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Abstract. Multiple-instance learning (MIL) deals with learning umdembigu-
ity, in which patterns to be classified are described by bagstances. There has
been a growing interest in the design and use of MIL algoritlamit provides a
natural framework to solve a wide variety of pattern rectigniproblems. In this
paper, we address MIL from a view that transforms the problgma standard
supervised learning problem via instance selection. Theltoof the proposed
approach comes from its selection strategy to identify thetmepresentative ex-
amples in the positive and negative training bags, whiclaget on an effective
pairwise clustering algorithm referred to as dominant. ¥experimental results
on both standard benchmark data sets and on multi-classeirlagsification
problems show that the proposed approach is not only hightypetitive with
state-of-the-art MIL algorithms but also very robust tolieus and noise.

1 Introduction

In recent years, multiple-instance learning (MIL] has emerged as a major machine
learning paradigm, which aims at classifying bags of instanwith class label infor-
mation available for the bags but not necessarily for théaimes. In a typical MIL
setting, anegative bags composed of only negative instances, whereas a bag igleons
eredpositiveif it contains at least one positive instance, leading toaanieg problem
with ambiguously labeled data. MIL paradigm provides a radtframework to handle
many challenging problems in various domains, includinggdactivity prediction [],
document classificationl], content-based image retrievals, object detectionj1],
image categorizatiorb[4], and visual tracking4,10].

In general, MIL methods can be grouped into two main categoiihe first class
of approaches, including the APR][ DD [16], EM-DD [24] methods, usegenerative
models to represent the target concept by a region in tharinstfeature space which
covers all the true positive instances while remaining fanf every instance in the
negative bags. Alternatively, the second class of worksleyspmliscriminativelearn-
ing paradigm to address the MIL problems. The methods ingtasp are mainly the
generalizations of the standard single-instance lear8ig methods to the MIL set-
ting, e.9g.mi-SVM and MI-SVM [1], MI-Kernel [9], MIO [ 17], Citation KNN [27] and
MILBoost-NOR [21].

Recently, a new group of SVM-based methods has been profarsidL, namely
the DD-SVM [5], MILES [4], MILD B [13] and MILIS [8] methods, which tackles
multi-instance problems by transforming them into staddail. problems. The basic



idea is to embed each bag into a feature space based on esergptie® set of instances
selected from the training bags and to learn a classifierisiféfature space. The major
difference between these methods is how they select irstarototypes, which will
be detailed in the next section. However, it should be note lthat a good set of
prototypes is vital to the success of any method.

In this paper, a new instance selection mechanism is prdgosenultiple-instance
learning. The novelty comes from utilizindpminant set$1¢], an effective pairwise
clustering framework, to model the distributions of negatnstances and accordingly
to select a set of instance prototypes from the positive aghtive training bags.
Therefore, the proposed approach is named MILDS, Multipt#ance Learning with
instance selection via Dominant Sets. The main contrinstiare as follows: (i) The
constructed feature space is usually of a lower dimensiompeoed to those of other
instance-selection based MIL approach&s,E]. This is mainly due to the use of clus-
tering performed on the instances from the negative trgibiags. (i) The presented
approach is highly insensitive to noise in the bag labels@aslominant sets framework
is proven to be very robust against outliers that might drishe data. (iii) The pro-
posed binary MIL formulation can be easily generalized teesonulti-class problems
in a natural way due to the proposed cluster-based repegssnof data. (iv) The ex-
perimental results demonstrate that the suggested apgpioaghly competitive with
the state-of-the-art MIL approaches.

The remainder of the paper is organized as follows: Se@ismmmarizes the pre-
vious work on instance-selection based MIL and provide&@amind information on
the dominant sets framework. Secti®presents the proposed MILDS algorithm. Sec-
tion 4 reports experimental results on some benchmark data séteramulti-class
image classification problems. Finally, Sectiononcludes the paper with a summary
and possible directions for future work.

2 Background

2.1 Instance-Selection Based MIL

As mentioned in the introduction, the existing instanclec@n based MIL methods,
namely DD-SVM ], MILES [4], MILD _B [13] and MILIS [8], can be differentiated
mainly by the procedures they follow in identifying the sétrstance prototypes used
to map bags into a feature space. Below, we review theseetiifes in detail.

