by assigning a boundary probability to every pixel using
your learned decision forest

• Evaluate your boundary detections on the small test set. You should aim to beat the 0.6
F-score of the Canny baseline.

• Writeup.

Grading

The assignment will be graded out of 4: 0 (no submission), 1 (an attempt at a solution), 2 (a partially
correct solution), 3 (a mostly correct solution), 4 (a correct solution), 5 (a particularly creative or insightful
solution).

What to Hand In

You are required to submit all your code along with a report in HTML format. The codes you
will submit should be well commented. Your report should be self-contained and should contain
a brief overview of the problem, the details of your implemented solution and your comments
about the experimental analysis on the aforementioned issues. Finally, prepare a ZIP file named
name-surname(s)-p1.zip containing

• README.txt - text file containing anything about the assignment that you want to tell but
is not appropriate for the writeup webpage

• code/ - directory containing all your code for this assignment

• html/ - directory containing all your html report for this assignment, including images

The ZIP file will be submitted via email to erkut@cs.hacettepe.edu.tr.

Page 8



CMP 717, Spring 2017 - Programming Assignment 1
Hacettepe University Department of Computer Engineering

Credits

This assignment is based on project 5 of the CS143 course at Brown, which was made possible with
considerable help from Joseph Lim, Piotr Dollar, and Larry Zitnick. Evaluation code adapted
from Berkeley Segmentation Data Set. Project description and code by James Hays and Libin
”Geoffrey” Sun.

Late policy

You may use up to five extension days (in total) over the course of the semester for the three
practicals. Any additional unapproved late submission will be weighted by 0.5.

Academic Integrity

This assignments could be done in pairs. You are encouraged to discuss with your other class-
mates about the given assignments, but these discussions should be carried out in an abstract way.
That is, discussions related to a particular solution to a specific problem (either in actual code or
in the pseudocode) will not be tolerated. In short, turning in someone elses work, in whole or
in part, as your own will be considered as a violation of academic integrity. Please note that the
former condition also holds for the material found on the web as everything on the web has been
written by someone else.

Page 9


