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Abstract. As recently discussed by Bar, Kiryati, and Sochen in [3], the
Ambrosio-Tortorelli approximation of the Mumford-Shah functional de-
fines an extended line process regularization where the regularizer has an
additional constraint introduced by the term ρ|∇v|2. This term mildly
forces some spatial organization by demanding that the edges are smooth.
However, it does not force spatial coherence such as edge direction com-
patibility or edge connectivity, as in the traditional edge detectors such as
Canny. Using the connection between regularization and diffusion filters,
we incorporate further spatial structure into the regularization process
of the Mumford-Shah model. The new model combines smoothing, edge
detection and edge linking steps of the traditional approach to boundary
detection. Importance of spatial coherence is best observed if the image
noise is salt and pepper like. Proposed approach is able to deal with
difficult noise cases without using non-smooth cost functions such as L1

in the data fidelity or regularizer.

1 Introduction

Mumford and Shah [13] formulated image segmentation process as a functional
minimization via which a piecewise smooth approximation of a given image and
an edge set are to be recovered simultaneously. The Mumford-Shah energy is:

EMS(u, Γ ) = β

∫

R

(u− g)2dx + α

∫

R\Γ
|∇u|2dx + length(Γ ) (1)

where

– R ⊂ <2 is connected, bounded, open subset representing the image domain,
– g is an image defined on R,
– Γ ⊂ R is the edge set segmenting R,
– u is the piecewise smooth approximation of g,
– α, β are the scale space parameters of the model.



The first term in EMS(u, Γ ) is the data fidelity term, which forces the solution u
to be as close as to the original image g. The other two terms are the regulariza-
tion terms, which give preference to piecewise smooth images with simple edge
sets. The unknown edge set Γ makes the minimization mathematically difficult.
A convenient approximation is suggested by Ambrosio and Tortorelli [2] follow-
ing the Γ convergence framework [7]. The basic idea is to introduce a smooth
edge indicator function v which is more convenient than the original edge indica-
tor represented by the characteristic function 1−χΓ . The function v depends on
a parameter ρ, and as ρ → 0, v → 1−χΓ . That is, v(x) ≈ 0 if x ∈ Γ and v(x) ≈ 1
otherwise. Moreover, the cardinality of the edge set Γ can be approximated by
1
2

(
ρ|∇v|2 + (1−v)2

ρ

)
. The new functional is as follows:

EAT (u, v) =
∫

R

β(u− g)2 + α(v2|∇u|2) +
1
2

(
ρ|∇v|2 +

(1− v)2

ρ

)
dx (2)

Notice that as v → 0, the smoothness constraint in the piecewise smooth model
is switched off. It is possible to interpret v2 as an analog form of the line process
introduced by Geman and Geman [12]. As shown by Bar et al. [3] and Teboul et
al. [18], the Ambrosio-Tortorelli approximation of the Mumford Shah functional
defines an extended line process regularization where the regularizer has an
additional constraint introduced by the term ρ|∇v|2. This term mildly forces
some spatial organization by demanding that the edges are smooth. However,
it does not force spatial coherence such as edge direction compatibility or edge
connectivity. On the other hand, in the traditional approach, segmentation is
defined as a sequential bottom-up process composed of the following three steps:

– smoothing,
– edge detection,
– edge linking.