In DD-SVM, a diverse density (DD) functionLf] is used in identifying the in-
stance prototypes. Within each training bag, the instaasn the largest DD value
is chosen as a prototype for the class of the bag. Then, assth&8¥M in combination
with radial basis function (RBF) is trained on the corregfing embedding space. The
performance of DD-SVM is highly affected by the labeling s@Bsince a negative bag
close to a positive instance drastically reduces the DDevaluthe instance, thus its
chance to be selected as a prototype.

In MILES, there is no explicit selection of instance profmdg. All the instances in
the training bags are employed to build a very high-dimemadifeature space, and then
the instance selection is implicitly performed via leagha1-norm SVM classifier. As



expected, the main drawback of MILES stems from its way oktatting the embed-
ding space. Its computational load grows exponentiallyhasvblume of the training
data increases.

In [13], an instance-selection mechanism based on a conditioobapility model
is developed to identify the true positive instance in a fpasbag. For each instance
in a positive bag, a decision function is formulated whoseueacy on predicting the
labels of the training bags is used to measure true posésgenf the corresponding
instance. The authors of §] use this instance selection mechanism to devise two MIL
methods, MILDI and MILD_B, for instance-levehnd forbag-leveklassification prob-
lems, respectively. Here, MILIB is of our interest, which defines the instance-based
feature space by the most positive instances chosen angtyrftiom each positive bag,
and like DD-SVM, trains a standard SVM with the RBF kernelhattfeature space.

In MILIS, instances in the negative bags are modeled as aapility distribution
function based on kernel density estimation. Initiallye tmost positivei(e. the least
negative) instance and the most negative instance ardextlespectively in each pos-
itive bag and each negative bag based on the distributiomagst These instance pro-
totypes form the feature space for the bag-level embeddinghich a linear SVM is
trained. To increase the robustness, once a classifienris |84ILIS employs an alter-
nating optimization scheme for instance selection andsiflastraining to update the
selected prototypes and the weights of the support vediars. final step, it includes
an additional feature pruning step which removes all festwith small weights.

2.2 Clustering with Dominant Sets

Our instance selection strategy makes use of a pairwistediug approach known as
dominant set$18]. In a nut shell, the concept of a dominant set can be coreidas

a generalization of a maximal clique to edge-weighted gsaBlippose the data to be
clustered is represented in terms of their similarities byuadirected edge-weighted
graph with no self-loop&: = (V, E,w), whereV is the set of nodesy C V x V' is
the set of edges, and : £ — R, is the positive weight (similarity) function. Further,
let A = [a;;] denote thewxn adjacency matrix off wherea,;; = w(i, ) if (i,5) € E
and is 0 otherwise. A dominant set is formulated based onwas®e characterization
of the weightw (i) of elementi w.r.t. to a set of elementS (A curious reader may
refer to [LE] for more details), as:

Definition 1. A nonempty subset of verticésC V' such that . wr (i) > 0 for any
nonemptyl’ C S, is said to bedominantf:

1. wg(i) >0, forall i e S,
2. Wgugiy (i) <0, forall i ¢ S.

The above definition of a dominant set also formalizes thonatf aclusterby ex-
pressing two basic properties: (i) elements within a chustteuld be very similar(igh
internal homogeneily (ii) elements from different clusters should be highlgsiimilar
(high external inhomogeneijty



Consider the following generalization of the Motzkin-Sisgprogram [7] to an
undirected edge-weighted graph=(V, E, w):

maximize f(x)=x! Ax )
subjectto xe€ A

whereA is the weighted adjacency matrix of graphA={x € R" | x>0 ande’x=1}

is the standard simplex iR™ with e being a vector of ones of appropriate dimension.
The support ofk is defined as the set of indices corresponding to its posithra-
ponentsj.e. o(x) = {i€V | x; > 0}. The following theorem (from1¢]) provides a
one-to-one relation between dominant sets and strict lneaimizers of ().

Theorem 1. If S is a dominant subset of vertices, then its weighted charistitevec-
tor x € A defined as:

Ws(i) L.
= S ws ifies @)
0 otherwise

is a strict local solution of ). Conversely, ik is a strict local solution of ), then its
supportS = o(x) is a dominant set, provided thats;, (i) # 0 forall i ¢ S.

