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Abstract

In daily life, humans demonstrate an amazing ability to remember images
they see on magazines, commercials, TV, web pages, etc. but automatic
prediction of intrinsic memorability of images using computer vision and
machine learning techniques has only been investigated very recently. Our
goal in this article is to explore the role of visual attention and image se-
mantics in understanding image memorability. In particular, we present an
attention-driven spatial pooling strategy and show that considering image
features from the salient parts of images improves the results of the previous
models. We also investigate different semantic properties of images by car-
rying out an analysis of a diverse set of recently proposed semantic features
which encode meta-level object categories, scene attributes, and invoked feel-
ings. We show that these features which are automatically extracted from
images provide memorability predictions as nearly accurate as those derived
from human annotations. Moreover, our combined model yields results su-
perior to those of state-of-the art fully automatic models.
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1. Introduction

We humans have an astonishing ability to rapidly perceive and under-
stand complex visual scenes. When exploring parts of a city that we have
never visited before, glancing at the pages of a magazine or a newspaper,
watching a film on television, or the like, we are constantly bombarded with
a vast amount of visual information, yet we are able to process this infor-
mation and identify certain aspects of the scenes almost effortlessly [1, 2].
We also have an exceptional visual memory [3, 4] that we can remember
particular characteristics of a scene with ease even if we look at it only a
few seconds [5]. Here, what is being remembered is considered nothing like
an identical representation of the scene itself but the gist of it [6, 7]. Al-
though there is no general agreement in the literature about the contents of
this “gist”, the most common definitions include statistical properties of the
scene such as the distributions of basic features like color and orientation,
the structural information about the scene layout like the spatial envelope of
Torralba and Oliva [8], and the image semantics such as existing objects and
their spatial relationships.

Interestingly, we can recall some images surprisingly well while some are
lost in our minds. Put simply, not all images are equally memorable. Isola
et al. [9] were the first to carry out a computational study about this phe-
nomenon, the so-called intrinsic memorability of images. They devised a
Visual Memory Game experiment and utilized Amazon’s Mechanical Turk
service to quantify the memorability of 2222 natural images (see Figure 1).
In the course of these experiments, a total of 665 participants were shown a
sequence of images, each of which was displayed for 1 second with a short gap
in between image presentations. These subjects were then asked to provide
a feedback any time whenever he/she thinks an identical image is displayed.
By this setup, a memorability score for each image is calculated by the rate at
which the subjects detect a repeated presentation of it. The authors showed
that the memorability of an image is pretty consistent across subjects and
under a wide range of contexts, which indicates that image memorability is
in fact an intrinsic property of images. In addition, the authors explored
the use of different visual features and interestingly showed that the intrinsic
memorability of an image can indeed be estimated reasonably well by a ma-
chine. Since that seminal work, there has been only a few works that explore
this difficult and interesting problem [10, 11, 12, 13, 14].

Our first goal in this study is to explore the role of visual attention in
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Figure 1: Sample images from the MIT memorability dataset [9]. The images are sorted
from more memorable (top left) to less memorable (bottom right).

understanding image memorability. We humans use attentional mechanisms
to efficiently perform higher level cognitive tasks by focusing on a small and
relevant bits of the visual stimuli. Our intuition is that we are perhaps
more likely to remember or forget an image depending on which parts of the
image we focus more. To give an example, Figure 2 illustrates the function
of visual attention in selecting important features from images. Suppose
that we are exposed to these three natural images, each having different
visual contents, i.e. different objects, scene characteristics. Our visual system
focuses on certain regions that attract our attention as modeled here by
a bottom-up saliency model. In this work we propose a visual attention-
driven spatial pooling strategy to select important features from images. Our
approach makes use of two complementary feature pooling schemes related to
visual attention. First, we investigate selecting features from the most salient
regions of the images determined according to a recently proposed bottom-up
visual saliency model [15]. Our second scheme, on the other hand, considers a
top-down definition of visual attention and employs an object-centric spatial
pooling scheme. To our interest, a body of research in cognitive sciences
promotes that attention plays an important role in understanding natural
scenes and enhancing visual memory [7, 16, 17, 18, 19]. However, none of
the previously proposed memorability models make use of any attentional
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Figure 2: Top: Examples for the most memorable (left), typically memorable (middle),
least memorable (right) images in the MIT memorability dataset. Bottom: Salient regions
of the images extracted by the method in [15]. The color coding shows the strength of
saliency with yellow, green and blue regions corresponding to top 10%, 20%, %30 most
salient parts, respectively.

mechanisms for feature selection, and only [11, 13] use saliency maps but as
additional image features.

Apart from the global dense image features, some previous studies on
image memorability [9, 10, 11, 12] have also investigated the use of high-
level semantic information about images. They consider objects-related fea-
tures [9, 12], presence of certain object and scene categories [9, 10, 11], and
their attributes [10], which are all based on manual annotations produced by
humans. Figure 3 illustrates some sample images from the MIT memorabil-
ity dataset along with the semantic features that are manually collected from
the human subjects [10]. As illustrated here, an image can be semantically
represented in terms of objects, scene information and related attributes.

