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Abstract. Multiple-instance learning (MIL) deals with learning under ambigu-
ity, in which patterns to be classified are described by bags of instances. There has
been a growing interest in the design and use of MIL algorithms as it provides a
natural framework to solve a wide variety of pattern recognition problems. In this
paper, we address MIL from a view that transforms the probleminto a standard
supervised learning problem via instance selection. The novelty of the proposed
approach comes from its selection strategy to identify the most representative ex-
amples in the positive and negative training bags, which is based on an effective
pairwise clustering algorithm referred to as dominant sets. Experimental results
on both standard benchmark data sets and on multi-class image classification
problems show that the proposed approach is not only highly competitive with
state-of-the-art MIL algorithms but also very robust to outliers and noise.

1 Introduction

In recent years, multiple-instance learning (MIL) [7] has emerged as a major machine
learning paradigm, which aims at classifying bags of instances with class label infor-
mation available for the bags but not necessarily for the instances. In a typical MIL
setting, anegative bagis composed of only negative instances, whereas a bag is consid-
eredpositiveif it contains at least one positive instance, leading to a learning problem
with ambiguously labeled data. MIL paradigm provides a natural framework to handle
many challenging problems in various domains, including drug-activity prediction [7],
document classification [1], content-based image retrieval [25], object detection [21],
image categorization [5,4], and visual tracking [2,10].

In general, MIL methods can be grouped into two main categories. The first class
of approaches, including the APR [7], DD [16], EM-DD [24] methods, usesgenerative
models to represent the target concept by a region in the instance feature space which
covers all the true positive instances while remaining far from every instance in the
negative bags. Alternatively, the second class of works employs discriminativelearn-
ing paradigm to address the MIL problems. The methods in thisgroup are mainly the
generalizations of the standard single-instance learning(SIL) methods to the MIL set-
ting, e.g.mi-SVM and MI-SVM [1], MI-Kernel [9], MIO [ 12], Citation KNN [22] and
MILBoost-NOR [21].

Recently, a new group of SVM-based methods has been proposedfor MIL, namely
the DD-SVM [5], MILES [4], MILD B [13] and MILIS [8] methods, which tackles
multi-instance problems by transforming them into standard SIL problems. The basic



idea is to embed each bag into a feature space based on a representative set of instances
selected from the training bags and to learn a classifier in this feature space. The major
difference between these methods is how they select instance prototypes, which will
be detailed in the next section. However, it should be noted here that a good set of
prototypes is vital to the success of any method.

In this paper, a new instance selection mechanism is proposed for multiple-instance
learning. The novelty comes from utilizingdominant sets[18], an effective pairwise
clustering framework, to model the distributions of negative instances and accordingly
to select a set of instance prototypes from the positive and negative training bags.
Therefore, the proposed approach is named MILDS, Multiple-Instance Learning with
instance selection via Dominant Sets. The main contributions are as follows: (i) The
constructed feature space is usually of a lower dimension compared to those of other
instance-selection based MIL approaches [5,4,8]. This is mainly due to the use of clus-
tering performed on the instances from the negative training bags. (ii) The presented
approach is highly insensitive to noise in the bag labels as the dominant sets framework
is proven to be very robust against outliers that might existin the data. (iii) The pro-
posed binary MIL formulation can be easily generalized to solve multi-class problems
in a natural way due to the proposed cluster-based representation of data. (iv) The ex-
perimental results demonstrate that the suggested approach is highly competitive with
the state-of-the-art MIL approaches.

The remainder of the paper is organized as follows: Section2 summarizes the pre-
vious work on instance-selection based MIL and provides background information on
the dominant sets framework. Section3 presents the proposed MILDS algorithm. Sec-
tion 4 reports experimental results on some benchmark data sets and on multi-class
image classification problems. Finally, Section5 concludes the paper with a summary
and possible directions for future work.