The cohesiveness of a dominant set (clusfecan be measured by the value of the
objective functionx” Ax. Moreover, the similarity of an elemepto S can be directly
computed by Ax); where

— XTAX if jeo(x
(4%); { < xTAx if ?‘%agxg : ?

As a final remark, it should be noted that the spectral methop),11] maximize
the same quadratic function in Eq)(However, they differ from dominant sets in their
choice of the feasible region. The solutions obtained viiisé methods are constrained
to lie in the sphere defined by"x = 1 instead of the standard simplekused in the
dominant sets framework. This subtle difference is cruftimlour practical purposes.
First, the components of the weighted characteristic vegitee us a measure of the
participation of the corresponding data points in the eusbecond, this constraint
provides robustness against noise and outliets.p].

3 Proposed Method

In this section, we present a novel multiple-instance liegrframework called MILDS,
which transforms a MIL problem into a SIL problem via instarselecting. Unlike the
similar approaches inS[4,13,8], it makes use of thelominant setslustering frame-
work [18] for instance selection to build a more effective embeddipace. We first re-
strict ourselves to thievo-classcase. However, as will be described later in Secign
extension tanulti-classMIL problems is quite straightforward.



3.1 Notations

Let B, = {B1,...,Bij,...,Bin, } denote a bag of instances wheBg; denotes the
jthinstance in the bag, and € {+1, —1} denote the label of bag For the sake of
simplicity, we will denote a positive bag @3 and a negative bag d3; . Further, let
B={Bf,...,Bt By ,....,B, _,} denote the set ofi" positive andn~ negative
training bags. Note that each bag may contain different rarrobinstances, and each
instance may have a label which is not directly observable.

3.2 Instance Selection with Dominant Sets

Recall the two assumptions of the classical MIL formulatibat a bag is positive if
it contains at least one positive instance, and all negatgs contains only negative
instances{]. This means that positive bags may contain some instangesthe neg-
ative class but there is no such ambiguity in the negative fa@vided that there is no
labeling noise). Just like inl[3,8], our instance selection strategy is heavily based on
this observation. However, unlike those approaches, ects#te representative set of
instances we do not explicitly estimate either a probahilénsity function or a condi-
tional probability. Instead, we try to model the negativeaday clustering the instances
in the negative bags, and then making decisions accordititetdistances to the ex-
tracted clusters. As will be clear throughout the paper,dbminant sets framework
provides a natural scheme to carry out these tasks in aregtfigiay.

DenoteN'={I; |i=1,..., M} as the collection of negative instances from all of
the negative training bagse.the set defined b{IBZ-;- €B; |i=1,...m"” } Construct
the matrixA= [a,;] composed of the similarities between the negative instaase

_d(livlj)2 if 2 y
aij={;xp( #7) A @)

otherwise

whered(-,-) is a distance measure that depends on the applicatiorrasd scale
parameter. In the experiments, the Euclidean distance sexk u

To extract the clusters iV, the iterativepeeling-off strategypuggested in1g] is
employed. In specific, at each iteration, a dominant setystet) is found by solving
the quadratic program irL). Then, the instances in the cluster are removed from the
similarity graph, and this process is reiterated on the meimginstances. In theory, the
clustering process stops when all the instances are coumreid dealing with large and
noisy data sets, this is not very practical. Hence, in ouegrgents, an upper bound
on the number of extracted clusters was introduced that at mo (i.e. the number
of negative bags) most coherent dominant sets were selactedding to internal co-
herency values measured by the corresponding values objbetive function. Notice
that, in this wayjnstance prunings carried our in an early stage. This is another fun-
damental point which distinguishes our work from the apphes in [1,8] as these two
methods perform instance pruning implicitly in the SVM hiaig step. Moreover, this
provides robustness to noise and outliers.

Suppos&€={C1,...,Cy} denotes the set of clusters extracted from the collection
of negative training instancesV. A representative set fok/ is found by selecting



one prototype from each clustél; € C. Recall that each clustér; is associated with
a characteristic vectat® whose components give us a measure of the participation
of the corresponding instances in the clustsi][ Hence, the instance prototypg
representing the clustér; is identified based on the corresponding characteristiovec
x% as:
z; =1+ with j* = arg maxgcjci . (5)
j€o(x%i)

In selecting the representative instances for the positiess, however, the sug-
gested clustering-based selection strategy makes no sarike collection of positive
bags because the bags may contain some negative instandsmay collectively
form one or more clusters, thus if applied, the procedure reaylt in some instance
prototypes belonging to the negative class. Hence, focseteprototypes for the pos-
itive class, a different strategy is employed. In particulae most positive instance in
each positive bag is identified according to its relatiopsbithe negative training data.