In addition to our attention-driven feature selection strategy, our sec-
ond focus in this study is to investigate the use of a diverse set of recently
proposed semantic features which encode meta-level object categories [20],
scene attributes [21], and invoked feelings [22] for predicting image memora-
bility. Compared to the features considered in the former studies [9, 10, 12],
these semantic features can be directly extracted from the images, eliminat-
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Object: person, seat,
bottle, chair, floor

Object: person, wall,
chandelier, ceiling lamp

Object: mountain, sky,
tree, natural elevation

Scene: indoor, casino,
sports and leisure

Scene: indoor, shopping
and dining, bakery/shop

Scene: outdoor natural,
mountains hills desert sky

Attribute: has person,
attractive, pleasant,
individual, routine, sitting,
clear glasses, ...

Attribute: has person,
standing, people go,
is interesting, group,
routine, ...

Attribute: peaceful,
is interesting,
hang on wall, exciting,
famous, ...

Figure 3: Top: Examples for the most memorable (left), typically memorable (middle),
least memorable (right) images in the MIT memorability dataset. Bottom: Sample human
annotated attributes as collected in [10].

ing the need for manual annotations. Using these features thus decreases
the complexity of the prediction process and makes the prediction model to
work in a fully automatic manner. Moreover, compared to prior work, these
features encode semantic properties of images from a perspective or scale
that has not been investigated before. The Meta-class descriptor [20] en-
codes image semantics based on a hierarchical structure of object categories
(concepts) by capturing the relationships among them. The SUN Scene At-
tributes [21] represents an image by means of responses of a comprehensive
list of attribute classifiers that relates to different scene characteristics such
as affordances, materials and surface properties. The SentiBank features [22]
are the responses of a set of classifiers trained to detect adjective-noun pairs
(attributes - objects), and used to associate certain sentiments with images.

In order to validate our approach, we performed a series of experiments
on the MIT memorability dataset. To show the effectiveness of the attention-
driven pooling strategy, we used the dense global features employed in [9],
namely SIFT [23], HOG [24], SSIM [25] and we analyzed the gain when
the features pooled over the salient regions are concatenated to the feature
vectors obtained with spatial pyramid pooling [26]. Moreover, regarding
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our second goal, we performed experiments with the high-level semantic fea-
tures [20, 21, 22] and tested their performances on predicting image memora-
bility. Lastly, we compared our combined model, which uses both semantic
features and dense global features pooled over salient regions and spatial
pyramids, to the state-of-the-art models in the literature.

Our main contributions are: (1) an attention-driven pooling approach to
put special emphasis on the interesting parts of the images in the compu-
tations, (2) a systematic analysis of a diverse set of semantic features on
predicting image memorability, and (3) experiments demonstrating that the
combination of these ideas provides significant improvement over the existing
fully-automatic models.

2. Related Work

All the existing image memorability models in the literature, including our
approach, follow the general framework in [9]. In the training step, some low
and high-level visual features are extracted from the images and they are used
together with the corresponding ground-truth memorability scores to train a
support vector regression (SVR) machine, which can then be used to predict
the memorability score of a given test image (Figure 4). In [9], the authors
suggested representing images by means of some low-level image features
such as SIFT [23], HOG [24], SSIM [25], GIST [8] and color histograms,
and/or some semantic features which can be extracted from object and scene
annotations. Their proposed model predicts image memorability significantly
better than chance, illustrating that such image memorability models can be
developed. Since then, a number of models [10, 11, 12, 13] have been proposed
to improve the results of [9]. In general, these recent studies examine the
prediction problem by investigating new features that the authors consider
to be relevant to intrinsic memorability of images.

One of our goals in this study is to explore the function of visual attention
in predicting intrinsic memorability of images. In that respect, our work
shares some motivating factors with the models suggested in [11, 13]. In [11],
the authors presented a probabilistic model to measure memorability of image
regions, which can be used to predict image memorability as well as the
regions that are more likely to be remembered. Within their framework, they
suggested to use saliency maps of images as features along with some other
visual features. In [13], the authors performed an eye-tracking experiment on
a subset of the images in order to observe which parts of those images attract
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Figure 4: The common training and testing pipeline for learning image memorability.

subjects’ attention. They have observed that there is a strong correlation
between fixation durations and the memorability scores. In addition, the
authors proposed two attention-guided (saliency-oriented) features which are
shown to be useful in predicting image memorability.

Beyond visual attention-based features, we specifically aim to investigate
the use of attentional mechanisms for selecting relevant features to image
memorability. Previous models [11, 13] employ saliency maps or saliency-
oriented features as additional images features. In contrast, our key insight
is that the visual content in the regions that attract attention is as important
as or even more valuable than the whole image content in predicting intrinsic
memorability of an image. Thus, whereas prior work [9, 11, 13] employs a
fixed pooling layout for feature pooling, we propose to consider a pooling
scheme that focuses on salient regions within images. We expect this ad-
ditional feature selection mechanism will allow us to capture characteristics
of images relevant to memorability and accordingly improve the prediction
performances of dense image features. The details of our feature pooling
scheme will be given in Section 3.

