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Abstract

Many researchers argue that fusing multiple cues increases the reliability

and robustness of visual tracking. However, how the multi-cue integration

is realized during tracking is still an open issue. In this work, we present a

novel data fusion approach for multi-cue tracking using particle filter. Our

method differs from previous approaches in a number of ways. First, we

carry out the integration of cues both in making predictions about the target

object and in verifying them through observations. Our second and more

significant contribution is that both stages of integration directly depend on

the dynamically-changing reliabilities of visual cues. These two aspects of our

method allow the tracker to easily adapt itself to the changes in the context,

and accordingly improve the tracking accuracy by resolving the ambiguities.
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Preprint submitted to Pattern Recognition December 29, 2011



1. Introduction1

Visual tracking is a widely studied topic in computer vision for a wide2

range of application areas. These include visual surveillance, activity analy-3

sis, man-machine interaction, augmented reality, etc. Here we consider the4

task of locating an object of interest on each frame of a given video sequence.5

This object of interest can be an actual object in the scene, e.g. a person,6

or a specific image region of prime importance, e.g. a face. For real-world7

applications, it is generally accepted that tracking based on a single visual8

feature would be likely to fail due to the complex nature of the data and9

the tracking process. Thus, it has been argued in many works that consid-10

ering multi-modal data leads to an improvement in tracking. It increases11

the robustness by letting complementary observations from different sources12

work together. These sources are either the visual features extracted from13

the same image sequence, such as color and motion cues, or the visual cues14

coming from different physical sensors, such as from a CCD or from an in-15

frared camera. However, how the information extracted from these sources16

is combined in tracking is still an open problem.17

1.1. Related Work18

Tracking methods generally involve two key processes: generating hy-19

potheses through a prediction step and then verifying these hypotheses through20

some measurements. Considering the vast number of studies in tracking liter-21

ature, the most general way of performing data fusion is in the measurement22

step. For example, in an early work [4], Birchfield suggested to combine two23
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orthogonal visual cues (color and intensity gradients) within a hypothesize-24

and-test procedure. In these studies, each cue provides a likelihood or a25

matching score for the possible positions of the object, and the final output26

is determined by taking into account the product of individual likelihoods27

or the summation of the matching scores. The main problem with this ap-28

proach is that all the modalities are given an equal reliability, which is a29

very unrealistic assumption. Thus, if one of visual cues becomes unreliable,30

it may result in a wrong estimate.31

In tracking literature, different definitions of cue reliability have been32

proposed. For example, in [2, 19], the authors defined the reliability of a single33

cue by means of the covariance or the spread of the samples suggested by34

the cue at each tracking step, measuring its uncertainty. On the other hand,35

in [10], the cue reliability is considered as a measure specifying the success36

of the cue in discriminating the object from the surrounding background.37

Tracking approaches can be grouped according to the way they employ the38

cue reliabilities. The first group of works [7, 19, 23, 24, 25] assigns different39

reliability values to different visual cues, and takes them into consideration40

in the measurement step. In [24, 25], the authors formulate the fusion as the41

weighted average of saliency maps extracted for each cue with the weights42

corresponding to the cues’ reliabilities. Hence, the reliabilities are determined43

by considering the correlation among the visual cues. In other words, cue44

reliability is defined relative to the success of the other cues in tracking the45

target object. During tracking, different cues try to reach an agreement on a46

joint result and they adapt themselves considering the result currently agreed47
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on. Similarly, the Sequential Monte Carlo based framework proposed in [7,48

19, 23] use adaptive weights for the cues utilized in estimating the combined49

likelihoods. In this approach, the overall likelihood is more precise since the50

reliabilities of cues are now taken into account in the computations. On the51

other hand, the weakness of these studies is that the fusion is carried out only52

in verifying object hypotheses against observations. The utilized multiple53

cues are involved in neither making predictions nor generating hypotheses in54

any way. In terms of robustness, however, this is an important direction that55

should be pursued as well.56

The second line of works [9, 18, 22, 28], indeed, concentrates on this is-57

sue and lets the multi-modal data interact with each other more explicitly58

throughout the tracking process. The common characteristics of these works59

is that the integration is also carried out in the prediction step. For instance,60

the ICONDENSATION algorithm [18] uses a fixed color model specific to the61

object of interest to detect blobs in the current frame and uses them in the62

prediction step of a shape-based particle filter tracker. In [28], the authors63

suggested an approximate co-inference among the modalities by decoupling64

the object state and the measurements according to color and shape and by65

letting each visual cue provide hypotheses for the other one. Thus, in their66

formulation, the shape samples are drawn according to the color measure-67

ments, and the color samples are drawn according to the shape measure-68

ments. The tracker in [22], on the other hand, uses a partitioned sampling69

structure which consists of two layers. The first layer constructed considering70

either motion or sound provides a coarse information on the target object,71
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which is then refined by the second layer by using color. The work in [9] also72

suggests a two-level, but more centralized, particle filter architecture. At the73

lower level, the individual trackers based on different cues perform tracking74

independently. At the upper level, a fuser integrates the trackers’ outputs75

to construct more reliable hypotheses, and in return provides a feedback to76

the individual trackers. Although the studies that can be categorized within77

this latter group introduce explicit interactions between multiple cues, the78

way these interactions occur in each study is mainly predetermined by the79

global scheme/architecture considered. Furthermore, the reliabilities of the80

visual cues are not taken into account in any way. In this respect, the dy-81

namic partitioned sampling approach in [13] is interesting as it proposes to82

dynamically change the order of cues used in sampling depending on the cue83

reliabilities.84

1.2. Proposed Framework85

In this paper, we present a Sequential Monte Carlo based tracking algo-86

rithm that combines multi-modal data in an original way. Our main mo-87

tivation is to develop a tracking algorithm that has the properties of the88

two groups of works mentioned previously. That is to say, we suggest to89

carry out the integration of the multiple cues in both the prediction step and90

in the measurement step, in estimating the likelihoods. In [20], Nickel and91

Stiefelhagen suggested a work in a line similar to ours by combining Demo-92

cratic Integration [25] with two-staged layered sampling [22]. They used a93

predetermined layer structure with each layer being adaptive in its own. For94
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instance, the first layer is composed of stereo cues each describing a part95