2 Background

2.1 Instance-Selection Based MIL

As mentioned in the introduction, the existing instance-selection based MIL methods,
namely DD-SVM [5], MILES [4], MILD B [13] and MILIS [8], can be differentiated
mainly by the procedures they follow in identifying the set of instance prototypes used
to map bags into a feature space. Below, we review these differences in detail.

In DD-SVM, a diverse density (DD) function [16] is used in identifying the in-
stance prototypes. Within each training bag, the instance having the largest DD value
is chosen as a prototype for the class of the bag. Then, a standard SVM in combination
with radial basis function (RBF) is trained on the corresponding embedding space. The
performance of DD-SVM is highly affected by the labeling noise since a negative bag
close to a positive instance drastically reduces the DD value of the instance, thus its
chance to be selected as a prototype.

In MILES, there is no explicit selection of instance prototypes. All the instances in
the training bags are employed to build a very high-dimensional feature space, and then
the instance selection is implicitly performed via learning a 1-norm SVM classifier. As



expected, the main drawback of MILES stems from its way of constructing the embed-
ding space. Its computational load grows exponentially as the volume of the training
data increases.

In [13], an instance-selection mechanism based on a conditional probability model
is developed to identify the true positive instance in a positive bag. For each instance
in a positive bag, a decision function is formulated whose accuracy on predicting the
labels of the training bags is used to measure true positiveness of the corresponding
instance. The authors of [13] use this instance selection mechanism to devise two MIL
methods, MILDI and MILD B, for instance-leveland forbag-levelclassification prob-
lems, respectively. Here, MILDB is of our interest, which defines the instance-based
feature space by the most positive instances chosen accordingly from each positive bag,
and like DD-SVM, trains a standard SVM with the RBF kernel in that feature space.

In MILIS, instances in the negative bags are modeled as a probability distribution
function based on kernel density estimation. Initially, the most positive (i.e. the least
negative) instance and the most negative instance are selected respectively in each pos-
itive bag and each negative bag based on the distribution estimate. These instance pro-
totypes form the feature space for the bag-level embedding in which a linear SVM is
trained. To increase the robustness, once a classifier is learnt, MILIS employs an alter-
nating optimization scheme for instance selection and classifier training to update the
selected prototypes and the weights of the support vectors.As a final step, it includes
an additional feature pruning step which removes all features with small weights.

2.2 Clustering with Dominant Sets

Our instance selection strategy makes use of a pairwise clustering approach known as
dominant sets[18]. In a nut shell, the concept of a dominant set can be considered as
a generalization of a maximal clique to edge-weighted graphs. Suppose the data to be
clustered is represented in terms of their similarities by an undirected edge-weighted
graph with no self-loopsG = (V, E, w), whereV is the set of nodes,E ⊆ V × V is
the set of edges, andw : E → R+ is the positive weight (similarity) function. Further,
let A = [aij ] denote then×n adjacency matrix ofG whereaij = w(i, j) if (i, j) ∈ E
and is 0 otherwise. A dominant set is formulated based on a recursive characterization
of the weightwS(i) of elementi w.r.t. to a set of elementsS (A curious reader may
refer to [18] for more details), as:

Definition 1. A nonempty subset of verticesS ⊆ V such that
∑

i∈T wT (i) > 0 for any
nonemptyT ⊆ S, is said to bedominantif:

1. wS(i) > 0, for all i ∈ S,
2. wS∪{i}(i) < 0, for all i /∈ S.

The above definition of a dominant set also formalizes the notion of aclusterby ex-
pressing two basic properties: (i) elements within a cluster should be very similar (high
internal homogeneity), (ii) elements from different clusters should be highly dissimilar
(high external inhomogeneity).



Consider the following generalization of the Motzkin-Straus program [17] to an
undirected edge-weighted graphG=(V, E, w):

maximize f(x) = x
T Ax

subject to x ∈ ∆
(1)

whereA is the weighted adjacency matrix of graphG, ∆={x ∈ R
n | x≥0 ande

T
x=1}

is the standard simplex inRn with e being a vector of ones of appropriate dimension.
The support ofx is defined as the set of indices corresponding to its positivecom-
ponents,i.e. σ(x) = {i∈V | xi > 0}. The following theorem (from [18]) provides a
one-to-one relation between dominant sets and strict localmaximizers of (1).