In this work, we also consider ways to boost the success of memorability
predictions by employing high-level descriptors that encode the semantic con-
tent of images. Similar to [9, 10, 11, 12], we make use of information regarding
to objects in images, scene knowledge and/or attributes. In [10], Isola et al.
investigated the use of annotated visual attributes to estimate memorability
of images. Their study revealed that exploiting available human-describable
attributes greatly increases the quality of the predictions. To deeply un-
derstand which attribute is a better indicator of memorability, they investi-
gated a greedy feature selection approach to select the best set of relevant
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attributes. In another study [12], the authors proposed two novel spatial
features which can be extracted from the object annotations exist in the
dataset. While the first feature measures the importance of the object in
terms of how close it is to the image center and how large it is, the second
feature is related to how much unusual the coverage of the object is among
all other objects from the same visual category. Their results show that both
of these features improve the memorability prediction accuracy.

As compared to [10, 12], however, the semantic features that we employ,
which encode meta-level object categories [20], scene attributes [21], and
invoked feelings [22], have quite a number of distinct benefits. While the
semantic features used in the previous models are based on manual image
annotations collected from human subjects, these features can be automati-
cally extracted from the images. This allows us to develop a prediction model
which can work in the absence of this sort of high-level annotations. Our ap-
proach, thus, requires no supervision and has dramatically less complexity in
the training and testing. Notably, among the previous studies, only [11] em-
ployed such an automatically extracted semantic feature which is composed
of the responses of many pre-trained generic object detectors from Object-
Bank [27]. However, these ObjectBank features can be considered as limited
as compared to our features, specifically the meta-level object categories [20]
which represent an image by means of abstract classes of objects in a hier-
archical structure obtained by grouping similar object classes and putting
forward higher level common features. The details of our semantic features
will be given in Section 4.

To our knowledge, no previous work attempted to improve image memo-
rability prediction based on an attention-guided feature selection mechanism.
This article expands upon our previous workshop publication [28]. In this
version, we add an entirely new set of experiments on the MIT Memora-
bility dataset, and perform a more thorough experimental analysis to vali-
date that selecting features from the salient image regions via our proposed
attention-driven pooling strategy can indeed make more accurate predictions
of memorability scores. In addition, we study a group of semantic features
related to meta-level object categories [20], scene attributes [21], and invoked
feelings [22] that can automatically extracted from images (Section 4), and
analyze their roles in predicting memorability of images. Thus, we provide
additional discussion of the results and related work, and include new quan-
titative comparisons of our combined framework against the state-of-the-art.
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3. Attention-driven Spatial Pooling

The memorability model by Isola et al. [9] and the follow-up studies [11,
13] all employ spatial pyramid (SP) based pooling [26] for dense global
features (Section 3.1). In this study, we propose a complementary visual
attention-driven spatial pooling scheme for image memorability, which al-
lows us to select features from the salient image regions. In particular, these
regions are estimated by considering two different saliency maps. While one
of them is estimated via a bottom-up saliency model (Section 3.2), the sec-
ond one is derived from a complementary object-level saliency map which
captures information about foreground objects in the images (Section 3.3).
The details of our proposed attention-driven pooling strategy are given in
Section 3.4.

3.1. Spatial Pooling

The common pipeline of modern visual recognition tasks uses spatial pool-
ing in order to construct compact representations and achieve robustness to
noise and clutter. After extracting local or global low level features from
images, feature vectors are encoded to codewords using a descriptive vocab-
ulary. Then, histograms of these codewords are computed in order to get the
fixed-length exemplar vectors of the predefined subregions of the image. Fi-
nal representation is formed by simple concatenation of all histogram vectors
obtained in this way. Boureau et al. [29] showed various factors that affect
the performance of pooling strategies and demonstrated the importance of
the step. For example, Isola et al. [9] used simple 2-level spatial pyramid
pooling strategy in their work. However, in this study, we approach the
pooling step by further incorporating visual attention mechanisms with the
inspiration that visual attention is considered highly related with memora-
bility [7, 16, 17, 18, 19].

3.2. Visual Saliency

In recent years, there has been an increasing interest in computational
models of visual saliency estimation and their use for several computer vision
tasks. Starting from the seminal work by Itti, Koch, and Niebur [30], most
of the existing models consider a bottom-up strategy. First, center-surround
differences of various features at multiple scales are computed for each fea-
ture channel. Then the final saliency map is formed by linearly combining
feature maps after a normalization step. For a recent survey, please refer
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to [31]. In our experiments, we employed the publicly available implemen-
tation of a recently proposed saliency model [15]1, which examines the first
and second-order statistics of simple visual features such as color, edge and
spatial information.