of the target object. However, compared to theirs, our system architecture96

allows interactions between multiple cues to be more dynamic and flexible.97

For the prediction step, we associate each particle with a specific cue98

and accordingly with a specific proposal function. The crucial point is that99

this process is defined as an adaptive process which is governed by the100

dynamically-changing reliabilities of the visual cues. Thus, if one cue be-101

comes unreliable, the tendency is to reduce the total number of particles102

associated with it and to increase the total number of particles associated103

with other visual cue(s). This dynamic process improves the accuracy of104

the predictions since less reliable proposal functions are utilized less in the105

sequential importance sampling. During the prediction step no cue is given106

a preference over another, and the interactions between the cues are directly107

determined by the current context in an adaptive manner. As mentioned108

above, we take into account the reliabilities of the visual cues in estimat-109

ing the confidence measures of the particles as well. We define the overall110

likelihood function so that the measurements from each cue contribute the111

overall likelihood according to its reliability. In return, we obtain more pre-112

cise likelihood values in the measurement step as the misleading effects of113

the unreliable cues are reduced.114

The remainder of the paper is organized as follows: Section 2 recalls115

the Sequential Monte Carlo method with a focus on multi-modal tracking.116

Section 3 gives the basis of our object model and the corresponding state117

dynamics. Section 4 introduces the visual cues and the proposal functions118
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that we consider in our experiments. Section 5 gives the outline of our multi-119

modal tracking algorithm and our main contributions. Section 6 presents120

some illustrative tracking experiments in which we analyze the performance121

of the proposed algorithm. Finally, Section 7 makes a brief summary of our122

work, and points out the future directions.123

2. Sequential Monte Carlo and Multi-modal Tracking124

In a classical filtering framework, the main aim is to estimate the poste-125

rior distribution p(xk | y1:k) of the state vector xk through a set of measure-126

ments y1:k up to the current time step k. The Bayesian sequential estimation127

approach computes this distribution according to a two-step recursion: a pre-128

diction step p(xk | y1:k−1) =
∫
p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1 followed by129

a filtering step p(xk | y1:k) ∝ p(yk | xk)p(xk | y1:k−1).130

This formulation requires two models to be defined: an evolution (tran-131

sition) model for the state dynamics p(xk | xk−1) and a likelihood model132

for the observations p(yk | xk). Sequential Monte Carlo based filtering (also133

known as particle filter) [1, 12, 15, 17] has proved to be an effective method,134

and provides a simple yet flexible solution to many optimal state estimation135

problems, such as tracking [8, 16, 27] and sensor fault detection [26].136

The main idea behind particle filter is to approximate the posterior dis-137

tribution p(xk | y1:k) by a weighted set of N particles {x(i)
k , w

(i)
k }Ni=1 as138

p(xk | y1:k) ≈
∑N

i=1w
(i)
k δ

x
(i)
k

(xk), with δx0 denoting the Dirac delta mass139

centered on x0, and each particle representing a possible state xk and its140

weight w
(i)
k ∈ [0, 1] describing its confidence measure.141
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The recursive estimation is, then, characterized by two main steps: with142

an approximation of p(xk−1 | y1:k−1) at hand, new particles are generated143

from the old particle set {x(i)
k−1, w

(i)
k−1}

N
i=1 by using a known proposal function,144

x
(i)
k ∼ q(xk | x

(i)
0:k−1,y1:k). This prediction step is followed by an update step145

where the weights of the new particles w
(i)
k are determined from the new146

observations yk using w
(i)
k ∝ w

(i)
k−1

p(yk|x
(i)
k

)p(x
(i)
k

|x
(i)
k−1)

q(xk |x
(i)
0:k−1,y1:k)

with
∑N

i=1w
(i)
k = 1. As147

a further step, a resampling phase, which removes the particles with low148

weights and accumulates the particles with high weights, can be employed149

to avoid the degeneracy of the particles [15]. Generally, the final tracking150

decision is made by taking into account the conditional mean, the weighted151

average of the particles {x(i)
k }, or the particles with the highest weights.152

For multi-modal tracking, the simplicity and the flexibility of the parti-153

cle filter offer a wide variety of solutions. One direction is to perform data154

fusion in the likelihood estimation step. In this regard, the most straight-155

forward way of integrating multiple measurement sources is to assume that156

these measurements are conditionally independent given the state and subse-157

quently factorize the overall likelihood as p(y | x) =
∏M

m=1 p(y
m | x), with M158

being the total number of sources. As we stated in the introduction, it is pos-159

sible to increase the accuracy of the joint likelihood by further considering the160

reliabilities of the measurement sources in the integration phase [7, 19, 24].161

The studies [9, 18, 22, 28] consider another direction and suggest explicit162

interactions between different modalities. In these works, the main emphasis163

is on the proposal functions utilized in the prediction step, and how the can-164

didate state hypothesis proposed by different modalities can be integrated.165
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3. Object Model and State Dynamics166

The tracking framework that we propose in this work does not depend on167

a specific object model, and any model suggested in literature can be utilized.168

In this paper, we prefer to use a simple model and represent the target object169

by a fixed reference rectangular region parameterized as Ω = (xc, yc, w, h),170

where (xc, yc) denote the coordinates of the center of the rectangular region171

having a width w and a height h.172

We define the object state as xk = (xk, yk, sk, tk) ∈ X . It describes a new173

region Ωxk
= (xk, yk, skw, tkh) with sk and tk denoting the scaling factors for174

the width and the height of the reference region, respectively.175

For the state evolution model, we assume mutually independent Gaussian176

random walk models along with a small uniform component as in [22]. This177

uniform component is used to compensate the irregular motion behavior of178

the target object and provides a kind of re-initialization. Accordingly, the179

state evolution model can be written as:180

p(xk | xk−1) ∼ βUU(0,xmax) + (1− βU)N (xk−1,Λ) (1)

where U(0,xmax) denotes the uniform distribution in [0,xmax], with the vec-181

tor xmax representing the maximum allowed values over the set X ,N (xk−1,Λ)182

the Gaussian distribution with mean xk−1 and covariance matrix Λ = diag(σ2
x, σ

2
y , σ

2
s , σ

2
t ),183

and βU is the weight of the uniform component. The initial state of the object184

is assumed to be described by a uniform distribution p(x0) = U(0,xmax).185
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4. Visual Cues and Proposal Functions186