Theorem 1. If S is a dominant subset of vertices, then its weighted characteristic vec-
tor x ∈ ∆ defined as:

xi =

{

wS(i)
P

j∈S wS(j) if i ∈ S

0 otherwise
(2)

is a strict local solution of (1). Conversely, ifx is a strict local solution of (1), then its
supportS = σ(x) is a dominant set, provided thatwS∪{i}(i) 6= 0 for all i /∈ S.

The cohesiveness of a dominant set (cluster)S can be measured by the value of the
objective functionxT Ax. Moreover, the similarity of an elementj to S can be directly
computed by(Ax)j where

(Ax)j

{

= x
T Ax if j∈σ(x)

≤ x
T Ax if j /∈σ(x) .

(3)

As a final remark, it should be noted that the spectral methodsin [20,11] maximize
the same quadratic function in Eq. (1). However, they differ from dominant sets in their
choice of the feasible region. The solutions obtained with these methods are constrained
to lie in the sphere defined byxT

x = 1 instead of the standard simplex∆ used in the
dominant sets framework. This subtle difference is crucialfor our practical purposes.
First, the components of the weighted characteristic vector give us a measure of the
participation of the corresponding data points in the cluster. Second, this constraint
provides robustness against noise and outliers [18,15].

3 Proposed Method

In this section, we present a novel multiple-instance learning framework called MILDS,
which transforms a MIL problem into a SIL problem via instance selecting. Unlike the
similar approaches in [5,4,13,8], it makes use of thedominant setsclustering frame-
work [18] for instance selection to build a more effective embeddingspace. We first re-
strict ourselves to thetwo-classcase. However, as will be described later in Section3.4,
extension tomulti-classMIL problems is quite straightforward.



3.1 Notations

Let Bi = {Bi1, . . . , Bij , . . . , Bini
} denote a bag of instances whereBij denotes the

jth instance in the bag, andyi ∈ {+1,−1} denote the label of bagi. For the sake of
simplicity, we will denote a positive bag asB+

i and a negative bag asB−
i . Further, let

B =
{

B+
1 , . . . , B+

m+ , B−
1 , . . . , B−

m− ,
}

denote the set ofm+ positive andm− negative
training bags. Note that each bag may contain different number of instances, and each
instance may have a label which is not directly observable.

3.2 Instance Selection with Dominant Sets

Recall the two assumptions of the classical MIL formulationthat a bag is positive if
it contains at least one positive instance, and all negativebags contains only negative
instances [7]. This means that positive bags may contain some instances from the neg-
ative class but there is no such ambiguity in the negative bags (provided that there is no
labeling noise). Just like in [13,8], our instance selection strategy is heavily based on
this observation. However, unlike those approaches, to select the representative set of
instances we do not explicitly estimate either a probability density function or a condi-
tional probability. Instead, we try to model the negative data by clustering the instances
in the negative bags, and then making decisions according tothe distances to the ex-
tracted clusters. As will be clear throughout the paper, thedominant sets framework
provides a natural scheme to carry out these tasks in an efficient way.

DenoteN= {Ii | i = 1, . . . , M} as the collection of negative instances from all of
the negative training bags,i.e. the set defined by

{

B−
ij ∈ B−

i | i = 1, . . ., m−
}

. Construct
the matrixA= [aij ] composed of the similarities between the negative instances as:

aij =

{

exp
(

− d(Ii,Ij)2

2σ2

)

if i 6= j

0 otherwise
(4)

whered(·, ·) is a distance measure that depends on the application andσ is a scale
parameter. In the experiments, the Euclidean distance was used.