Consider Figure 5(a) where we present the result of the bottom-up saliency
estimation for a sample image. From the saliency map given in the second
column, we randomly sample a number of image patches (rightmost four
columns). Those sampled within the top 10% salient locations are given in
the top two rows whereas the bottom two rows show sample patches from
the bottom 20% salient locations. As can be seen, the saliency values are
the strongly correlated with the interestingness of the regions [32, 33] in the
sense that while the most salient patches captures the children, the least
salient ones mostly correspond to background or those regions which have
little importance in terms of image content.

3.3. Objectness Measure

In [34], Alexe et al. introduced a generic (category-independent) object-
ness measure2 to quantify how likely an image window contains an object. In
more detail, the authors first analyzed several image cues, namely multi-scale
saliency, color contrast, edge density (near window borders) and superpixel
straddling, each of which were shown to be an indicator of objectness, but to
a certain degree. Then they proposed a learning framework to combine these
four cues to distinguish object windows from background. It was demon-
strated that the approach is very general and can detect objects of novel
classes not seen during training. As compared to the visual saliency model
reviewed in the previous section which solely depends on bottom-up visual
cues, the generic objectness measure can be used to estimate object-level
saliency of images and provide top-down high-level information.

Figure 5(b) shows some sample patches sampled from the object-level
saliency map as we did for the bottom-up saliency. Similarly, the rightmost
top two rows of patches taken from salient regions mostly correspond to the
mill in the image, which is the most salient object. Other non-salient patches
correspond to unimportant areas such as the sky or the field.

1The source code is available at http://web.cs.hacettepe.edu.tr/~erkut/

projects/CovSal/
2The code is publicly available at http://groups.inf.ed.ac.uk/calvin/

objectness/
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(a) Bottom-up saliency

(b) Object-level saliency

Figure 5: Interesting and uninteresting patches extracted from two natural images based
on visual attention. From the images, 8 image patches are sampled randomly from the
top 10% salient locations (top 2 rows) and 8 others from the bottom 20% salient locations
(bottom 2 rows) according to (a) a bottom-up visual saliency map and (b) an object-level
saliency map, respectively.

3.4. Proposed Strategy

Instead of using a fixed pooling layout like the spatial pyramid struc-
ture used in [9], we propose an image-driven pooling strategy by considering
salient regions of the images. For this purpose, we both utilize the bottom-up
and object-level saliency maps described in the previous subsections. In this
way, our pooling method adaptively focuses solely on the image regions that
attract attention, ignoring not important, non-attractive parts of the images.

The system diagram of the proposed pooling approach is given in Fig-
ure 6. First, dense visual features are extracted from the input image. Low
level dense features are then encoded into higher dimensions through vector
quantization using a bag of features approach. In the meantime, bottom-
up and object-level saliency maps are estimated from the image and then
thresholded to obtain both the salient regions and those regions possibly
containing important foreground objects. Next, to form histogram-based vi-
sual descriptors, the encoded vectors are pooled together over the extracted
attention-driven spatial layouts.

For the prediction pipeline for spatial pooling, we used the following steps:

(1) Feature Extraction. For an image I, we obtain a global descrip-
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Figure 6: The proposed visual attention-driven spatial pooling pipeline for image
memorability.

tion of I by extracting D-dimensional local features such as SIFT [23],
HOG [24], SSIM [25] at N different locations, denoted with X =
[x1, . . . ,xN ]T ∈ RN×D. The SIFT descriptor gives the local image
structural information whereas the HOG descriptor provides rich local
orientation information that can be related to the receptive fields found
in early human vision areas. Lastly, the SSIM descriptor captures the
local layout of geometric patterns.

(2) Coding. Assuming that we have a learned codebook ofK visual words,
denoted with B = [b1,b2, . . . ,bK ] ∈ RD×K , each local feature xi ∈ X
is encoded into a code vector ci = [ci1, c

i
2, . . . , c

i
K ]T by applying vector

quantization. After the coding step, I is represented by a set of codes
C = [c1, c2, . . . , cN ] ∈ RN×K .

(3) Bottom-up and object-level saliency maps. To obtain the attention-
driven spatial layouts for the proposed feature pooling scheme, we make
use of bottom-up and object-level saliency maps. The bottom-up visual
saliency map of image I is computed by a recently proposed model [15],
which was shown to provide state-of-the-art performance in predicting
eye fixations. For the object-level saliency map, we randomly sample
many windows from I and measure the objectness of these image win-
dows by using the generic objectness measure proposed in [34]. Then
we compute an objectness score for each pixel by averaging over all the
scores of the windows which contain that pixel to obtain the generic
objectness map of I.
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(4) Pooling. In the pooling step, instead of considering a fixed image-
independent set of spatial regions, as employed in [9], here we pro-
pose to use image-specific spatial regions for feature pooling. Specifi-
cally, we locate the regions of interest by respectively segmenting the
bottom-up and object-level saliency maps into salient/non-salient and
object/non-object regions by thresholding. In our experiments, we var-
ied the threshold value to find the optimum thresholds to determine
salient and object regions in the images for spatial pooling of features.
We found out that the mean works well for the bottom-up saliency
maps whereas the best performance for the object-level saliency maps
is achieved when the threshold is set to 0.25 times the maximum ob-
jectness value. Figure 7 shows some examples of these attention-driven
regions. For each region of interest R, we then perform average-pooling,
i.e. compute a histogram (or take the average) of the codes over the
region R:

f(R) =
1

|R|
∑

i∈R
ci (1)

where |R| denote the number of dense features in R. Moreover, the
final feature vector f(R) is renormalized to have L1-norm of 1.