This section describes the visual cues that we utilize in tracking an object187

of interest. These are simply color, motion and infrared brightness, and are188

discussed in the following subsections.189

In our work, while extracting these visual cues from an image frame, we190

follow a conventional approach and use measurements based on histograms.191

We compute the likelihoods and construct the individual proposal functions192

by making use of reference histograms which are defined for each visual cue.193

We manually construct our reference histograms, and use these histograms194

throughout the whole tracking sequence without updating them.195

Mainly, the construction of the proposal functions and the estimation of196

the likelihoods depend on the comparison between the histograms extracted197

from the candidate regions and the reference histogram. For that, we utilize198

the Bhattacharyya histogram similarity measure [3].199

It is important to note that, as in [22], the proposal functions described200

in the subsequent subsections are defined only for suggesting the new values201

for the location component of the object state. For the scaling factors, the202

proposal functions are taken as the corresponding component of the state203

evolution model described in Equation (1).204

4.1. Color Cue205

Following [21], we adopt an observation model that is based on Hue-206

Saturation-Value (HSV) color histograms with BC = BhBs + Bv bins. and207
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define our color likelihood as208

p(yC | x) ∝ exp

(
−
D2(hC

x
,hC

ref)

2σ2
C

)
(2)

with hC
ref denoting the BC-bin normalized reference histogram, hC

x
repre-209

senting the normalized color histogram which is obtained from a candidate210

object region specified by the object state x, and D2(hC
x
,hC

ref) being the211

Bhattacharyya histogram similarity measure between them.212

The construction of the proposal function also depends on the color likeli-213

hood model described above. Typically, we first estimate the color likelihoods214

on a subset of image locations over the current frame. For this, we use a pre-215

defined step size of 5 pixels through the current frame, and keep the scale216

factors fixed as s = t = 1. The likelihoods estimated in this way define an217

approximate probability distribution map for the target object. Once these218

likelihoods are estimated, we define our proposal function as follows:219

qC(xk, yk | xk−1, yk−1,y
C
k ) = βRWN

(
(xk−1, yk−1), (σ

2
x, σ

2
y)
)

+
(1− βRW )

NC

NC∑

i=1

N
(
pC
i , (σ

2
x, σ

2
y)
)
. (3)

In Equation (3), the first component is the Gaussian random walk com-220

ponent for the object location that we previously introduced in our state evo-221

lution model given in Equation (1). The points pC
i = (xi, yi), i = 1, · · · , NC222

denote the image locations having a likelihood greater than a threshold (i.e.223

p(yC | x) > τC), and define the centers of Gaussians in the mixture model224

11



utilized in the second component, respectively. We fixed βRW = 0.75 in our225

experiments, and thus the main tendency is to preserve the smoothness of226

the tracking trajectory. On the other hand, the second component allows227

jumps in the state space to the image regions that likely contain the target228

object.229

4.2. Motion Cue230

The image locations having a motion activity at the frame k can be231

determined from the absolute difference of the intensity images at the frames232

k and k−1. In the frame difference, the pixels with large values indicate the233

motion activity. If there is no motion, the frame difference is either zero or234

has a very small value due to the noise and/or due to the slight changes in235

the intensity.236

To estimate the motion likelihood, we follow the approach suggested237

in [22]. For a region of interest specified by the state x, we associate a mo-238

tion histogram hM
x

= (hM
1,x, · · · , h

M
BM ,x) with BM denoting the number of bins.239

The reference histogram hM
ref is defined considering a uniform distribution,240

i.e. hM
i,ref = 1/BM , i = 1, · · · , BM . In the case of no motion activity, the241

Bhattacharyya histogram similarity measure yields D2
no mot. = 1 −

√
1/BM .242

Considering this, we define the motion likelihood as243

p(yM | x) ∝ 1− exp

(
−
D2

no mot. −D2(hM
x
,hM

ref)

2σ2
M

)
. (4)

As in Section 4.1, the proposal function is constructed by estimating244
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the likelihoods on a subset of image locations over the current frame. The245

locations having a likelihood greater than a threshold τM are then used, as246

in [22], to define the proposal function as247

qM(xk, yk | xk−1, yk−1,y
M
k ) = βRWN

(
(xk−1, yk−1), (σ

2
x, σ

2
y)
)

+
(1− βRW )

NM

NM∑

i=1

N
(
pM
i , (σ2

x, σ
2
y)
)
. (5)

4.3. Infrared Brightness Cue248

Besides color and motion, we employ infrared brightness cue in some of249

our experiments. This cue requires the tracking sequence to be imaged from250

an infrared camera, and allows us to consider different thermal characteristics251

of an object of interest during tracking. In estimating the likelihoods and252

constructing the corresponding proposal function, we follow an approach253

similar to the ones explained in the previous subsections. Then, we define254

the infrared brightness likelihood as255

p(yI | x) ∝ exp

(
−
D2(hI

x
,hI

ref)

2σ2
I

)
(6)

where hI
ref = (hI

1,ref , · · · , h
I
BI ,ref

) is the BI-bin normalized reference his-256

togram, and hI
x
= (hI

1,x, · · · , h
I
BI ,x

) is the normalized brightness histogram257

obtained from the candidate object region. The proposal is as follows:258

qI(xk, yk | xk−1, yk−1,y
I
k) = βRWN

(
(xk−1, yk−1), (σ

2
x, σ

2
y)
)
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+
(1− βRW )

NI

NI∑

i=1

N
(
pI
i , (σ

2
x, σ

2
y)
)