To extract the clusters inN , the iterativepeeling-off strategysuggested in [18] is
employed. In specific, at each iteration, a dominant set (a cluster) is found by solving
the quadratic program in (1). Then, the instances in the cluster are removed from the
similarity graph, and this process is reiterated on the remaining instances. In theory, the
clustering process stops when all the instances are covered, but in dealing with large and
noisy data sets, this is not very practical. Hence, in our experiments, an upper bound
on the number of extracted clusters was introduced that at most m− (i.e. the number
of negative bags) most coherent dominant sets were selectedaccording to internal co-
herency values measured by the corresponding values of the objective function. Notice
that, in this way,instance pruningis carried our in an early stage. This is another fun-
damental point which distinguishes our work from the approaches in [4,8] as these two
methods perform instance pruning implicitly in the SVM training step. Moreover, this
provides robustness to noise and outliers.

SupposeC= {C1, . . . , Ck} denotes the set of clusters extracted from the collection
of negative training instancesN . A representative set forN is found by selecting



one prototype from each clusterCi ∈ C. Recall that each clusterCi is associated with
a characteristic vectorxCi whose components give us a measure of the participation
of the corresponding instances in the cluster [18]. Hence, the instance prototypez−i
representing the clusterCi is identified based on the corresponding characteristic vector
x

Ci as:

z−i =Ij∗ with j∗ = arg max
j∈σ(xCi )

xCi

j . (5)

In selecting the representative instances for the positiveclass, however, the sug-
gested clustering-based selection strategy makes no senseon the collection of positive
bags because the bags may contain some negative instances which may collectively
form one or more clusters, thus if applied, the procedure mayresult in some instance
prototypes belonging to the negative class. Hence, for selecting prototypes for the pos-
itive class, a different strategy is employed. In particular, the most positive instance in
each positive bag is identified according to its relationship to the negative training data.

For a positive bagB+
i =

{

B+
i1, . . . , B

+

in
+

i

}

, letA† be ann+
i ×|N | matrix composed

of the similarities between the instances inB+
i and the negative training instances inN ,

computed like in (4). Thetrue positive(i.e. the least negative) instance inB+
i , denoted

with z+
i , is picked as the instance which is the most distant from the extracted negative

clusters inC as follows:

z+
i =B+

ij∗ with j∗= arg min
j=1,...,n

+

i

∑

ℓ=1,...,k(A†
x

Cℓ)j×|Cℓ|
∑

ℓ=1,...,k |Cℓ|
(6)

where the term(A†
x

Cℓ)j is the weighted similarity of the instanceB+
ij to the cluster

Cℓ, and |·| denotes the cardinality of the set1. Intuitively, in (6), larger clusters have
more significance in the final decision than the smaller ones.

To illustrate the proposed selection process, consider thetwo-dimensional synthetic
data given in Fig.1(a). It contains 8 positive bags and 8 negative bags, each having at
least 8 and at most 10 instances. Each instance is randomly drawn from one of the five
normal distributions:N ([4, 8]T , I), N ([0, 4]T , I), N ([−1, 12]T , I), N ([−4,−2]T , I)
andN ([6, 2]T , I) with I denoting the identity matrix. A bag is labeled positive if it
contains at least one instance from the first two distributions. In Fig.1(a), positive and
negative instances are respectively represented by crosses and circles, and drawn with
colors showing the labels of the bags they belong: blue for positive and red for nega-
tive bags. The result of the proposed instance selection method is given in Fig.1(b).
The extracted negative clusters are shown in different colors, and the selected instance
prototypes are indicated by squares. Notice that the dominant sets framework correctly
captured the multi-modality of the negative class, and the prototypes selected from the
extracted clusters are all close to the centers of the given negative distributions. More-
over, the true positive instances in the positive bags were successfully identified.

1 Note that since the zero-components ofx
Cℓ have no effect on estimatingz+

i
s, in practice

highly reduced versions ofA†s are utilized in the computations.
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Fig. 1.Synthetic data set (best viewed in color). (a) Raw data. (b) The instance selection process.