4. Semantic Features

As discussed in Section 2, [9] showed that memorability of an image is
highly correlated with the semantic content of the image. For instance, only
making use of manual annotation of object and scene labels is shown to give
pretty good results. In a follow-up work [10], the authors collected attributes
that humans used to describe images and explored their role in determining
the intrinsic memorability of images. Motivated from these findings, here, our
goal is to extend our framework to include automatically extracted seman-
tic attributes. For that purpose, we propose to use three recently proposed
semantic descriptors: The Meta-class descriptor [20] provides object-specific
high-level information about image content (Section 4.1). The SUN Scene
Attributes [21], on the other hand, characterize the images by means of a
set of hand-picked functional, material, surface and spatial properties (Sec-
tion 4.2). Finally, the SentiBank features [22] are used to include feelings
that are invoked in a viewer into the computations (Section 4.3).
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Original image Bottom-up saliency Salient regions Object-level saliency Object regions

Figure 7: Visual attention-driven feature pooling scheme. For a given image, a bottom-up
saliency map and an object-level saliency map are estimated and then the feature vectors
are pooled over the salient regions of the images (depicted as bright areas in the images).

4.1. Meta-class Features

In computer vision, attributes typically denote properties that humans
use to verbally describe the visual content such as individual objects, object
classes, scenes. Besides, they can also indicate properties shared among dif-
ferent object classes. The Meta-class descriptor [20] falls under this category
that it captures common visual properties of different sets of object classes
and represents an image in terms of them. In essence, these abstract cat-
egories are linear combinations of multiple non-linear classifiers trained on
different low-level features. The authors trained a tree of classifiers using
a subset of ImageNet [35] dataset and with the help of predefined object
classes from ILSVRC2010 and Caltech256 datasets. Each node in the tree
correspond to a meta-class obtained by combining two previously determined
meta-classes (i.e. a set of object classes) which makes them easy to distin-
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guish from other sets of object classes. They demonstrate that this descriptor
gives state-of-the-art results for object categorization against similar seman-
tic representations such as Object-Bank [27] and PiCoDes [36].

In our work, we use Meta-class features, i.e. the responses of the learned
tree of classifiers, to obtain a semantic representation of image content by
means of the presence or absence of the meta-classes. Figure 8 demonstrates
the importance of certain object classes in determining the memorability of
an image on some sample images from the MIT memorability dataset. It
can be easily observed that the most memorable images generally are those
that contain close-up human faces. Interestingly, typical memorable images
generally do have humans and/or human-made structures or objects at a
distance. The least memorable images are mostly the images of natural
scenes.

4.2. SUN Scene Attributes

In [21], Patterson and Hays carried out a large scale experiment to form
a scene attribute dataset by crowdsourcing. They collected 102 discrimi-
native attributes related to different visual properties of a scene, namely
affordance, material, surface and spatial envelope properties. Using these
collected attributes as ground truth, they also trained a binary classifier for
each attribute and proposed to use responses of these classifiers to obtain
an attribute based scene representation. They showed that this intermediate
level representation captures scene content information remarkably well and
can be effectively used for different computer vision tasks including scene
classification, automatic image captioning, semantic image retrieval.

In our framework, we use the confidence scores of the scene attribute
classifiers as complementary semantic features for learning image memora-
bility. Figure 9 illustrates some of the most confident scene attributes [21]
that are extracted from some sample images having different memorability
scores. We observe that the most memorable images are typically associated
with the “no-horizon”, “enclosed-area”, “cloth” and “man-made” attributes
whereas the least memorable ones mainly have “open-area”, “grass”, “vege-
tation” and “natural” attributes. These observations are in accordance with
the findings reported in [9, 10] suggesting that the images of people and
enclosed spaces are more memorable images than those of natural images.
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Figure 8: Sample images from memorability database. Top row shows some samples from
the most memorable images which mostly contain close-up human faces by large. Middle
row shows samples from typically memorable images which generally have humans and/or
human-made structures or objects at a distance. Bottom row shows the least memorable
samples which are mainly the images of natural scenes.

4.3. SentiBank

Borth et al. [22] recently proposed a large scale visual sentiment ontol-
ogy based on the psychological theory of Plutchick’s Wheel of Emotions [37].
To construct this ontology, the authors followed a data-driven approach and
used a large set of tagged images and videos from the web to gather a list
of adjectives and nouns based on their co-occurrences with each of the 24
emotions defined in [37]. They assigned certain sentiment values to these
tags and employed them to form Adjective-Noun Pairs (ANPs) which re-
flect strong emotions and frequently appear together. Then, they trained a
classifier for each ANP using some low and high-level visual features. They
finally selected 1200 of those trained ANP classifiers that have a reasonable
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cloth, enclosed area,
no-horizon,
electric/indoor lighting

man-made, no-horizon,
enclosed area, natural light

far-away horizon, natural
light, open area, grass,
natural, vegetation

Figure 9: Sample images from memorability database for most memorable (left), typically
memorable (middle) and least memorable (right) with their most confident scene attributes
predicted by [21].

classification performance to build their visual sentiment analysis framework
known as the SentiBank.