(7)

where pI
i = (xi, yi), i = 1, · · · , NI denote the image locations where the target259

object is likely to be according to the threshold τ I .260

5. Tracking Algorithm261

We propose a novel approach for integrating different visual cues dur-262

ing tracking. Unlike the previous works summarized in Section 1.1, we do263

not give preference to any cue, or use a global scheme with a predetermined264

structure. We mainly let the current visual context determine how the in-265

teractions between multiple cues are carried out. In all phases of tracking,266

we emphasize the information derived from the reliable cues and ignore the267

information provided by the unreliable cues. This view certainly involves268

discovering and using the reliabilities of the visual cues. We summarize the269

basic outline of our tracking algorithm in Algorithm 1. As it illustrates, we270

nearly follow the classic flow of a particle filter-based framework. The pro-271

posed tracker consists of prediction, measurement, resampling phases with272

an additional reliability-update step.273

5.1. Updating the reliabilities of cues274

Adaptive reliabilities assigned to visual cues are key to our formulation.275

In this paper, we adopt the cue reliability definition of the Democratic In-276

tegration method [25] and follow the instructions given in Algorithm 2 to277

adjust them depending on the current context. In the first frame, the cue278
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Algorithm 1 General algorithm

In the initialization step, p(x0) = UX (x0). Then, from the particle set {x
(i)
k−1, w

(i)
k−1}

N
i=1

at the time step k − 1, determine the new particle set {x
(i)
k , w

(i)
k }Ni=1 as follows:

1. Adjust cue reliabilities {rℓk} considering current observations yk (Algorithm 2).

2. Generate new hypotheses {x
(i)
k }Ni=1 through a prediction step (Algorithm 3).

3. Update weights of the particles {w
(i)
k }Ni=1 (Equation 13).

4. Estimate the conditional mean as the solution (Equation 14) and perform re-
sampling for the next time step.

reliabilities are initialized with equal weights with their sum equal to 1. In279

the subsequent frames, each reliability value is dynamically updated by using280

Equation (11). The new reliability value of a cue is determined by consid-281

ering both the overall success of that cue in the past, which corresponds to282

the old reliability value, and its individual success in predicting the current283

joint result, which corresponds to its quality (Equation (10)). The quality of284

a cue simply quantifies the degree of agreement between the joint result and285

the result the cue individually suggests. Thus, the reliabilities can be inter-286

preted as the qualities smoothed over time. Each quality measure compares287

the importance of a cue at an approximate target position x̂k determined by288

Equation (8) with its response averaged over the corresponding approximate289

cue likelihood. Then, a cue having a quality higher than its current reliability290

will be given a higher influence in the future by increasing its reliability. In a291

similar manner, a cue having a quality lower than its current reliability will292

be suppressed by decreasing its reliability.293

Note that since the initial reliabilities and the quality values are nor-294

malized, the reliabilities are also normalized and their sum is always one.295
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Algorithm 2 Updating the reliabilities of the visual cues

• Approximate target position x̂k using previous reliabilities and current observations:

x̂k = argmax
x

(p̂(yk | x)) = argmax
x


 ∏

ℓ∈{C,I,M}

p̂(yℓ
k | x)r

ℓ

k−1


 (8)

with p̂(yℓ
k | x) the approximate probability distribution map estimated for the modality ℓ

• Estimate the quality measures for each cue as follows:

s̄ℓk =

{
0 if p̂(yℓ

k | x̂k) ≤ 〈p̂(yℓ
k | x)〉

p̂(yℓ
k | x̂k)− 〈p̂(yℓ

k | x)〉 if p̂(yℓ
k | x̂k) > 〈p̂(yℓ

k | x)〉
(9)

where 〈· · ·〉 denotes the average over the approximate probability distribution map

• Determine the normalized qualities sℓk:

sℓk =
s̄ℓk∑
j s̄

j
k

(10)

• Update reliabilities considering the current quality measures as follows:

rℓk = rℓk−1 + η(sℓk − rℓk−1) (11)

with η denoting a time constant which we set to 0.1 in our experiments.

Moreover, the cue reliabilities are defined through quality values which are296

defined over the whole image domain. By this way, the reliabilities are de-297

termined by considering a global picture of the tracking scene, and thus the298

tracking inaccuracies do not affect the reliability computations.299

5.2. Predicting the new locations of particles300

Once the updated cue reliabilities are determined, they are used to guide301

the hypothesis generation phase, providing premises regarding the new lo-302

cations of particles. This process is summarized in Algorithm 3. As can be303

seen, in our framework, each particle is assigned to a modality denoted by ℓ304
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Algorithm 3 Generating the new hypotheses through prediction

• Simulate ℓ
(i)
k :

– Generate a random number α ∈ [0, 1), uniformly distributed.

– Set ℓ
(i)
k =





C if α < rCk
I if rCk ≤ α < rCk + rIk
M if α ≥ rCk + rIk (12)

• Simulate x
(i)
k ∼ qℓ

(i)
k (xk | x

(i)
k−1,y

ℓ
(i)
k

k )

with ℓ ∈ {C, I,M} (C for color, I for infrared brightness, M for motion) and305

accordingly to a specific proposal function qℓk(xk | xk−1,y
ℓk
k ) (Equation (12)).306

This process performs sampling from a mixture model, relying on the prin-307

ciple of generation of non-uniformly random samples [5]. As the reliabilities308

determine the assignments, if one cue becomes unreliable relative to other309

visual cues, the tendency is to reduce the total number of particles associ-310

ated with it and to increase the total number of particles associated with311

more reliable visual cue(s). As a result, the tracking accuracy increases as312

less reliable proposal functions are utilized less in the sequential importance313

sampling in predicting the position of the target object.314

For example, consider a video sequence where all the cues equivalently315

give questionable observations for some of the tracking frames (e.g. during316

the time the target object gets completely occluded and becomes visible317

again). In the suggested scheme, the recovery of the lost target object can318

be carried out quickly since the reliabilities can quickly adapt themselves to319

the current context using the information acquired from the whole image, and320

the tracker can accordingly utilize the proposals which give more accurate321
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predictions than the unreliable proposals.322

5.3. Updating the weights of particles and estimating the joint result323

The next step of our algorithm includes a measurement step which adjusts324

the weights of new particles according to new observations. This is performed325

by using the formula:326

w
(i)
k ∝ w

(i)
k−1

p(yk | x
(i)
k )p(x

(i)
k | x(i)

k−1)

qℓ
(i)
k (x

(i)
k | x(i)

k−1,y
ℓ
(i)
k

k )
with

N∑

i=1

w
(i)
k = 1 . (13)