3.3 Classification

We can now describe our classification scheme. SupposeZ =
{

z−1 , . . . , z−k , z+
1 , . . . , z+

m+

}

denote the set of selected instance prototypes, wherek is the number of extracted nega-
tive clusters,m+ is the number of positive training bags2. A similarity measures(z, Bi)
between a bagBi and an instance prototypez is defined by

s(z, Bi) = max
Bij∈Bi

exp

(

−
d(z, Bij)

2

2σ2

)

(7)

which calculates the similarity betweenz and its nearest neighbor inBi. Then, we
define an embedding functionϕ which maps a bagB to a(k+m+)-dimensional vector
space by considering the similarities to the instance prototypes:

ϕ(B)=
[

s(z−1 , B), . . . , s(z−k , B), s(z+
1 , B), . . . , s(z+

m+ , B)
]T

(8)

For classification, the embedding in (8) can be used to convert the MIL problem
into a SIL problem. In solving the SIL counterpart, we chooseto train a standard linear
SVM which has a single regularization parameterC needed to be tuned. In the end, we
come up with a linear classifier to classify a test bagB as:

f(B;w) = w
T ϕ(B) + b (9)

wherew ∈ R
|Z| is the weight vector,b is the bias term. The label of a test bagB is

simply estimated by:

y(B) = sign(f(B;w)) (10)

The outline of the proposed MIL framework is summarized in Algorithm1.

2 Note that one can always select more than one instance from each cluster or each positive bag.
A detailed analysis of this issue on the performance will be reported in a longer version.



Algorithm 1: Summary of the proposed MILDS framework.

Input : Training bags
˘

B+

1 , . . . , B+

m+ , B−
1 , . . . , B−

m−

¯

1 Apply dominant sets to cluster all the instances in the negative training bags
2 Selectk (≤m−) instance prototypes from the extractedk negative clusters via Eq. (5)
3 Selectm+ instance prototypes from the positive bags via Eq. (6)
4 Form the instance-based embedding in Eq. (8) using the selected prototypes
5 Train a linear SVM classifier based on the constructed feature space

Output : The set of selected instance prototypesZ and the SVM classifierf(B;w) with
weightw

3.4 Extension to Multi-class MIL

The proposed approach can be straightforwardly extended tosolve multi-class MIL
problems by employing aone-vs-reststrategy. In particular, one can trainc binary clas-
sifiers, one for each class against all other classes. Then, atest bag can be classified
according to the classifier with the highest decision value.Note that an implementation
of this idea forms a different instance-based embedding foreach binary subproblem.
Here, we propose a second type of embedding which results from using a set of repre-
sentative instances common for all classes, as:

φ(B) = [s(z1
1 , B), s(z1

2 , B), . . . , s(z1
m1

, B),
s(z2

1 , B), s(z2
2 , B), . . . , s(z2

m2
, B),

...
s(zc

1, B), s(zc
2, B), . . . , s(zc

mc
, B) ]

(11)

wherezk
i is the ith instance prototype selected from classk (note that the number of

prototypes may differ from class to class). In this case, training data is kept the same for
all binary subproblems, only the labels differ, and this makes the training phase much
more efficient. This second approach is denoted with milDS todistinguish it with the
naive multi-class extension of MILDS.

In milDS, instance selection is performed as follows. LetIk=
{

Ik
i | i = 1, . . . , Mk

}

denote the collection of instances in bags belonging to class k, i.e. the set defined by
{Bij∈Bi | for all Bi∈B with y(Bi)=k}. First, for each classk, the pairwise similarity
matrixAk of instancesIk is formed, and accordingly a set of clustersCk=

{

Ck
1 , . . . , Ck

mk

}

is extracted via dominant sets framework3. Then, an instance prototype from each clus-
terCk

i is identified according to:

zk
i =Ik

j∗ with j∗ = arg max
j∈σ(xCk

i )

x
Ck

i

j /βik(j) (12)

where the functionβik(j) measures the similarity ofjth instance inCk
i to all the re-

maining classes. The basic idea is to select the most representative element inCk
i which