In our approach, we use the visual sentiment classifiers from the Sen-
tiBank to include emotion-based semantic features to our image representa-
tions. Figure 10 demonstrates some sample images with different memorabil-
ity scores with the associated ANPs as predicted by the SentiBank classifiers.
As can be observed, in each case, the classifiers accurately capture the feel-
ings invoked in the viewers. Although there is no common pattern for ANPs
associated with images from different memorability levels, we observe that in
general, the most memorable images are linked with the emotions that can
relate to humans (e.g., shy smile). Moreover, the typically memorable images
invoke feelings related to man-made structures (e.g., calm pond) whereas the
least memorable ones are associated with ANPs related to natural scenes
(e.g., beautiful garden).

5. Experiments

In this section, we first give brief details about our experimental setup
and then demonstrate the effectiveness of the proposed approach through a
series of experiments.

5.1. Experimental Setup

For the quantitative analysis we used Spearman’s rank correlation mea-
sure (ρ). The performance was evaluated over 25 different splits of the dataset
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shy smile, traditional
dress, innocent smile

warm creek, smooth water,
calm pond

beautiful garden, sunny
trees, pretty scene

Figure 10: Sample images from memorability database for most memorable (left), typically
memorable (middle) and least memorable (right) with their most confident sentiment
ANPs as predicted by [22].

containing 1111 training and 1111 testing images (the same splits used in [9]).
These train and test splits were scored by different halves of the participants,
showing a human consistency of ρ = 0.75. Thus, the effectiveness of a com-
putational image memorability model can be assessed by measuring how
close the model’s Spearman’s rank correlation to this score. In addition, the
performance of a model can be analyzed at different memorability levels by
ranking the test images according to their predicted memorability scores and
then computing the cumulative average of empirical memorability scores at
different quantiles. For instance, a good image memorability model should
have cumulative averages close to 1 for the top most memorable images pre-
dicted by a model and close to 0 for the bottom least memorable images.

5.2. Results and Discussions

In the first part of the experiments, we analyzed the performance of our
proposed attention-driven pooling scheme in detail. We conducted our ex-
periments on three global dense features, SIFT [23], HOG [24] and SSIM [25],
which were used in [9]. Specifically, we analyzed the performance when fea-
tures obtained with our attention-driven pooling strategy are concatenated
to those derived by the standard spatial pyramid pooling. We examined the
prediction accuracy of each dense feature separately. We also provided the
results for the combination of these features. We separately trained differ-
ent SVRs to map from the features pooled over these maps to memorability
scores.

A summary of our results is given in Table 1. As can be seen, the
attention-driven pooling alone performs poorly as compared to the 1-level
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Table 1: Comparison of pooling schemes (1-level Spatial Pyramid pooling (SP), Attention-
based Pooling (AP) and their combination) using dense global features SIFT, HOG and
SSIM. Results are given as the average empirical memorability scores reported for the top
20, top 100 highest and bottom 20, bottom 100 lowest predicted memorability scores and
the Spearman’s Rank Correlation (ρ) values.

SIFT HOG SSIM SIFT+HOG+SSIM

SP Top 20 83.8% 83.3% 83.2% 85.0%
Top 100 82.3% 81.9% 80.7% 80.5%
Bottom 100 54.9% 56.0% 56.7% 54.6%
Bottom 20 50.3% 47.9% 54.0% 50.1%

ρ 0.430 0.431 0.436 0.458

AP Top 20 87.6% 87.8% 84.9% 87.4%
Top 100 81.8% 83.0% 83.4% 83.7%
Bottom 100 56.6% 55.9% 56.7% 55.6%
Bottom 20 58.2% 48.4% 56.4% 51.8%

ρ 0.390 0.420 0.427 0.438

SP + AP Top 20 86.0% 86.9% 86.8% 86.9%
Top 100 83.3% 82.9% 81.0% 82.6%
Bottom 100 55.7% 54.8% 53.6% 53.4%
Bottom 20 49.9% 47.4% 48.5% 53.2%

ρ 0.435 0.448 0.454 0.472

spatial pyramid (SP) based pooling. However, for each dense feature, there is
a notable improvement in the performance with the inclusion of our attention-
driven pooling scheme to the SP based baseline. More specifically, the
SSIM feature has the most significant gain where the correlation moves from
ρ = 0.436 to ρ = 0.454. Furthermore, we observed that the result of the
combined features can be also improved when our pooling strategy is used.
However, the amount of gain, from ρ = 0.458 to ρ = 0.472, is relatively
smaller than those of single features. When the average memorability scores
of the models are examined at top 20/100 and bottom 20/100 quantiles, we
have similar observations. In conclusion, the combined pooling framework
performs especially much better by assigning less memorable images lower
scores. These results support our claim that the image regions which retain
in human memory are correlated with the areas that attract our attention.

