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Abstract. Local symmetry axis based schemes have been used for generic
shape recognition as they lead to articulation insensitive representations.
Despite their strengths, purely syntactic level of axial representations
precludes the possibility of distinguishing a likely articulation from an
unlikely one. In order to overcome this weakness, syntax should be com-
bined with pragmatics and/or semantics. As a solution we propose a
novel articulation space which enables inferences on the likelihood of
possible articulations. Articulation priors can be constructed directly
from examples (pragmatics) or set externally (semantics). We incorpo-
rate articulation priors to a skeletal matching scheme to arrive at an
enriched axial representation which is sensitive to unlikely articulations
but insensitive to likely ones.
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1 Introduction

Generic shape recognition demands representations which are robust with re-
spect to local deformations and articulations as well as transformations which
arise due to viewpoint changes. Different representations and matching schemes
which are invariant or insensitive to articulations and bendings were presented
in the literature [1–9]. The schemes based on local symmetry axis have been
particularly considered due to their ability to capture the shape structure. De-
spite their strengths, presemantic and purely syntactic representations used in
these techniques fail to distinguish a likely articulation from an unlikely one.
Such a situation is demonstrated in Figure 1: Instances of two shapes share a
similar change in local symmetry structure, but based on our past knowledge,
the shape given in Figure 1(d) should not be matched with the one given in Fig-
ure 1(c) and not be considered as a fork. Therefore, a mechanism to represent
possible variations on the symmetry branches and infer them from data becomes
essential.

In this work, we propose articulation space as a new representation space in
which similar articulations and bendings yield closer coordinates. A point in the
articulation space is deprived of shape information and global deformation such
as affine transformation and represents only a local posture assumed by a section
of the shape. We demonstrate that it is possible to build articulation priors and
make inferences on this space. These inferences can be combined with spatial
layout models such as skeletal matching to arrive at a shape recognition scheme
which is insensitive to likely articulations and sensitive to unlikely ones, thus
articulation space provides a mechanism to combine syntax with pragmatics.

An important feature of our method is that the part information is utilized
without explicit computation of parts or joints. Even though we start with the
coarsest representation with one level of part hierarchy representing just the
limbs of a main body, existence of ignored joints such as an elbow leads to
special patterns in the articulation space.

Main inspiration for our work comes from two sources. First one is the land-
mark based shape analysis of Kendall [10] and Bookstein [11], which has been

(a) (b) (c) (d)

Fig. 1. Human silhouettes (a) and (b) and the shapes (c) and (d) share a similar change
in local symmetry structure. These cases should be distinguished at a higher semantic
level which takes into account the fact that the human arm should have much larger
variability than the parts of a fork.
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adopted by Perona et. al. [12] to design a recognition scheme by considering the
relative spatial arrangement of shape sections. Our goal is completely different
from that of Perona et.al. [12]. They use Kendall’s idea to filter out global trans-
formations in order to capture shape. On the other hand we filter out the shape
information in addition to global transformations to capture the articulations.

Second inspiration comes from a recent local symmetry formulation of Aslan
et.al. [8] which computes, in a naive sense, the coarsest representation of a shape
with one level of hierarchy. Main appeal of this representation is that it allows
very robust and easy reference point extraction and makes the presented ideas
practically possible.

Previously in [4] deformations on two primitive shapes (the circle and the
worm) are considered. A linear shape space is constructed from examples with
the help of principle component analysis. Principal component analysis is also
used in [13] to learn a linear shape space which captures the global deformations
of the medial axis.

Articulation priors are considered particularly in applied problems involving
motion and tracking [14]. Pose configurations are represented as data determined
manifolds embedded in high dimensional measurement spaces [14, 15].

The paper is organized as follows: In Section 2 we review local symmetry
representation presented in [8] and discuss how candidate deformable shape sec-
tions are identified from it. In Section 3 we explain representation of articulations
in a special coordinate system which is used to form the articulation space. In
Section 4 we explore the structure of articulation space. In Section 5 we give
some illustrative examples demonstrating some inferences on this space. Finally,
we conclude with the summary and future work.