The purpose of the last step is to force global consistency to locally detected
edges in order to come up with a coherent edge set. Interestingly, this last step
is what Mumford-Shah model or its Ambrosio-Tortorelli approximation lacks.
The importance of spatial coherence can be best observed when the image con-
tains impulse noise (Fig 1). Some works use Mumford-Shah regularizer or its
modification [17, 1] for restoration in the presence of impulse noise. In [3, 4], Bar
et al. present a very promising approach. However, the success of their method
stems mostly from the use of robust data fidelity by replacing L2 norm with L1.
Similarly, in [17], Shah uses L1 norm for both the data fidelity and the regular-
izer. In fact, the use of non-smooth cost functions such as L1 for the data fidelity
term in order to deal with outliers and impulse noise is well motivated both the-
oretically and experimentally [8, 14, 17]. Teboul et al. [18] present a modification
to (2), by replacing the quadratic cost |∇v|2 with L1 cost, which leads to sin-
gular diffusivity. Numerical difficulties are the cons of singular diffusivities [9].
The cost function choice in [18] also leads to directional smoothing. As explored
by Weickert [19], directional smoothing can offer significant feature preserving
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Fig. 1. Denoising cases which can not be handled by the Ambrosio-Tortorelli.
(a)-(b) couple image corrupted with 5% salt and pepper noise and its reconstruc-
tion using the Ambrosio-Tortorelli. (c)-(d) A noisy test image –70% of the pixels
are degraded with uniform noise– and its reconstruction using the Ambrosio-
Tortorelli.

capabilities. However, the models get complicated and numerics is not as simple
as in the case of isotropic diffusion.

In this work, we propose a modification to the Ambrosio-Tortorelli approxi-
mation of the Mumford-Shah functional, turning it into an edge-preserving reg-
ularization with spatial coherence. Key to our approach is the link between edge
preserving regularization and diffusion filters [15, 16, 6]. Proposed model is a set
of coupled linear diffusion equations. Hence, it is easy to implement.

We experimentally demonstrate denoising and edge preserving abilities of
the proposed method. It can handle impulse noise and fill boundary gaps. More-
over, it can produce sharper results. Smoothed images obtained by the proposed
method are qualitatively comparable to that are obtained by singular diffusion
equations [9].

In the next section, we review the Ambrosio Tortorelli approximation and
analyze it’s behavior relevant to our developments given in § 3. We present
and discuss experimental results in § 4. Finally, § 5 is the summary and the
conclusion.

2 Gradient Descent Equations for Ambrosio-Tortorelli
Energy

Gradient descent equations for the Ambrosio-Tortorelli functional yield the fol-
lowing coupled PDEs:

∂u

∂t
= ∇ · (v2∇u)− β

α
(u− g);

∂u

∂n

∣∣∣∣
∂R

= 0 (3)

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂R

= 0 (4)



where ∂R denotes the boundary of R and n denotes the direction normal to
∂R. By alternating between these two biased diffusion equations, smooth image
u and the edge indicator function v are simultaneously computed. Keeping v
fixed, (3) minimizes a convex quadratic functional given by

∫

R

αv2|∇u|2 + β(u− g)2 (5)

While the bias term in (3) or equivalently in (5) forces u to be as close as to
the original image g, the first term acts as an edge preserving regularizer. It
smoothes the image with a smoothing radius proportional to the value of the
function v and α

β . If there is an edge (v ≈ 0), no smoothing (diffusion) is applied.
On the other hand, keeping u fixed, (4) minimizes a convex quadratic func-

tional given by

∫

R

ρ|∇v|2 +
1 + 2αρ|∇u|2

ρ

(
1

1 + 2αρ|∇u|2 − v

)2

(6)

The reciprocal relationship between v and |∇u|2 can be best observed in (6).
Clearly, it asserts that v function is nothing but a smoothing of

1
1 + 2αρ|∇u|2 (7)

with a blurring radius proportional to ρ and reciprocal to |∇u|. Ignoring the
smoothing, by letting ρ → 0 [17, 11],

v ≈ 1
1 + 2αρ|∇u|2 (8)

3 Regularizer with Spatial Coherence

The regularization of v via ∇2v term in (4) or equivalently |∇v|2 term in (6) im-
poses some mild spatial organization [3, 18], by forcing v to be smooth. However,
this regularization does not force edge direction compatibility or edge continuity.
Key contribution of our work is to modify the PDE given in (3) in a way that
these constraints are incorporated. Our essential idea is to introduce a spatially
varying function c, which increases for unpreferred spatial organization of the
edges and decreases for the preferred ones. The value of the function appears as
a multiplier in the diffusivity function giving (9).