In our second experiment, we included the semantic features, namely the
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Meta-class features [20], the SUN scene attributes [21] and the SentiBank
features [22] to the original feature pool (pixels, GIST, SIFT, SSIM, HOG-
based image features), and performed a thorough analysis of the framework
with all possible combinations of these features and pooling strategies.

Table 2 demonstrates the results obtained by SSIM (best performing low-
level image feature), our semantic features and their combination. One key
observation is that the Meta-class features and the Scene Attributes provide
fairly good predictions as compared to the SentiBank or any other low-level
cues. In particular, the Meta-class descriptor alone achieves approximately
ρ = 0.49 correlation value, which shows us that memorability of images are
not only related to single object properties but also to inherent and shared
characteristics of different object classes. Similarly, the Scene Attributes
alone give nearly ρ = 0.48, illustrating the importance of scene properties
over objects in the images for image memorability. We achieved the best
performance when we combined all semantic features and SSIM with a com-
bination of our proposed attention-driven pooling and 2-level spatial pyra-
mid pooling for the dense features. With this model of ours, the Spearman’s
rank correlation between the ground-truth ranking and the predictions is es-
timated as ρ = 0.515. This correlation value is smaller than the correlation
among humans (ρ = 0.75) but it is the best result reported in the literature
so far by a fully automatic scheme that does not use any manual object, scene
or attribute annotations. It also demonstrates the importance of high-level
semantic features as incorporating them increases the rank correlation score
from ρ = 0.472 (SP+AP) to ρ = 0.515 (All). Moreover, the increases in the
top 20 and top 100 average memorability predictions support the hypothesis
that the semantic content of images is highly correlated with their intrinsic
memorability.

In Table 3, we compare the result of our proposed method with the meth-
ods of Isola et al. [9], Khosla et al. [11] and Mancas and Le Meur [13]. Our
method has the best performance among these state-of-the-art fully auto-
matic approaches. While Khosla et al. [11] achieved ρ = 0.50 with their
global model which additionally considers memorability characteristics of the
local image regions, our model achieves slightly better results with far less
complexity. Moreover, another key observation from Table 3 is that most
of the memorability prediction schemes predict top memorable images with
high precision. For the top 20 and top 100 images, the models have obtained
nearly the same average empirical memorability values, which are very close
to the scores of human subjects. However, predicting whether an image is less
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Table 2: Comparison of the best local dense feature (SSIM) and all semantic features.
Results are given as the average empirical memorability scores reported for the top 20,
top 100 highest and bottom 20, bottom 100 lowest predicted memorability scores and the
Spearman’s Rank Correlation (ρ) values.

SSIM Scene Attributes Meta-class SentiBank All

Top 20 86.8% 86.4% 86.8% 85.7% 85.0%
Top 100 81.0% 83.7% 81.5% 82.5% 83.3%
Bottom 100 53.6% 54.2% 53.3% 54.8% 52.2%
Bottom 20 48.5% 51.3% 46.7% 47.1% 47.4%

ρ 0.454 0.477 0.487 0.449 0.515

Table 3: The first four rows indicate average empirical memorability scores over different
memorability levels. (ρ) is the Spearman’s rank correlation between predictions of existing
fully automatic models and the empirical results. The best automatic prediction result is
shown in bold.

Isola Khosla Khosla Mancas & Our Human
et al. [9] global [11] local+global [11] Le Meur [13] Approach subjects

Top 20 83% 84% 85% – 85% 86%
Top 100 80% 80% 81% – 83% 84%
Bottom 100 56% 56% 55% – 52% 47%
Bottom 20 54% 53% 52% – 47% 40%
ρ 0.46 0.48 0.50 0.48 0.52 0.75

memorable is a more difficult problem. In that respect, our model provides
better predictions for the bottom 20 and bottom 100 images as compared
to the state-of-the-art models. It is important to note that there is still a
large gap between our result and that of human subjects in predicting the
less memorable images.

Finally, in order to demonstrate the effectiveness of our proposed com-
bined model, we compare our result with those of the human annotations
reported in [14]. For object semantics, the authors in [14] achieved ρ = 0.47
whereas we obtained a correlation value of ρ = 0.49 with the Meta-class
descriptor that describes abstract object classes. This shows that fully au-
tomatic approaches can also capture object semantics to some extent to im-
prove memorability predictions. On the other hand, the model based on the
attribute annotations, gives a better correlation value of ρ = 0.52 as com-
pared to those of SUN Scene Attributes and SentiBank features respectively
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corresponding to ρ = 0.48 and ρ = 0.45. Moreover, the model which con-
siders the combined overall semantics (objects + scenes + attributes) has a
correlation value of ρ = 0.54, which is higher than that of our proposed com-
bined model having ρ = 0.52. However, we observe that our model provides
better predictions especially for the least memorable images. For the bottom
100 and 20 images while the average ground-truth memorability scores are
%55, and %51 for object, scene and attribute annotations, respectively, ours
are %52, and %47 which are much closer to the human subjects. Overall, hu-
man annotations still have advantage over automatic attributes, however the
gap is small. Considering the cost of gathering annotations from human sub-
jects, our approach gives similar performance with much less computational
effort.