2 Disconnected Skeleton and Deformable Sections

Consider a shape whose boundary is Γ . Let v be the solution of the following
differential equation:

∇2v =
v

ρ2
, v|Γ = 1 (1)

Successive level curves of v are gradually smooth versions of Γ and the
amount of smoothing increases with increasing ρ. v function is closely related
to the Ambrosio-Tortorelli approximation [16] of Mumford-Shah segmentation
functional [17]. In [18] this connection is explored and v function is proposed as
a multiscale alternative to distance transform which can be directly computed
from unsegmented real images. Recently, Aslan et. al. [8] considered the limit
case behavior of Equation (1) as ρ →∞ for silhouettes. By this way, in a naive
sense, the coarsest scale at which the shape is perceived as a single blob is se-
lected. Resulting surface v has similar characteristics to the distance surface used
in [19] and permits to a very stable shape analysis by capturing the ribbon-like
sections in the form of a disconnected skeleton – a set of disconnected protrusion
and indentation branches. Each protrusion branch emanates from a boundary
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protrusion and ends at an interior point possibly locating a joint, therefore it
indicates a section of the shape which may or may not bend. Conceptually, such
a branch measures the deviation of the shape from a circle [20, 8, 21, 18]. Some
shapes and their coarsest level representations are shown in Figure 2. Notice
that the approach computes only 1-level of hierarchy – limbs of the main body.

(a) (b) (c) (d)

Fig. 2. Some shapes and their disconnected skeletons computed using the method
presented in [8]. Shapes with (a)-(b) noisy boundary (c) thin structures (d) holes.

3 Local Affine-Invariant (LA) Coordinates

In the disconnected skeleton representation, each protrusion branch is neighbored
by two indentation branches [18, 22]. The end point of a protrusion branch and
the two indentations fix a local coordinate frame in which the start point (tip)
of the protrusion moves freely.

These four points define three vectors starting from the end point of the
protrusion branch and ending respectively at the tips of the two indentations and
the protrusion. The third vector can be represented as a linear combination of
the remaining two. Some vector combinations are shown in Figure 3. Note that
forming vector combinations is an automatic procedure and does not require
explicit part computation.

When these vectors are transformed to standard bases, every configuration
can be represented by only a single point (Figure 4). We call this point as Local
Affine-Invariant (LA) coordinate. In this coordinate system each point denotes

(a) (b) (c) (d)

Fig. 3. Vector combinations (extracted automatically) of some sections of (a) palm
tree (b) cat (c) flower (d) scissors.
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“local” pose of a shape section which may or may not allow to articulate or
bend.

Fig. 4. Articulation of a section can be defined by means of a single point when a local
coordinate frame is fixed.

4 Articulation Space

In geometric point of view, shape is defined as the geometric information that
remains when location, scale and rotational effects are filtered out [10]. On the
other hand, it is the shape information which has to be filtered out in order
to make articulations explicit. LA coordinate representations do not carry any
shape information.

Notice that the four points used in the construction of vector combinations of
a section’s pose define a quadrangle. Therefore it is possible to associate each LA
coordinate with a set of affine related quadrangles or equivalently a canonical
quadrangle represented in LA coordinates. The collection of such quadrangles
in LA coordinates may be considered as an articulation space (Figure 5). Notice
the qualitative similarity of this space to Kendall shape space [10].
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Fig. 5. Articulation space. (a) Each point in the articulation space can be associated
with a quadrangle (b) four quadrangles that fall on x = y line in the articulation space.
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In articulation space, similar articulations or bendings yield closer coordi-
nates. Consider the two human silhouettes shown in Figure 6. Since the left
arms have similar postures, the corresponding articulations are represented by
two nearby points in LA coordinates. On the contrary, LA coordinates of right
arms are far distant from each other. Notice that a horizontal arm will be on
x = y line, whose polar representation is (l, π/4) where l is the dimensionless
arm length.