3 In the experiments, for each classk, we extract at mostmk clusters that is equal to the number
of training bags belonging to classk.



is also quite dissimilar to the remaining training data fromother classes. However, here
we make a simplification and estimateβik(j) by considering only the most closest class:

βik(j)= max
m=1,...,c
m 6=k

∑

Cm
ℓ

∈Cm(Akmx
Cm

ℓ )j×|Cm
ℓ |

∑

Cm
ℓ

∈Cm |Cm
ℓ |

(13)

with Akm denoting theMk×Mm matrix of similarities between the instances inIk

and the instances inIm.
The embedding procedure described above gives rise to a feature space whose di-

mensionality is at most
∑

k mk, i.e. the sum of the total number of clusters extracted
for each class.

3.5 Computational Complexity

From a computational point of view, the most time consuming step of the proposed
MILDS method and its multi-class extensions is the calculation of pairwise distances,
which is also the case for [4,13,8]. In addition, there is the cost of clustering negative
data with dominant sets. In this matter, a dominant set can becomputed in quadratic
time using the approach in [19]. An important point here is that the size of the input
graphs becomes smaller and smaller at each iteration of the employed peeling off strat-
egy, and this further introduces an increase in the efficiency of the clustering step.

4 Experimental Results

In this section, we present two groups of experiments to evaluate the proposed MILDS
algorithm. First, we carry out a thorough analysis on some standard MIL benchmark
data sets. Following that, we investigate image classification by casting it as a multi-
class MIL problem. In the experiments, LIBSVM [3] package was used for training
linear SVMs. In addition to the SVM regularization parameter C, our algorithm has
only a single scale parameterσ that needs to be tuned. The best values forC andσ
are selected by using n-fold cross validation from the sets{2−10, 2−9, . . . , 210} and
linspace(0.05µ, µ, 20), respectively, withµ being the mean distance between pair of
instances in the training data andlinspace(a, b, n) denoting the setn linearly spaced
numbers between and includinga andb.

4.1 Benchmark Data Sets

We evaluate our MILDS method on five popular MIL benchmark data sets used in many
multiple-instance learning studies, namelyMusk1, Musk2, Elephant, Fox andTiger. In
Musk1andMusk2, the task is to predict drug activity from structural information. Each
drug molecule is considered as a bag in which the instances represents different struc-
tural configurations of the molecule. InElephant, FoxandTiger, the goal is to differen-
tiate images containing elephants, tigers and foxes from those that do not, respectively.
Each image is considered as a bag, and each region of interestwithin the image as an
instance. The details of the data sets are given in Table1.



bags avg.
data set pos./neg. inst./bag dim
Musk1 47/45 5.17 166
Musk2 39/63 64.69 166
Elephant 100/100 6.96 230
Fox 100/100 6.60 230
Tiger 100/100 6.10 230

Table 1. Information about the MIL benchmark data sets.

For experimental evaluation, we use the most common setting, 10 times 10-fold
cross validation (CV). That is, we report the classificationaccuracies averaged over
10 runs where the parameter selection is carried our by using10-fold cross validation.
Our results are shown in Table2 together with those of 12 other MIL algorithms in
the literature [13,8,4,5,10,12,14,1,24]. All reported results are also based on 10-fold
CV averaged over 10 runs4, with the exception of MIForest, which is over 5 runs, and
MILIS and MIO, which are over 15 runs. The results demonstrate that our proposed
approach is competitive with and often better than the state-of-the-art MIL methods.
In three out of five MIL benchmark data sets, it outperforms several MIL approaches.
However, it is more important to note that it gives the best performance among the
instance-selection based MIL approaches.