The key point is that the updated cue reliabilities play central roles here327

as well. The overall likelihood function p(yk | xk) is defined in a way that328

the cue likelihoods are integrated in an adaptive manner as follows:329

p(yk | xk) =
∏

ℓ∈{C,I,M}

p(yℓ
k | xk)

rℓ
k (14)

with
∑

ℓ∈{C,I,M} r
ℓ = 1. As a result, each cue contributes to the joint tracking330

result according to its current reliability, and the ones having low values331

have little effect on the outcome. The individual likelihoods having a value332

estimated as zero make the overall likelihood zero as we take the product,333

whether its reliability score is low or not. Thus, in our experiments, we334

adjust all such likelihoods values and explicitly set them to a small value like335

p(yℓ | x) = 0.001.336

Finally, the decision about the tracking process for the current time step k337

is obtained from the particle set by estimating the weighted average of the338
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hypothesized states:339

x̂k =

N∑

i=1

w
(i)
k x

(i)
k . (15)

5.4. Implementation details340

We have implemented the proposed algorithm in MATLAB on a PC with341

a 3.16 GHz Intel Core2 Duo processor. In all the experiments, we fixed342

σx = σy = 3, σs = σt = 0.01, βU = 0.01, σC = 0.2, σM = 0.4, σI = 0.25,343

Bh = Bs = Bv = 10, BM = 20, BI = 30, and used detection thresholds344

τC = τ I = 0.65, τM = 0.2. In Equations (3), (5) and (7), if respectively345

NC , NI or NM equals to zero, we use only the first Gaussian random walk346

component for the related proposal function.347

Among these parameters, the most critical ones are the detection thresh-348

olds τC , τM , and τ I which are used to construct the proposal functions. As349

the experimental analysis performed in the next section indicates, the pro-350

posed work is robust in terms of false positives given the current context with351

respect to the values chosen for these parameters, and it generally provides352

better results than those of other cue integration strategies.353

As for the computational cost, the main bottleneck of the suggested ap-354

proach is the construction of the approximate probability distribution maps,355

which is carried out for each cue at each frame. The important factor here356

is the value of the pre-defined step size which defines the subset of image357

locations over the current frame where the likelihoods are estimated. For a358

video sequence containing 144× 192 color image frames, our tracker runs at359

approximately 2 frames per second with a step size of 5 pixels being used. It360
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should be added that the run-time performance could be further improved361

by including some MEX C++ subroutines, or parallelizing the code.362

6. Experimental Results363

In this section, we demonstrate the performance of the proposed frame-364

work (Algorithm 3) on illustrative video sequences. We performed two groups365

of experiments. The first set is mainly about the qualitative analysis of the366

proposed method in which we consider different tracking scenarios. Following367

that, in the second set of experiments, we carry out a thorough quantitative368

analysis in terms of tracking accuracy by using some sequences in which the369

ground truth is available.370

We typically compare our results obtained considering multiple cues with371

context-sensitive reliabilities with those obtained using a single cue or mul-372

tiple cues with fixed reliabilities. We also provide the tracking outcomes of373

the two-layered partitioned sampling (PS) and the dynamic partitioned sam-374

pling approaches (DPS), because these approaches are known to be robust375

and well known for the tracking based on multiple cues. Our implementation376

of these methods follows the architecture suggested in [22] – in the first level,377

the object locations are sampled from the proposal functions introduced in378

Sec. 4 and in the second level, the state evolution model described in Sec. 3379

is used for the scaling factors with a resampling phase in between. While the380

order of cues is fixed for the PS [22] (from motion to color), for the DPS,381

following the idea suggested in [13], we change the order of cues dynamically382

depending on the cue reliabilities.383
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In our experiments, we use a fairly small number of particles, N = 100.384

The reference color models are manually constructed in the first frame of the385

sequences. For qualitative analysis, we employ the conditional mean and the386

particles with the five highest weights to depict the outcomes. We associate387

different colors for the particles, and the rectangular regions they represent,388

depending on the cue they are attached to: green for color, blue for motion,389

and red for infrared brightness. Additionally, we draw the rectangle repre-390

sented by the conditional mean in white. This color distribution among the391

particles does visually represent the cue reliabilities. In the second set of ex-392

periments, we present the results by using only the corresponding conditional393

means. The videos showing the results of these experiments are provided as394

supplementary material.395

6.1. Qualitative Analysis396

We first consider a sequence from the BEHAVE Interactions Test Case397

Scenarios [6] where we try to track a person with a white shirt using color398

and motion information. Throughout the sequence, first, a group of people399

goes after the person of interest and attacks him. During this time, he is400

completely occluded. Next, at some point, the person of interest kneels401

down and stops moving. These different phenomena observed throughout402

the video sequence exemplifies the contextual changes that we exploit in our403

tracking framework.404

As Figures 1.(a) and 1.(b) respectively demonstrate, the color-based track-405

ing and the motion-based tracking may lead to inaccurate results due to406
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the ambiguities inherent to the processing of the video sequence considering407

single modalities. There are objects in the background which have similar408

appearances to the object of interest. Therefore, soon after the initialization,409

the framework based on color starts tracking the wrong object and remains at410

this local minimum point during nearly half of the video sequence. However,411

it is eventually able to recover the actual object of interest with the utility of412

the color-based proposal. The outcomes of the motion-based tracker is much413

worse since the video sequence involves several persons in motion. That is,414

the motion likelihood function becomes non-discriminative with respect to415

the target object and the samples are distributed all around the moving ob-416

jects. As one expects, considering color and motion cues all together with417

fixed values for reliabilities gives better tracking results than using only one418

modality (Figure 1.(c)). Yet, such a scheme has some drawbacks. Since419

equal weights are given for color and motion cues, if one of the sources be-420

comes unreliable, it directly affects the results. In the video sequence, the421

person entering the scene during which the actual person of interest is at rest422

distracts tracking.423

As illustrated in Figure 1.(d), considering a scheme with context-sensitive424

reliabilities eliminates most of the ambiguities mentioned and results in an425

improvement in the outcomes. For instance, when the target person is oc-426

cluded by the group of people following him, the reliability of the color cue427

decreases, and thus the motion cue particularly guides the tracking process428

during this time interval. Similarly, when the person of interest becomes idle,429

the reliability of motion decreases, making the color cue the dominant cue.430
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24 113 260 461 700 (a)

24 40 90 380 700 (b)

24 40 153 500 700 (c)

24 40 153 500 700 (d)

24 40 153 500 700 (e)

24 40 500 700 (f)

Figure 1: seq. 1 Sample tracking results using: (a) Color. (b) Motion. (c) Both color
and motion with fixed reliabilities. (d) Both color and motion with context-sensitive
reliabilities. Modifying the reliabilities of the visual cues according to the context and
accordingly using them eliminate most of the ambiguities that the previous cases cannot
easily cope with. (e) PS. (f) DPS.