For a positive bad;” = {le, B } let AT be ann; x | \/| matrix composed

of the similarities between the instanceddji and the negative training instances\i
computed like in 4). Thetrue positive(i.e. theleast negativginstance inB;", denoted
with z;", is picked as the instance which is the most distant from ttreeted negative
clusters inC as follows:

— AfxCe) . x Cy
Z+:B+* with ]*: arg min ngla---vk( )J | |

(6)
l K j=1,...,nf Zé:l,...,k |Ce|

where the term{A7x“"); is the weighted similarity of the instandg]’; to the cluster

Cy, and|-| denotes the cardinality of the setntuitively, in (6), larger clusters have
more significance in the final decision than the smaller ones.

To illustrate the proposed selection process, considdnthaimensional synthetic
data given in Figl(a). It contains 8 positive bags and 8 negative bags, eadhdav
least 8 and at most 10 instances. Each instance is randoavyndrom one of the five
normal distributions\/([4, 8], ), N'([0,4]%, 1), N([-1,12]7, 1), N([—4, —2]7, )
and N/ ([6,2]T, I) with I denoting the identity matrix. A bag is labeled positive if it
contains at least one instance from the first two distrimgion Fig.1(a), positive and
negative instances are respectively represented by srasskcircles, and drawn with
colors showing the labels of the bags they belong: blue feitpe and red for nega-
tive bags. The result of the proposed instance selectiohadas given in Fig.1(b).
The extracted negative clusters are shown in differentrspnd the selected instance
prototypes are indicated by squares. Notice that the darhg®s framework correctly
captured the multi-modality of the negative class, and tioéopypes selected from the
extracted clusters are all close to the centers of the giegative distributions. More-
over, the true positive instances in the positive bags wareessfully identified.

! Note that since the zero-componentsxsf¢ have no effect on estimating's, in practice
highly reduced versions oi's are utilized in the computations.
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Fig. 1. Synthetic data set (best viewed in color). () Raw data. [i&)ifistance selection process.

3.3 Classification

We can now describe our classification scheme. Suppose{ 2, , ...,z , 21 ,..., 2}, }
denote the set of selected instance prototypes, whieréhe number of extracted nega-
tive clustersm ™ is the number of positive training bag# similarity measure(z, B;)
between a ba@; and an instance prototypes defined by

d Z,BZH 2
S5 B = g, e (‘%) (7)
3 i

which calculates the similarity betweenand its nearest neighbor iB;. Then, we
define an embedding functignwhich maps a ba@ to a(k+m™)-dimensional vector
space by considering the similarities to the instance pypts:

¢(B)=[s(27,B),...,s(2,B),s(zF", B),...,s(z",,B)]" (8)

mt?

For classification, the embedding i) (can be used to convert the MIL problem
into a SIL problem. In solving the SIL counterpart, we chotustain a standard linear
SVM which has a single regularization parameteneeded to be tuned. In the end, we
come up with a linear classifier to classify a test iags:

F(Biw) =wlp(B) +b (9)

wherew € RIZ! is the weight vector) is the bias term. The label of a test b&gis
simply estimated by:

y(B) = sign(f(B;w)) (10)
The outline of the proposed MIL framework is summarized igaithm 1.

2 Note that one can always select more than one instance fromohsster or each positive bag.
A detailed analysis of this issue on the performance willdported in a longer version.