In Figure 11, we additionally show sample images for different memora-
bility levels predicted by the proposed framework. Figure 12 shows some
images on which the memorability predictions based on our approach are
incorrect as compared to the empirical results. The reasons for this could
lie in the inaccurate predictions of the semantic content or focused regions
of images. In Figure 13(a)-(b), for example, we provide the bottom-up and
object-level saliency maps of two of the images from Figure 12 together with
their memorability maps as computed by the protocol used in [9, 11]. In
the memorability maps, the red regions illustrate the objects that contribute
positively to the predicted memorability of the image and the blue regions
show the objects that contribute negatively to the predicted memorability.
In an ideal case, the predicted salient regions need to correspond to the im-
age regions that affect the memorability scores positively or negatively. For
the image in Figure 13(a) whose memorability rank is overshot by the pro-
posed prediction scheme, our pooling method can not correctly identify the
object regions that correlate with the image memorability. For the image in
Figure 13(b) whose memorability rank is undershot by the proposed scheme
we observe a similar behaviour for the detection of important object regions.
Our pooling scheme gives prominence to only some parts of the object re-
gions that affects the memorability predictions negatively. These imperfect
predictions of the important image regions make the features collected via
our attention driven pooling scheme cover the image content in an inaccurate
way, affecting the estimated memorability scores.
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Predicted most memorable (85%) Predicted typical memorable (68%) Predicted least memorable (40%)

Figure 11: Memorability predictions by the proposed strategy. Out of all test images,
the 8 images in (a) are found to be the most memorable, the ones in (b) are predicted as
typically memorable and the other 8 images in (c) are guessed as the least memorable. The
numbers denote the average prediction scores of the given image sets. The images predicted
as highly memorable contains highly distinctive visually salient elements as compared to
other groups of images.

6. Conclusion

Predicting whether an image will be remembered or not is a challenging
problem for computer vision. In this paper, we describe our efforts to de-
velop a new fully automatic model for estimating image memorability, which
benefits from a novel feature pooling strategy based on visual attention and
a set of semantic features that encode meta-level object categories, scene
attributes, and invoked feelings.

Our proposed feature pooling strategy is derived from the observation
that main memorable areas of an image are the ones that attract the most
attention. Different from the fixed pyramidal structure as in [9, 11, 13],
our regression model learns memorability scores of images by additionally
taking into account the features pooled over the saliency maps. In our pool-
ing scheme, we employed two saliency maps, one obtained by a bottom-up
saliency model [15] and the other by a generic objectness model [34], respec-
tively modeling bottom-up and top-down attentional influences on image
memorability. Our experiments demonstrated that for the global dense fea-
tures the combination of classical SP based pooling with the proposed pooling
scheme improves the prediction quality.

Moreover, we investigate the use of three recently proposed semantic fea-
tures, namely the Meta-class [20], the SUN Scene Attributes [21] and Sen-
tiBank [22] features, all of which can be automatically extracted from the
images. These high-level features are used to describe the presence of certain
abstract object categories, attributes related to functional, material, surface
properties of scenes, and the emotions induced by the images as captured by
the specific adjective-noun pairs. The inclusion of these semantic features
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Predicted too high (+793/1111)

Predicted too low (-873/1111)

Figure 12: Sample images on which our proposed scheme failed to capture the memora-
bility. The memorability ranks are predicted too high for the images in (a) and too low
for the ones in (b), as compared to their empirical memorability ranks. The numbers in
the parentheses show the mean rank error between the predicted and the empirical ranks
across each group.

into the computations greatly improves the prediction performance that we
obtained superior results on the MIT Memorability dataset than those of the
fully automatic the state-of-art models.

For highly memorable images, the existing approaches to predict image
memorability can yield estimates close to the ground-truth scores from hu-
man subjects. However, their performances on determining whether an im-
age is unmemorable is currently far from empirical scores. Even though our
model provide the best results reported in the literature for predicting the
memorability of less memorable images, it is not as accurate as desired. This
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(a) Predicted too high

(b) Predicted too low

Figure 13: Memorability maps versus bottom-up saliency and object-level saliency maps
of two of the images from Figure 12.

opens up possibilities to design or learn new types of features to especially
understand less memorable images.

For future work, it would be interesting to investigate how image memora-
bility affects visual saliency. A recent trend in visual saliency estimation is to
pose saliency estimation as a supervised learning problem [38, 39, 40, 41, 42].
These models, except [38, 41, 42], try to predict where human look in the im-
ages under free-viewing conditions. Motivated with these works, one can try
to devise a task-dependent model with the task being defined as to memorize
image content. In that regard, it would also be interesting to study how to
employ semantic attributes for learning saliency, as recently explored in [43]
in the context of free-viewing.
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