Thus, the tracking process does not get distracted by the person entering the431

scene unlike in the case with fixed reliabilities. Figure 2.(a) illustrates these432

changes in the reliabilities of the cues. In Figure 2.(b), we provide color and433
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Figure 2: (a) Reliabilities throughout seq. 1. (b) Likelihoods for a sample frame. A more
accurate estimate is achieved using adaptive weights for the reliabilities.

motion likelihoods as well as their combinations with two different strategies434

for the frame where the person of interest is at rest. As mentioned at the435

beginning of this section, our color encoding scheme can be used to visually436

represent the cue reliabilities through the distribution of the colored samples.437

In Figure 3, we provide such a representation for three sample frames.438

In Figure 1.(e), we demonstrate the disadvantage of using PS that results439

in inaccurate tracking. The tracking process relies primarily on the motion440

information in the prediction step, and thus the person entering the scene441

during the time the actual person of interest is at rest distracts the track-442

ing process as in the case with fixed reliabilities (Figure 1.(c)). Since this443

approach does not attach the particles to any particular modality, we use a444

different color (yellow) for the particles representing the tracking outcomes.445

The tracker based on DPS, on the other hand, successfully tracks the target446

like ours as the order of cues in the partitioned sampling is updated accord-447

24



260 500 526

rC260 = 0.71 rC500 = 0.99 rC526 = 0.94

260 500 526

rM260 = 0.3 rM500 = 0.01 rM526 = 0.06

Figure 3: seq. 1 Visual representation of the cue reliabilities at three sample frames
(green for color and blue for motion).

ing to the cue reliabilities (Figure 1.(f)). Note that increasing the value of448

τM to a convenient value makes both the framework that uses fixed reliabil-449

ities for color and motion, and PS approach accurately track the person of450

interest. This highlights that our proposed work is more robust against the451

values chosen for the detection parameters in terms of false positives given452

the current context.453

In the second experiment, we consider a tracking sequence captured from454

an infrared camera along with a CCD camera (taken from the OSU Color-455

Thermal Database [11]). We test our framework under four scenarios. The456

first set of experiments involves employing fixed reliabilities, and considering457

color and motion cues together and additionally using infrared brightness458

along with them. The second set of experiments uses the same two differ-459
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ent cue combinations, but with adaptive reliabilities for the cues. We show460

the results of these experiments in Figure 4. In each figure, we provide the461

outcomes based on color and motion, and color, motion and infrared bright-462

ness side by side. It can be seen from these figures that the results of the463

framework built upon color and motion are not good, whether fixed values464

for the reliabilities are used or not. These cues both fail to account for the465

uncertainties in the tracking sequence. Specifically, the reference color model466

quickly becomes inadequate for describing the appearance of the person of467

interest, leading to enlarged and inaccurate object regions. This is mainly468

due to the changes in the person’s view throughout the sequence and the469

nearby objects with a similar color. The problem with the motion cue is470

more severe since the sequence contains another person walking in the scene,471

and more importantly, the person of interest does not move much most of472

the time.473

Introducing infrared brightness as a complementary cue, in this respect,474

improves the performance and provides more accurate tracking. It is impor-475

tant to note that most of the time, refining the reliabilities with respect to476

the contextual information gives more accurate results than using fixed val-477

ues for the reliabilities. As illustrated in Figure 5, with adaptive reliabilities,478

the motion cue remains being the least reliable cue throughout the sequence479

due to the aforementioned points. Infrared brightness and color cues com-480

petes with each other to describe the person of interest, and since infrared481

brightness values do not change much when the tracked person changes its482

pose, the infrared brightness cue is given a higher weight or importance than483
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color + motion color + ir + motion

(a)

450 450 450

1200 1200 1200

1800 1800 1800

2200 2200 2200

color + motion color + ir + motion

(b)

Figure 4: seq. 2 Sample tracking results. (a) With fixed reliabilities. (b) With adaptive
reliabilities. It results in more accurate tracking of the person of interest for the framework
in which infrared brightness is introduced as a complementary cue. Infrared brightness
cue is more reliable and is given a higher importance than the other cues during tracking.
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Figure 5: (a) Reliabilities throughout seq. 2. (b) Visual representation of the cue re-
liabilities at two sample frames (green for color, blue for motion and red for infrared
brightness).

the color cue most of the time. This results in a significant change for the484

reliability values of color (cf. the plots in Figure 5.(a)).485

Lastly, we consider the image sequence OneShopOneWait2cor from the486

CAVIAR project [14]. We again compare the tracking outcomes obtained487

by using single visual cues, color and motion, with that of obtained by com-488

bining these two. As illustrated in Figure 6.(b), using motion data alone489

leads to inaccurate tracking. The sequence contains several persons moving490

across the hallway. The tracking process cannot distinguish the actual per-491

son of interest from the others, and the particles are distributed all over the492

moving persons. On the other hand, the color-based tracking and our frame-493

work provide nearly similar tracking results (Figures 6.(a) and 6.(c)). They494

succeed in tracking the object for most part of the sequence, but they lose495

the track whenever a person having a similar appearance enters the scene.496
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The reason behind the similar performance is that with respect to the con-497

textual information, color is determined to be the main cue and is given a498

much higher weight than motion during tracking (Figure 7). This experiment499

shows that combining several visual cues does not always mean robustness.500

It improves the tracking results only when at least one of the cues considered501

in tracking is effective in describing the target object. For instance, in this502