Algorithm 1: Summary of the proposed MILDS framework.
Input : Training bags{BY",...,B", By ,..., B _}

1 Apply dominant sets to cluster all the instances in the rieg#taining bags
2 Selectk (<m™) instance prototypes from the extractedegative clusters via Eq5)
3 Selectm™ instance prototypes from the positive bags via B). (
4 Form the instance-based embedding in Bjuing the selected prototypes
5 Train a linear SVM classifier based on the constructed featpace
Output: The set of selected instance prototygeand the SVM classifief (B; w) with
weightw

3.4 Extension to Multi-class MIL

The proposed approach can be straightforwardly extendedlte multi-class MIL
problems by employing ane-vs-resstrategy. In particular, one can traiinary clas-
sifiers, one for each class against all other classes. Thist dag can be classified
according to the classifier with the highest decision valae that an implementation
of this idea forms a different instance-based embedding#oh binary subproblem.
Here, we propose a second type of embedding which resuitsdsing a set of repre-
sentative instances common for all classes, as:

#(B) = [s(z1, B), s(23, B),...,s(z}, , B),
s(22,B),s(22,B),...,s(2%,,B),

(11)
s(z¢, B), s(25, B), .o 8(28, ,B)]

wherezF is theith instance prototype selected from clasgnote that the number of
prototypes may differ from class to class). In this casénitng data is kept the same for
all binary subproblems, only the labels differ, and this esthe training phase much
more efficient. This second approach is denoted with milD8istinguish it with the
naive multi-class extension of MILDS.

InmilDS, instance selection is performed as follows. Tt {15 [ i =1,..., M}
denote the collection of instances in bags belonging tesdlase. the set defined by
{B;;€B; | for all B;eB with y(B;)=k}. First, for each clask, the pairwise similarity
matrix A, of instanceg’* is formed, and accordingly a set of clustéfs= {C},...,CF, }
is extracted via dominant sets framewbrkhen, an instance prototype from each clus-
ter C¥ is identified according to:

2F—1% with j* = arg max xcf/ﬂ- () (12)
i =g ] = arg e j ik\J
JjE€o(x"i)

where the functior;;(j) measures the similarity gth instance irCf to all the re-
maining classes. The basic idea is to select the most repadise element i’ which

% In the experiments, for each classwe extract at mosty, clusters that is equal to the number
of training bags belonging to clas



is also quite dissimilar to the remaining training data frottner classes. However, here
we make a simplification and estimatg (j) by considering only the most closest class:

S cmeem (AemxC) ;% |Cp
Bix(j)= max 2 — (13)
m=1,..,c chﬂeCm |Cy™]

with Ay, denoting theM* x M™ matrix of similarities between the instancesZif
and the instances H™.

The embedding procedure described above gives rise towdéesppace whose di-
mensionality is at mos} _, my, i.e. the sum of the total number of clusters extracted
for each class.

3.5 Computational Complexity

From a computational point of view, the most time consumitep ©f the proposed
MILDS method and its multi-class extensions is the caléoifadf pairwise distances,
which is also the case forl[13,8]. In addition, there is the cost of clustering negative
data with dominant sets. In this matter, a dominant set carobgputed in quadratic
time using the approach in §]. An important point here is that the size of the input
graphs becomes smaller and smaller at each iteration oftiptoged peeling off strat-
egy, and this further introduces an increase in the effigiefithe clustering step.

4 Experimental Results

In this section, we present two groups of experiments touatalthe proposed MILDS
algorithm. First, we carry out a thorough analysis on soraaddrd MIL benchmark
data sets. Following that, we investigate image classifinaty casting it as a multi-
class MIL problem. In the experiments, LIBSVM)][package was used for training
linear SVMs. In addition to the SVM regularization paranmef& our algorithm has
only a single scale parameterthat needs to be tuned. The best valuesGoand o
are selected by using n-fold cross validation from the $ets'®, 2=9 ... 210} and
linspace(0.05u, 1, 20), respectively, withu being the mean distance between pair of
instances in the training data ahighspace(a, b, n) denoting the set linearly spaced
numbers between and includingandb.

4.1 Benchmark Data Sets

We evaluate our MILDS method on five popular MIL benchmarladagts used in many
multiple-instance learning studies, nam#yskl, Musk2 Elephant FoxandTiger. In
MusklandMusk?2 the task is to predict drug activity from structural infation. Each
drug molecule is considered as a bag in which the instanpesgents different struc-
tural configurations of the molecule. Elephant Fox andTiger, the goal is to differen-
tiate images containing elephants, tigers and foxes frarselthat do not, respectively.
Each image is considered as a bag, and each region of intgtbst the image as an
instance. The details of the data sets are given in Table



bags avg.
data set pos./neg. inst./bag dim
Muskl  47/45 5.17 166
Musk2 39/63 64.69 166
Elephant100/100 6.96 230
Fox 100/100 6.60 230
Tiger 100/100 6.10 230
Table 1.Information about the MIL benchmark data sets.