(a) (b) (c)

Fig. 6. LA coordinates. (a) two human silhouettes with different postures (b) LA
coordinates of the left arms (c) LA coordinates of the right arms.

Assuming that the arm is a single rigid body, possible coordinates should
fall into a circle whose radius is l since the size information is already filtered
out. One may think that quadrangles that lie on a constant angle line in the
articulation space (such as any two quadrangles shown in Figure 5(b)) can not
both belong to the same shape section and may come to a conclusion that the
whole space is not utilized and the articulations lie on a 1-D manifold. This is
not the case. Figure 7(d) shows three different postures of human arm in a single
image consisting of two rigid body movements of arm (Figure 7(a)-(b)) and a
case where a bending occurs (Figure 7(c)). The corresponding LA coordinates of
left arms (which are determined from the disconnected skeleton representations
computed from extracted silhouettes) are given in Figure 7(e). Notice that due
to initially ignored joints such as elbows, LA coordinates of a shape section may
not always lie on a circular arc.

Degenerate Cases

Representation with respect to LA coordinate system deteriorates when the
points defining the coordinate system are nearly colinear (see head section in
Figure 8(a)). Even a very small change in the location of the fourth point leads
to a significant change in the LA coordinate. Another degenerate situation is
encountered when the second indentation is not close enough (see leg sections in
Figure 8(a)). In this case, the length of one of the vectors defining the coordinate
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(a)

(b)

(c)

(d)

(e)

Fig. 7. Articulations and bendings in the articulation space. (a)-(c) three different pos-
tures of a human figure (taken from ira wave2 video sequence from action-silhouette
database of [19]), the corresponding binary silhouettes and disconnected skeletons ex-
tracted from upper body portions (d) these three postures combined (e) LA coordinate
representations of left arms in the articulation space.

frame becomes too large and LA coordinates fails to capture the variations of
the tip of protrusion. Note that this latter degenerate case is a side effect of the
symmetry extraction and may be alleviated by modifying it.

(a) (b)

Fig. 8. Deformable sections of a human shape. (a) start and end points of protru-
sion and indentation branches (b) quadrangle or triangle representations of deformable
sections.
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In these degenerate situations, it is possible to define the local frame using
only two points and the coordinate representation becomes equivalent to that
of Bookstein used for analyzing landmark data [11]. At such object sections the
set of quadrangles are replaced by a set of triangles.

5 Inferences in Articulation Space

Collection of possible postures defines a subset of the articulation space (static
view) or a trajectory in the articulation space (dynamic view). In this section,
we adopt the static view and discuss very basic inferences that can be made
in the articulation space. We restrict our discussion to a set of twenty human
shapes with different postures (Figure 9). The main reason for selecting this
data set is that the sections as captured by protrusions and their movements
are intuitive and one can judge relative closeness of two different postures (arms
up/arms down). Secondly, human figure provides a rich data set since each figure
contains five flexible sections to cover all possible situations that may arise in
terms of degeneracies.

A B C D E F G H I J

K L M N O P Q R S T

Fig. 9. Set of 20 human silhouettes used in the experiments.

Once the deformable shape sections are extracted from the training set and
mapped to LA coordinates, the distributions of the points can serve as prior
knowledge about possible degrees of articulation in each section. These distribu-
tions are modeled as Gaussians.

The collected statistics about part articulations for the shape set S1 =
{A, .., E} is illustrated in Figure 10. Ellipses are drawn at 2σ. The largest ellipse
corresponds to the distribution of arm1 coordinates where the postural variabil-
ity is the highest whereas the very small ellipse shown in the square window
corresponds to the distribution of the head coordinates practically having no
variability. Individual plots are provided in Figure 11 (note that the scales are
not equal). One can observe that similar articulations in a part are represented
with nearby points in the articulation space. For example, the articulations of
arm1 for shapes B and D and the articulations of leg2 of shapes A and B are
close to each other (Figure 11(b) and (e)).
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Fig. 10. Collected statistics of each part for shape set S1 = {A, .., E} in the articulation
space. The ellipses are drawn at 2σ. The largest one corresponds to arm1 and the small
dot corresponds to head.