example, color and motion both fail to account for the uncertainties. The503

PS approach produces much worse results since it uses a fixed order in the504

sampling, from motion to color. As shown in Figure 6.(d), the tracker tracks505

four different persons throughout the sequence. The flexibility of the DPS506

approach, due to the order of visual cues changing dynamically in accordance507

with their reliabilities, mostly eliminates these false detections and tracking508

as illustrated in Figure 6.(e).509

6.2. Quantitative Analysis510

In this section, we quantitatively evaluate our tracking algorithm on two511

sets of video sequences. The first set involves the sequence from the BE-512

HAVE Interactions Test Case Scenarios [6] that we previously presented in513

Section 6.1 and that consists of 949 frames. In the second set of sequences, we514

use several video sequences from the CAVIAR project [14]. All these video515

sequences exhibit a wide variety of challenges including changes in the pose516

and scale of the target object, varying illumination conditions, and partial517

occlusions. We tested the trackers by running them 5 times and by taking518

the average for each video sequence since they are all particle-filter based519
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350 750 1030 1160 1262 1290 (e)

Figure 6: seq. 3 Sample tracking results using:(a) Color. (b) Motion. (c) Both color and
motion with context-sensitive reliabilities. The proposed tracking framework succeeds in
tracking the person of interest until a person with a similar appearance appears in the
video sequence. (d) PS. (e) DPS.
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Figure 7: Reliabilities throughout seq. 3.

formulations and thus involve some randomness.520

For quantitative analysis, we use two measures. We compute the average521

F -measures, given by F = 2pr
p+r

where p is the precision p = |E∩GT |
|E|

and r the522

recall r = |E∩GT |
|GT |

with E the rectangular region estimated by the conditional523
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Tracker F -measure Success rate

Color 0.32 ± 0.18 70.58 ± 40.42

Motion 0.15 ± 0.04 46.35 ± 10.07

Fixed reliabilities 0.46 ± 0.07 94.42 ± 7.11

Proposed method 0.46 ± 0.03 99.57 ± 0.17

DPS 0.46 ± 0.02 98.53 ± 0.84

PS 0.39 ± 0.03 86.78 ± 1.77

Table 1: Average F -measures and success rates (percentage of frames in which the target
object is successfully tracked) for the sequence from the BEHAVE dataset.

mean and GT the ground truth, and the percentage of frames where the524

target object was successfully tracked among the frames for which the ground525

truth is available. The tracking is considered to be successful if E overlaps526

with GT .527

Table 1 provides the quantitative tracking results for the sequence from528

the BEHAVE dataset, obtained by comparing the trackers’ outcomes to the529

manually labeled ground truth data. As it can be seen, the outcomes are530

in line with the qualitative results presented before. The trackers based on531

single cues have the worst performances; and due to the ambiguities inherent532

to these cues the standard deviations of the measures are higher than those533

of others. In general, the proposed method and the dynamic partitioned534

sampling approach are competitive and give better results than the others.535

We have performed the second set of our experiments on nine different536

video sequences from the CAVIAR project [14]. We use three of these se-537

quences twice; in each we track two different persons, respectively. This538

makes twelve experiments in total. Table 2 shows the summary of these ex-539
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Sequence ObjectId Total # of Frames

OneLeaveShop2cor 0 546

OneShopOneWait1cor 2 734

OneShopOneWait2cor 7 1171

OneStopEnter1cor 1 581

OneStopEnter1cor 2 1324

OneStopEnter2cor 3 316

OneStopEnter2cor 4 834

OneStopMoveEnter1cor 7 664

OneStopMoveNoEnter2cor 0 639

OneStopNoEnter1cor 0 395

ThreePastShop2cor 2 331

ThreePastShop2cor 7 459

Table 2: The sequences from the CAVIAR project used in the experiments.

periments. The sequences used in the experiments involve different scenarios540

with varying complexities (changes in the appearance due to pose and illumi-541

nation variations, occlusions of the target, crowdedness in the background,542

etc.).543

Table 3 and 4 summarize the quantitative performance of the tested track-544

ing methods2. It can be seen from these results that in general the proposed545

tracker outperforms the other trackers. Mostly, it gives either the best or the546

second best results with respect to the manually labeled ground truth. In547

terms of the quantitative measures averaged over all experiments (Table 3),548

it has the best F-measure and success rate performances and the smallest av-549

erage rank. Among the trackers that fuse multiple cues, the PS approach [22]550

2The qualitative comparisons (videos showing the results of these experiments)
can be downloaded following the url http://perso.telecom-paristech.fr/~bloch/

PR-Submission
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Method Avg. F-measure Avg. Succ. Rate Avg. Rank

Color 0.49 86.13 2.25

Motion 0.24 52.00 4.50

Proposed 0.53 89.07 1.83

DPS 0.50 85.16 2.50

PS 0.40 67.40 3.58

Table 3: Quantitative results averaged over all experiments from the CAVIAR project.

provides the worst performance. The reason for this mainly stems from the551

fixed order (from motion to color) that is used in [22] in the sampling. It552

can be also observed that for nearly half of the experiments the color-based553

tracker perform especially well. Since our method adaptively estimates the554

reliabilities of color and motion cues with respect to the contextual infor-555

mation (color is given a much higher weight than motion during tracking)556

and uses them both in the prediction and the likelihood estimation steps,557

our performance is competitive to the color-based tracker in these sequences.558

From all these experiments, we can conclude that for situations where fusion559

is actually useful, our method outperforms the other methods.560

7. Summary and Future Work561

We have presented a particle filter-based tracking algorithm which inte-562

grates multiple cues in a novel way. Unlike previous approaches, our method563

performs the multi-cue integration both in making predictions about the ob-564

ject of interest and in verifying them through observations. Both stages of the565

integration depend on the reliabilities of the visual cues, which are adapted566

in a dynamic way. Particularly, in the prediction step, the reliabilities de-567
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termine to which cue and the proposal function the particles are attached,568

forcing reliable proposal functions to be employed more in the sequential569

importance sampling. Moreover, in the measurement step, they specify the570

level of contribution of each visual cue to the compound likelihood, resulting571

in more precise weights for the particles.572

We have demonstrated the potential of the proposed approach on various573

illustrative video sequences with different tracking scenarios. As the experi-574