For experimental evaluation, we use the most common settiddimes 10-fold
cross validation (CV). That is, we report the classificatamturacies averaged over
10 runs where the parameter selection is carried our by UfiAgld cross validation.
Our results are shown in Tabietogether with those of 12 other MIL algorithms in
the literature 13,8,4,5,10,12,14,1,24]. All reported results are also based on 10-fold
CV averaged over 10 rufiswith the exception of MIForest, which is over 5 runs, and
MILIS and MIO, which are over 15 runs. The results demonstthat our proposed
approach is competitive with and often better than the siktbe-art MIL methods.
In three out of five MIL benchmark data sets, it outperformsesal MIL approaches.
However, it is more important to note that it gives the bestqyenance among the
instance-selection based MIL approaches.

Algorithm Muskl Musk2 Elephant Fox Tiger
MILDS 909 86.1 84.8 643 815
MILD _B [17] 88.3 86.8 829 55.0 758
MILIS [ 8] 88.6 91.1 n/a n/a nla
MILES [4] 83.3 916 84.1 63.0 80.7
DD-SVM [5] 858 913 835 56.6 77.2
MILD _I [13] 89.9 887 83.2 491 734
MIForest [L0] 85.0 820 84.0 64.0 82.0
MIO [17] 88.3 87.7 n/a n/a nla

Ins-KI-SVM[14] 840 844 835 63.4 829
Bag-KI-SVM[14] 88.0 820 845 60.585.0

mi-SVM [1] 87.4 836 822 582 789
MI-SVM [ 1] 779 843 814 594 840
EM-DD [24] 848 849 783 561 721

Table 2. Classification accuracies of various MIL algorithms on d&nd benchmark data sets.
The best performances are indicated in bold typeface.

4 Note that the results of MILIB and MILD_l on Muskland Musk2are different than re-
ported in [L3]. This is because, for a complete comparison, we downlo#teedource codes
of MILD _B and MILD_I available at the authors’ webpage and repeated the expetsnon
all the five data sets with our setting of 10 times 10-fold CV.



In Table3, for each instance-selection based MIL approach, we reperaverage
dimensions of the corresponding embedding spaces. MILE$eshighest dimension
since it utilizes all the training instances in the mapp@gMusk2andFox, our MILDS
approach does not offer any advantage in terms of dimensidaction, but for the
other data sets, it decreases the dimensidi+-23%, as compared to MILIS and DD-
SVM. Among all, MILD_B has the lowest dimension as it only uses positive instance
prototypes in its embedding scheme. However, as can besdable2, neglecting the
negative prototypes results in a poor performance comgarém other approaches.

Algorithm Muskl Musk2 Elephant Fox  Tiger
MILDS 75.0 920 169.4 180.0 139.2
MILD B 424 352 90.0 90.0 90.0
MILIS 83.0 920 180.0 180.0 180.0
MILES 429.4 5943.8 12519 1188.0 1098.0
DD-SVM 83.0 920 180.0 180.0 180.0
Table 3. The dimensions of the embedding spaces averaged over 16friisfold CV.

4.2 Image Classification

The multi-class extensions of our approach have been iga¢stl on image classifica-
tion problems. In specific, we used the COREL data set whictiabes 2000 natural
images from 20 diverse categories, each having 100 exankaek image is considered
as a bag of instances with instances corresponding to regibimterest obtained via
segmentation. Each region is represented by a 9-dimend$eztare vector describing
shape and local image characteristics (refetd] for details). Some example images
from the data set are given in Fig.

.54) i .
g - 3
f . z :

Flowers (4.46) Horses (3.89) MountairB8)3 Food (7.24)

)’

Sunsetesc8.52)

¥

Waterfalls (2.56) Antique furniture (2.30) Battle ships32) Ski

3.34) Desserts (3.65)

Fig. 2. Example images randomly drawn from the COREL data set. Fedr egtegory, the average
number of regions per image is given inside the parentheses.