Algorithm Musk1 Musk2 Elephant Fox Tiger
MILDS 90.9 86.1 84.8 64.3 81.5
MILD B [13] 88.3 86.8 82.9 55.0 75.8
MILIS [ 8] 88.6 91.1 n/a n/a n/a
MILES [4] 83.3 91.6 84.1 63.0 80.7
DD-SVM [5] 85.8 91.3 83.5 56.6 77.2
MILD I [13] 89.9 88.7 83.2 49.1 73.4
MIForest [10] 85.0 82.0 84.0 64.0 82.0
MIO [12] 88.3 87.7 n/a n/a n/a
Ins-KI-SVM [14] 84.0 84.4 83.5 63.4 82.9
Bag-KI-SVM [14] 88.0 82.0 84.5 60.5 85.0
mi-SVM [1] 87.4 83.6 82.2 58.2 78.9
MI-SVM [ 1] 77.9 84.3 81.4 59.4 84.0
EM-DD [24] 84.8 84.9 78.3 56.1 72.1

Table 2. Classification accuracies of various MIL algorithms on standard benchmark data sets.
The best performances are indicated in bold typeface.

4 Note that the results of MILDB and MILD I on Musk1and Musk2are different than re-
ported in [13]. This is because, for a complete comparison, we downloadedthe source codes
of MILD B and MILD I available at the authors’ webpage and repeated the experiments on
all the five data sets with our setting of 10 times 10-fold CV.



In Table3, for each instance-selection based MIL approach, we reportthe average
dimensions of the corresponding embedding spaces. MILES has the highest dimension
since it utilizes all the training instances in the mapping.OnMusk2andFox, our MILDS
approach does not offer any advantage in terms of dimension reduction, but for the
other data sets, it decreases the dimension∼ 6−23%, as compared to MILIS and DD-
SVM. Among all, MILD B has the lowest dimension as it only uses positive instance
prototypes in its embedding scheme. However, as can be seen in Table2, neglecting the
negative prototypes results in a poor performance comparedto the other approaches.

Algorithm Musk1 Musk2 Elephant Fox Tiger
MILDS 75.0 92.0 169.4 180.0 139.2
MILD B 42.4 35.2 90.0 90.0 90.0
MILIS 83.0 92.0 180.0 180.0 180.0
MILES 429.4 5943.8 1251.9 1188.0 1098.0
DD-SVM 83.0 92.0 180.0 180.0 180.0

Table 3.The dimensions of the embedding spaces averaged over 10 runsof 10-fold CV.

4.2 Image Classification

The multi-class extensions of our approach have been investigated on image classifica-
tion problems. In specific, we used the COREL data set which contains 2000 natural
images from 20 diverse categories, each having 100 examples. Each image is considered
as a bag of instances with instances corresponding to regions of interest obtained via
segmentation. Each region is represented by a 9-dimensional feature vector describing
shape and local image characteristics (refer to [5,4] for details). Some example images
from the data set are given in Fig.2.

Africa (4.84) Beach (3.54) Historical building (3.10) Buses (7.59) Dinosaurs (2.00)

Elephants (3.02) Flowers (4.46) Horses (3.89) Mountains (3.38) Food (7.24)

Dogs (3.80) Lizards (2.80) Fashion models (5.19) Sunset scenes (3.52) Cars (4.93)

Waterfalls (2.56) Antique furniture (2.30) Battle ships (4.32) Skiing (3.34) Desserts (3.65)

Fig. 2.Example images randomly drawn from the COREL data set. For each category, the average
number of regions per image is given inside the parentheses.



In our evaluation, we used the same experimental setup described in [4], and per-
formed two groups of experiments, which are referred to as1000-Imageand 2000-
Image, respectively. In1000-Image, only the first ten categories are considered whereas
in 2000-Image, all the twenty categories in the data set are employed. On both exper-
iments, five times two-fold CV is performed. The average categorization accuracies
are presented in Table4. As can be seen from the results, the performance ofMILDS
andmilDSare competitive with the state-of-the-art MIL approaches.Especially for the
larger2000-Imagedata set, our milDS method gives the best result.