mental results reveal, dynamic structure of our formulation makes tracking575

process easily adapt itself to changes in the context. The proposed frame-576

work is general enough to easily include other sources of information. Even577

though in our experiments we use color, motion and infrared brightness cues578

as the main sources of information for tracking an object, we can extend579

this list with further visual cues (such as feature spatial cue or histogram of580

gradients) and integrate them in our framework without any difficulty. The581

conditional independence of observations should then be reconsidered, de-582

pending on the chosen cues. Moreover, the suggested approach allows intro-583

ducing new modalities, whenever available, throughout tracking. However,584

it is important to note that combining several visual cues does not always585

increase the tracking accuracy as our last experiment illustrates. Intuitively,586

integrating various visual cues does improve the outcomes by eliminating587

the ambiguities only when at least one of the cues considered in tracking is588

effective in describing the object of interest.589

In updating the reliabilities of the visual cues, we adopt the approach590

suggested in [25]. As a future work, it could be interesting to develop new591
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quality measures in updating the cues’ reliabilities. For example, in a recent592

work [27], the dynamics parameters in the particle filter are estimated via a593

fuzzy model. Considering fuzzy measures instead of the hard decision utilized594

in [25] may result in more accurate estimation of cue reliabilities. Moreover,595

in our formulation, we fixed the weight for the state dynamics in the proposals596

βRW = 0.75 for all cues in tracking the target object. In the case where all597

the visual cues suggest likely target points (i.e., NC , NI and NM all > 0),598

the overall filter proposal can be interpreted as a mixture containing four599

different proposals (one including the state dynamics with weight and one600

for each cue). An interesting future work could be defining the weight of the601

state dynamics in the mixture in an adaptive way instead of fixing it to a602

specific value βRW . Of course, this requires defining a reliability score for603

this component as well. For this purpose the Democratic Integration is not604

suitable, and a new approach should be devised.605
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Table 4: Individual average F -measures and success rates. Algorithms compared are: color, motion, proposed (color and
motion with context-sensitive reliabilities), DPS, and PS. The best and the second best performances are indicated in red and
blue, respectively.

Sequence(ObjectId) Color Motion Proposed DPS PS

OneLeaveShop2cor(0)
succ. 79.30 ± 44.24 71.85 ± 6.23 95.05 ± 1.29 93.94 ± 0.80 52.15 ± 32.07
F-meas. 0.47 ± 0.26 0.41 ± 0.04 0.59 ± 0.02 0.57 ± 0.02 0.33 ± 0.21

OneShopOneWait1cor(2)
succ. 100.00 ± 0.00 67.29 ± 3.59 99.95 ± 0.07 99.70 ± 0.67 85.81 ± 3.14
F-meas. 0.65 ± 0.01 0.16 ± 0.02 0.62 ± 0.02 0.53 ± 0.02 0.45 ± 0.02

OneShopOneWait2cor(7)
succ. 96.59 ± 3.15 74.61 ± 0.63 96.18 ± 5.24 95.09 ± 0.05 87.16 ± 4.15
F-meas. 0.58 ± 0.02 0.43 ± 0.07 0.58 ± 0.02 0.60 ± 0.01 0.57 ± 0.02

OneStopEnter1cor(1)
succ. 81.00 ± 42.20 91.69 ± 6.00 98.72 ± 1.15 93.97 ± 12.82 99.62 ± 0.39

F-meas. 0.47 ± 0.25 0.44 ± 0.04 0.62 ± 0.02 0.62 ± 0.08 0.64 ± 0.03

OneStopEnter1cor(2)
succ. 74.61 ± 0.54 49.03 ± 13.15 96.11 ± 7.99 80.88 ± 17.84 60.31 ± 15.82
F-meas. 0.50 ± 0.01 0.25 ± 0.07 0.61 ± 0.06 0.49 ± 0.06 0.43 ± 0.10

OneStopEnter2cor(3)
succ. 62.92 ± 50.88 99.43 ± 0.27 99.49 ± 0.28 99.75 ± 0.14 99.75 ± 0.14

F-meas. 0.25 ± 0.20 0.45 ± 0.03 0.42 ± 0.02 0.41 ± 0.03 0.40 ± 0.02

OneStopEnter2cor(4)
succ. 99.52 ± 0.42 60.72 ± 1.82 65.19 ± 1.22 57.84 ± 15.45 57.72 ± 14.68
F-meas. 0.59 ± 0.02 0.34 ± 0.02 0.41 ± 0.01 0.37 ± 0.10 0.36 ± 0.10

OneStopMoveEnter1cor(7)
succ. 69.11 ± 1.36 21.84 ± 4.94 70.23 ± 1.61 58.64 ± 18.22 44.86 ± 21.31
F-meas. 0.50 ± 0.01 0.03 ± 0.01 0.47 ± 0.03 0.38 ± 0.15 0.28 ± 0.15

OneStopMoveNoEnter2cor(0)
success rate 99.84 ± 0.11 45.20 ± 9.34 95.61 ± 9.11 95.99 ± 8.10 79.28 ± 0.45
F-measure 0.56 ± 0.02 0.23 ± 0.06 0.58 ± 0.05 0.61 ± 0.03 0.52 ± 0.03

OneStopNoEnter1cor(0)
success rate 97.41 ± 2.44 0.00 ± 0.00 54.26 ± 50.23 47.82 ± 45.31 15.33 ± 8.97
F-measure 0.49 ± 0.02 0.00 ± 0.00 0.30 ± 0.28 0.29 ± 0.27 0.09 ± 0.05

ThreePastShop2cor(2)
success rate 99.58 ± 0.17 2.12 ± 4.74 99.15 ± 0.72 99.45 ± 0.40 35.03 ± 16.09
F-measure 0.49 ± 0.01 0.00 ± 0.01 0.57 ± 0.03 0.61 ± 0.02 0.20 ± 0.09

ThreePastShop2cor(7)
succ. 73.67 ± 35.97 40.17 ± 8.30 98.95 ± 2.10 98.82 ± 1.27 91.79 ± 18.36
F-meas. 0.36 ± 0.18 0.16 ± 0.05 0.56 ± 0.04 0.58 ± 0.04 0.57 ± 0.12
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