When we consider only arm1 and use the set S2 = {A, .., P}, the distribution
of this articulated section becomes as shown in Figure 12. Table 1 shows the
similarity of shapes based on the articulations of arm1. Similarity scores are
computed with the function sim(x, y) = 1

1+
d2(x,y)

θ2

where θ is the soft threshold

and d is the Mahalanobis distance between x and y measured using the estimated
covariance matrix. Observe that the similar configurations have relatively high
similarity scores.

Table 1. Similarity scores of arm1 for the shape set S2 = {A, .., P}.
A B C D E F G H I J K L M N O P

A 1.0000 0.1583 0.2487 0.1861 0.0842 0.2355 0.7549 0.4335 0.3373 0.1973 0.1253 0.9277 0.8243 0.6217 0.4677 0.1332

B × 1.0000 0.1612 0.9448 0.1277 0.7966 0.2470 0.1802 0.4549 0.8999 0.8728 0.1603 0.1623 0.1442 0.1030 0.1128

C × × 1.0000 0.1917 0.2619 0.2118 0.3041 0.1238 0.1752 0.1708 0.1471 0.2025 0.3745 0.4680 0.3584 0.5967

D × × × 1.0000 0.1385 0.9192 0.3004 0.1991 0.5188 0.9308 0.7655 0.1863 0.1939 0.1716 0.1197 0.1285

E × × × × 1.0000 0.1308 0.1060 0.0595 0.0914 0.1165 0.1399 0.0755 0.1064 0.1186 0.0993 0.4154

F × × × × × 1.0000 0.3938 0.2502 0.6725 0.9272 0.5810 0.2370 0.2413 0.2076 0.1410 0.1331

G × × × × × × 1.0000 0.4316 0.5286 0.3164 0.1885 0.7068 0.7326 0.5577 0.3522 0.1556

H × × × × × × × 1.0000 0.4787 0.2359 0.1365 0.5644 0.2938 0.2195 0.1701 0.0764

I × × × × × × × × 1.0000 0.6329 0.3148 0.3717 0.2943 0.2316 0.1590 0.1055

J × × × × × × × × × 1.0000 0.6617 0.2031 0.1960 0.1686 0.1181 0.1128

K × × × × × × × × × × 1.0000 0.1252 0.1316 0.1205 0.0883 0.1108

L × × × × × × × × × × × 1.0000 0.6504 0.4720 0.3605 0.1129

M × × × × × × × × × × × × 1.0000 0.8988 0.6382 0.1852

N × × × × × × × × × × × × × 1.0000 0.7903 0.2287

O × × × × × × × × × × × × × × 1.0000 0.2028

P × × × × × × × × × × × × × × × 1.0000

Next we consider the shape set S3 = {A,C, E,L, M, N,O, P} containing
only the shapes having their arm1 s up (Figure 13(a)). In this particular case,
the past experience is incomplete, therefore when a human shape whose arm1
has a different posture is encountered, it must be considered as impossible. The
Mahalanobis distances from arm1 of shapes J(arm down) and G (horizontal
arm) to the distribution reflect this fact with the values 5.0084 and 1.7907 re-
spectively.
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We can expand our knowledge about arm1 by inserting the instance F
where arm1 is down. New distribution covers the cases where arm1 is down
(Figure13(b)). As expected, the distances of configurations for shapes J and G
are reduced to 2.6379 and 0.9231 respectively.

Similar inferences are also valid for the degenerate cases. When the articu-
lation distribution of leg1 for the shape set S4 = {A,C, D, E, F, G,Q, R, S} is
considered, the articulation of shape T can be regarded as impossible (see Fig-
ure 14) since the Mahalanobis distance from it to the distribution is very high
(6.2898) compared to the others.
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Fig. 11. For the shape set S1 = {A, .., E}, distributions of (a) head (b) arm1 (c) arm2
(d) leg1 and (e) leg2 in LA coordinates.
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Fig. 12. Articulation distribution of arm1 for the shape set S2 = {A, .., P}. Observe
that in LA coordinates arm1 of shape G (straight arm posture) is close to x = y line.