∂u

∂t
= ∇ · ((c.v)2∇u)− β

α
(u− g);

∂u

∂n

∣∣∣∣
∂R

= 0 (9)

Function (cv)2 can be seen as a modified edge indicator, which we compute di-
rectly without explicitly computing the scalar c. Regularization of u is influenced
by the modified indicator whereas the edge indicator v itself remains the same.



In the following subsections, we present two possible choices for the scalar func-
tion c, considering the edge coherency by means of directional consistency and
edge continuity, respectively. Since the edge coherency corresponds a multiplier
for the diffusivity function, it is possible to combine these two proposed functions
into a single framework by taking the function c as the product. The resulting
framework considers the coherency of the edges by means of both the directional
consistency and the edge continuity.

3.1 Directional Consistency

In the edge linking step of traditional boundary detection, edge pixels detected
based on the magnitude of gradient are linked to give a connected edge set if
their gradient directions are in agreement. Unlinked edge pixels are discarded. We
induce such an effect in our diffusion model by increasing the relative persistence
of the edge pixels, which are consistent with their neighbors, by increasing the
diffusivity at inconsistent ones. We consider a coherency function φ(u) such
that φ(u) → 1 on the preferred configurations and φ(u) → 0 on the incoherent
configurations, and let c has the following form:

c = 1 + (1− φ(u))
1− v

v
(10)

First, notice that c increases in proportion to the image gradient |∇u|, which
is proportional to 1−v

v (See (8)). Second, notice that the overall diffusivity co-
efficient (c.v)2 can be estimated as follows, without explicitly computing the
variable c:

(cv)2 = (φ(u)v + (1− φ(u)) 1)2 (11)

The new diffusion coefficient is the square of the convex combination of v
and 1. Value of the diffusivity is bounded by 1, attaining maximum value as
φ(u) → 0, and decaying as φ(u) → 1 to a value determined by the edge indicator
function v. We consider the following φ function, which simply measures the
coherency as a function of edge directions.

φ(ui) = exp


ε


 1
|ηs|

∑

j∈ηs

∇ui · ∇uj − 1





 (12)

where ηs represents the neighborhood of pixel i having s neighbors. We define
ηs as ±s pixels along the orthogonal edge direction ∇ui

⊥. The parameter ε is a
scalar, which determines the decay rate of the φ function. If the neighboring pix-
els are coherent (having similar edge directions), then the average angle between
∇ui and ∇uj ’s is close to 0 making φ → 1.

3.2 Edge Continuity

The principle of edge continuity is used to eliminate streaking or breaking up of
an edge contour due to noise or changing contrast. It is commonly referred as



hysteresis due to successful application of threshold retardation in Canny edge
detector [10]. In our diffusion model, we lower the diffusivity at pixels that corre-
spond to broken parts of boundary segments to favor edge formation. There may
be various choices for the selection of c. The important point is to decrease the
modified diffusivity (cv)2 if the neighboring site supports formation of an edge i.e
having a low v value. Recall (8) that gives the reciprocal relationship between
v and |∇u|. Decreasing diffusivity can be achieved by increasing the estimate
of the image gradient, which is used in estimating the diffusivity. Therefore, a
natural choice is to add an offset h ∈ [0, 1] indicating a support in favor of edge
formation to the gradient term in the diffusivity estimate:

(cv)2 =
(

1
1 + h + 2αρ|∇u|2

)2

(13)

Such a choice yields

c =
1

1 + hv
(14)

In the discrete implementation of (9), diffusivities are estimated at mid-
grid points. Hence, h should be computed as a support from a suitably chosen
neighbor. For example, modified diffusivity (cv)2i+0.5,j at a mid point between
(i, j) and (i + 1, j) may receive support in the form of either (1− vi+0.5,j−1) or
(1 − vi+0.5,j+1). Notice that lower the value of edge indicator at a neighboring
site, higher the support it provides.