Algorithm 1000-Image 2000-Image
milDS 82.2 70.6
MILDS 83.0 69.4
MILD B [13] 79.6 67.7
MILIS [ 8] 83.8 70.1
MILES [4] 82.6 68.7
DD-SVM [5] 81.5 67.5
MIForest [10] 59.0 66.0
MissSVM [26] 78.0 65.2
mi-SVM [1] 76.4 53.7
MI-SVM [ 1] 74.7 54.6

Table 4.Classification accuracies of various MIL algorithms on COREL 1000-Imageand2000-
Imagedata sets. The best performances are indicated in bold typeface.

Recall that in MILDS, each classifier trained for distinguishing a specific category
from the rest is built upon a different embedding space, or inother words, the set of
selected prototypes varies in every subproblem. For each subproblem in1000-Image,
Fig.3 shows the instance prototype identified in one of the training images from the tar-
get class. Notice that the prototypes are selected from the discriminative regions for that
class. On the other hand, in milDS, the set of selected instance prototypes is the same
for all the subproblems. This second selection strategy provides a rich way to include
contextual relationships in representing visual categories. In some respects, it resembles
the vocabulary generation step of thebag-of-wordsapproach [6]. The subtle difference
is that a similarity-based mapping is employed here insteadof a frequency-based one.
Fig. 4 shows five prototypes among the full set of representative instances selected for
the Horse andBattle shipscategories. Observe that for theHorse category, selected
prototypes include not just horses but also the regions corresponding to grass regions.
Likewise, for theBattle shipscategory, there are additional prototypes representing sky
and sea regions.

4.3 Sensitivity to labeling noise

Lastly, we analyzed the sensitivity to labeling noise. For that purpose, we repeated the
experiment in [4] which involves distinguishingHistorical buildings from Horses in
COREL data set. In this experiment, we compared our method with MILES, MILIS,
MILD B with varying degrees of noise levels where the results are based on five times



Africa Beach Historical building Buses Dinosaurs

Elephants Flowers Horses Mountains Food

Fig. 3. Sample instance prototypes selected by theMILDS algorithm. For each image category,
the first row shows a sample training image from that category, and the bottom row illustrates the
selected prototype region (shown in white) on the corresponding segmentation map.

Fig. 4. Sample instance prototypes selected by themilDSalgorithm for theHorseand theBattle
shipscategories. The leftmost columns are the prototypes. The rightmost three columns show
other sample regions from the corresponding extracted clusters. The regions in each cluster share
similar visual characteristics.

2-fold CV. For each noise level,d% of positive andd% of negative images are randomly
selected from the training set, and then their labels are changed to form the noisy labels.



Fig. 5 shows the average classification accuracies. When the levelof labeling noise
is low (d≤5%), there is no considerable difference in the performances.As the noise
level increases, the performance of MILIS degrades. MILES gives comparable results
to MILDS and MILD B for the noise levels up tod≤25%, but gives relatively poor
outcomes afterwards. Overall, MILDS is the most robust MIL algorithm to labeling
noise among all the tested MIL algorithms. Its performance remains almost the same
over all levels of the labeling noise. This is expected, since dominant sets is known to
be quite robust to outliers [18,15].
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Fig. 5.Sensitivity of various MIL algorithms to labeling noise. MILDS produces the most robust
results.

5 Summary and Future Work

In this paper, we proposed an effective MIL scheme, MILDS, which offers a new solu-
tion to select a set of instance prototypes, for transforming a given MIL problem into
a standard SIL problem. This instance selection approach enables us to successfully
identify the most representative examples in the positive and negative training bags. Its
success lies in the use of dominant sets pairwise clusteringframework. Our empirical
results show that the proposed algorithm is competitive with state-of-the-art MIL meth-
ods and also robust to labeling noise. As a future work, we plan to extend our approach
to multi-instance multi-label learning setting [27,23].
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