In our evaluation, we used the same experimental setupideddn [4], and per-
formed two groups of experiments, which are referred td@30-Imageand 2000-
Image respectively. IML000-Imageonly the first ten categories are considered whereas
in 2000-Imageall the twenty categories in the data set are employed. @mdxper-
iments, five times two-fold CV is performed. The average gatization accuracies
are presented in Table As can be seen from the results, the performanddiaDS
andmilDS are competitive with the state-of-the-art MIL approacliespecially for the
larger2000-Imagelata set, our milDS method gives the best result.

Algorithm 1000-Image 2000-Image

milDS 82.2 70.6
MILDS 83.0 69.4
MILD B [19] 79.6 67.7
MILIS [ 8] 83.8 70.1
MILES [4] 82.6 68.7
DD-SVM [5] 81.5 67.5
MIForest [L(] 59.0 66.0
MissSVM [26] 78.0 65.2
mi-SVM [1] 76.4 53.7
MI-SVM [ 1] 74.7 54.6

Table 4. Classification accuracies of various MIL algorithms on CQRIB00-Imageand2000-
Imagedata sets. The best performances are indicated in boldaypef

Recall that in MILDS, each classifier trained for distinduig) a specific category
from the rest is built upon a different embedding space, ativer words, the set of
selected prototypes varies in every subproblem. For edgpreblem in1000-Image
Fig. 3 shows the instance prototype identified in one of the trgiiimages from the tar-
get class. Notice that the prototypes are selected fromisieeighinative regions for that
class. On the other hand, in milDS, the set of selected instprototypes is the same
for all the subproblems. This second selection strategyiges a rich way to include
contextual relationships in representing visual categgoth some respects, it resembles
the vocabulary generation step of th&g-of-wordsapproach{]. The subtle difference
is that a similarity-based mapping is employed here instéadfrequency-based one.
Fig. 4 shows five prototypes among the full set of representatstirces selected for
the Horse and Battle shipscategories. Observe that for thiorse category, selected
prototypes include not just horses but also the regionesponding to grass regions.
Likewise, for theBattle shipscategory, there are additional prototypes representing sk
and sea regions.

4.3 Sensitivity to labeling noise

Lastly, we analyzed the sensitivity to labeling noise. Fat{purpose, we repeated the
experiment in {] which involves distinguishingdistorical buildings from Horses in
COREL data set. In this experiment, we compared our methtd MILES, MILIS,
MILD _B with varying degrees of noise levels where the results aseth on five times



Elephants Flowers Horses Mountains

Fig. 3. Sample instance prototypes selected byNHEDS algorithm. For each image category,
the first row shows a sample training image from that categony the bottom row illustrates the
selected prototype region (shown in white) on the corredpgnsegmentation map.

Fig. 4. Sample instance prototypes selected byritik®S algorithm for theHorseand theBattle
shipscategories. The leftmost columns are the prototypes. Tgiemost three columns show
other sample regions from the corresponding extractedeckisT he regions in each cluster share
similar visual characteristics.

2-fold CV. For each noise level% of positive andi% of negative images are randomly
selected from the training set, and then their labels aregdthto form the noisy labels.



Fig. 5 shows the average classification accuracies. When the ¢évabeling noise
is low (d<5%), there is no considerable difference in the performanksghe noise
level increases, the performance of MILIS degrades. MILESsycomparable results
to MILDS and MILD_B for the noise levels up td<25%, but gives relatively poor
outcomes afterwards. Overall, MILDS is the most robust Migosithm to labeling
noise among all the tested MIL algorithms. Its performaregains almost the same
over all levels of the labeling noise. This is expected, sidominant sets is known to
be quite robust to outliers B,15].
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Fig. 5. Sensitivity of various MIL algorithms to labeling noise. MDS produces the most robust
results.

5 Summary and Future Work

In this paper, we proposed an effective MIL scheme, MILDSichloffers a new solu-
tion to select a set of instance prototypes, for transfognairgiven MIL problem into
a standard SIL problem. This instance selection approaables us to successfully
identify the most representative examples in the positigereegative training bags. Its
success lies in the use of dominant sets pairwise clustéangework. Our empirical
results show that the proposed algorithm is competitivh stihte-of-the-art MIL meth-
ods and also robust to labeling noise. As a future work, we faxtend our approach
to multi-instance multi-label learning setting4,23].
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