Adding spatial organization to energies defining regularization with line pro-
cess has been previously proposed by Black and Rangarajan [5]. They define a
local interaction energy that favors formation of unbroken contours. In [6], Black
et al. derives the necessary update equations. If we let v2

k+v2
l

2 define a line process
between site k and site l, then our development becomes equivalent to that of
Black et al. Thus, solving new coupled equations are qualitatively equivalent to
modifying the Mumford-Shah with an additive term favoring unbroken contours
as in Black and Rangarajan [5].

4 Experimental Results

The importance of directional consistency is best observed if the image con-
tains impulse noise. Processing of the noisy couple image, shown in Fig 1(a),
using the Ambrosio-Tortorelli and the new method are illustrated in Fig 2. Fig
2(a) and (b) illustrate smoothing obtained using the Ambrosio-Tortorelli with
400 iterations with different smoothing radius, α

β . The result in Fig 2(a) is ob-
tained with α = 1, β = 0.01, ρ = 0.01. When we increase the smoothing radius
by choosing β = 0.001, diffusion is highly severe that we even lose the head of
the lady (Fig 2(b)). Yet, the noise is still present. If we use a regularization term
which forces spatial coherence of the edges by means of the directional consis-
tency, as discussed in § 3.1, the image is denoised without blurring (Fig 2(c)
and (d)). The perceptual difference between Fig 2(c) and (d) is in the sharp-
ness level. The result in Fig 2(c) is obtained with the segmentation parameters



(a) (b) (c) (d)

Fig. 2. Considering directional consistency eliminates impulse noise. (a)-(b) Re-
constructions using the Ambrosio-Tortorelli with two different smoothing radius.
Notice that the noise is still present even when we lose the head of the lady.
(c)-(d) Reconstructions with directional consistency with two different sharp-
ness levels. Notice that at comparable scales noise is completely eliminated.

specified for Fig 2(a) and the coherency parameters s = 2 and ε = 0.25 (this set
of parameters are used for all of the experiments reported in the paper unless
otherwise stated) with 50 iterations. For the result given in Fig 2(d), we use the
same parameters except ε = 0.02 and 300 iterations. The variable ε determines
the decay rate of the coherency function used in the segmentation process and
therefore specifies the level of sharpness. For large ε value, the decay rate is high
and the edges are more smoothed out depending on the coherency. Hence, as
observed, the resulting image is smoother. On the other hand, for small ε values,
we get sharper results.

Increasing the value of α while keeping α
β fixed means decreasing the penalty

of the length term, yielding more detailed reconstruction. In Fig 3, the proposed
modification is again tested with couple image with 5% salt and pepper noise
(Fig 1(a)), however, forcing the reconstruction to be more detailed by the proper
choice of parameters. Fig 3(a) is the outcome of the proposed modification after
20 iterations. On the other hand, Fig 3(c) is obtained by performing 50 iterations

(a) (b) (c) (d)

Fig. 3. u and 1−v functions computed with α = 1, β = 0.01 and α = 4, β = 0.04
respectively. Even in more detailed reconstructions, modified scheme is able to
remove noise completely



with the same parameters except α = 4, β = 0.04. The corresponding edge
indicator functions are also shown in Fig 3(b) and (d) respectively. As they
demonstrate, even the detailed reconstruction with α = 4 is noise free.

The example presented in Fig 4 illustrates the effect of edge continuity as
described in § 3.2. The results are obtained with 100 iterations. The reconstruc-
tions of the venice image shown in Fig 4(a) are presented in Fig 4 (b) and (c)
together with the corresponding edge indicator functions. Fig 4(b) illustrates the
outcome of the Ambrosio-Tortorelli whereas Fig 4(c) illustrates the result ob-
tained by considering edge continuity. As it can be clearly seen from the zoomed
indicator functions given in Fig 4(d), the modified scheme eliminates broken
contours.

(a) (b) (c) (d)

Fig. 4. Considering edge continuity eliminates broken contours. (a) input image.
(b) Reconstruction using the Ambrosio-Tortorelli (u and 1− v). (c) Reconstruc-
tion with modified scheme forcing edge continuity (u and 1−v) (d) Details from
the edge indicator functions given in (b) and (c) respectively.