(a) (b)

Fig. 13. Articulation distributions of arm1 for the shape sets (a) S3 =
{A, C, E, L, M, N, O, P} (b) S ′3 = {A, C, E, F, L, M, N, O, P}. Notice the change in
the distribution when shape F (arm1 down) is added.

Fig. 14. Articulation distribution of leg1 for the shape set S4 =
{A, C, D, E, F, G, Q, R, S}. The articulation of shape T is far distant from the
distribution.
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5.1 An Application: Articulation Prior as a Feedback to Skeletal
Matching

We now utilize the developed ideas to form a computational procedure that
will serve as a feedback mechanism for shape recognition. The shape recognition
framework presented in [8] matches skeletal branches of a reference shape and a
query shape to determine a total matching score between two shapes. This score
is computed by the weighted sum of the similarity scores of the matched branch
pairs (the normalized length of the branches are used as weights).

We re-evaluate this matching score by taking into account the past experi-
ences about observed articulations. Since movement of the tip of the protrusion
branch in a shape section changes the LA coordinate of that section, we use the
similarity function values between shape sections as extra weights only for the
positive symmetry branch pairs. By this way, the framework can distinguish a
likely articulation from an unlikely one. In the experiments, we have evaluated
the similarity between shapes with and without feedback on the recognition
framework of [8].

Consider the matching between shapes A and T (Figure 15). In the syntactic
level these two shapes are found to be similar with a score of 0.8259. However
when we take into consideration the prior knowledge about articulations ob-
tained from the set S5 = {A, .., S}, this score is reduced to 0.4578. This updated
matching score reflects the difference in the posture of leg1 s of the given shapes.

Fig. 15. Matching of two human silhouettes with matching scores 0.8259 without feed-
back and 0.4578 with feedback.

Figure 16 illustrates the effect of feedback within shape classification with
some query examples when the prior experience is expressed with the shape set
S5. For each query five best matches with and without feedback are listed. See
how the five best matches to shape G are re-ordered. Also notice the drastic
change in the best match list of shape A.

6 Summary and Future Work

We defined articulation as what remains after shape information as well as global
transformations are filtered out. Based on this notion we presented a 2D space in
which similar articulations yield closer coordinates. Using illustrative examples
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Query 5 best matches without feedback 5 best matches with feedback

A
F D B C R

0.9749 0.9621 0.9396 0.9172 0.8899

L M G B R
0.5815 0.5591 0.5504 0.5318 0.5152

G
M I K J L

0.9990 0.9962 0.9949 0.9942 0.9912
M L I J K

0.9450 0.9321 0.9009 0.8690 0.8494

Fig. 16. Some query results with and without feedback.

we demonstrated that it is possible to build articulation priors and incorporate
them to a skeletal matching scheme to arrive at an enriched skeletal representa-
tion.

Even though we adopted the coarsest structural definition in the form of limbs
of a main body, articulation space analysis reveals initially ignored real joints
such as an elbow. Hence in a dynamic view, collection of possible articulations
can be viewed as a trajectory which may provide insight related to action. This
issue needs further exploration.

Furthermore, our method do not require explicit extraction of deformable
sections. Note that the sections are extracted automatically using the protrusion
branches, and as such, they do not necessarily correspond to real parts. Consider
an ellipse shape with two protrusions which do not actually represent deformable
sections. Articulation space analysis for a collection of ellipses will reveal this
fact.

Our method does not require perfect silhouettes, but it can not directly work
on real images. However, due the connection of the underlying skeleton extraction
to Ambrosio-Tortorelli approximation of Mumford-Shah segmentation functional
[18] we plan to investigate the possibility of extending our method to real images.
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