In Fig 5, we demonstrate the results obtained with a regularization consid-
ering both the directional consistency and the edge continuity via the product
of individual c functions. The reconstruction results of venice image with 10%
salt and pepper noise (Fig 5(a)) after 100 iterations are given in Fig 5(b)-(d).
Fig 5(b) is the result obtained with edge continuity. As it can be clearly seen, the
noise is not eliminated. Fig 5(c) is obtained with the modification which consid-
ers the directional consistency. Finally, Fig 5(d) is the outcome of the combined
framework which is not only noise free and but also having stronger edges.

In Fig 6, the combined framework is tested with a noisier image (Fig 1(c)).
Fig 6(a) is the outcome of the Ambrosio-Tortorelli approximation after 500 it-
erations. Fig 6(b) is obtained with 150 iterations by using the modification,



(a) (b) (c) (d)

Fig. 5. Considering a combined framework eliminates both noise and the broken
contours. (a) venice image corrupted with 10% salt and pepper noise. (b) Recon-
struction with edge continuity. (c) Reconstruction with directional consistency.
(d) Reconstruction using both edge continuity and directional consistency.

which considers only the directional consistency. Fig 6(c) is the outcome of the
combined framework again after 150 iterations. Both reconstructions are quali-
tatively comparable to the ones obtained by means of singular diffusivities [9].
Notice that the two results are visually similar. This is due to the fact that the
contrast is almost constant in the image. Hence, broken lines do not occur.

Mumford-Shah regularizer gives preference to piecewise smooth images with
simple edge sets, without directly forcing edge direction compatibility or edge
connectivity. Our final experiment demonstrates the potential of the modified
model for textured images where the piecewise smooth assumption fails. As
shown in Fig 7, directional consistency can also be used for further smoothing
of the inhomogeneous textured regions that results in more coherent texture
boundaries. Fig 7(a) is the input image sunflower. Fig 7(b) is the edge indicator
function obtained by the Ambrosio-Tortorelli after 100 iterations with α = 4,
β = 0.04 and ρ = 0.001. Even though the outer boundary separating leaves and
seeds start to vanish, the inner boundary (small circles due to seeds) is clearly
visible. Increasing α worsens the situations. On the other hand, when we consider

(a) (b) (c)

Fig. 6. A difficult denoising case. (a) Reconstruction using Ambrosio-Tortorelli.
(b) Reconstruction with directional consistency. (c) Reconstruction using the
combined framework.



(a) (b) (c) (d)

Fig. 7. An application to an image which violates the piecewise smooth assump-
tion. (a) input image. (b) Edge indicator function computed using the Ambrosio-
Tortorelli. Notice that when the outer boundary separating leaves and seeds are
smoothed, the small circles due to texture gradient are still present. (c)-(d) Edge
indicator functions computed with the directional consistency and the combined
framework respectively. Observe that the edges due to texture gradient disap-
peared, yet the outer boundary is clearly visible.

the directional consistency of the edges with the parameters α = 8, β = 0.08,
ρ = 0.001, s = 2 and ε = 0.25, the inner boundary is smoothed out and the outer
boundary is present (Fig 7(c)). A reasonable result is also obtained by using the
combined framework with the same parameters except ε = 2 (Fig 7(d)).

5 Summary and Conclusion

Mumford-Shah model and its Ambrosio-Tortorelli approximation unify image
smoothing and edge detection via coupling of two functions u and v representing
smooth image and the edge indicator respectively. The edge indicator function v
defines an analog line process and its regularization imposes smoothness of the
edge set. However, the model does not directly enforce spatial coherence as in the
edge linking step of the traditional processing. We modify Ambrosio-Tortorelli
model in its coupled diffusion equations form such that the regularization of
u is steered by the coherent edges. Our experiments demonstrate that the new
regularization is able to remove difficult noise types and produce almost segmen-
tation like results without using directional or singular diffusivities that arose
from L1 norm in the cost functions. In our experiments, we consider spatial co-
herency in terms of edge direction compatibility and edge continuity. However,
further coherency criteria can be investigated, remaining in the same framework.
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