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ABSTRACT

This paper presents a new image segmentation framework which
employs a shape prior in the form of an edge strength functionto
introduce a higher-level influence on the segmentation process. We
formulate segmentation as the minimization of three coupled func-
tionals, respectively, defining three processes:prior-guided segmen-
tation, shape feature extraction and local deformation estimation.
Particularly, the shape feature extraction process is in charge of es-
timating an edge strength function from the evolving objectregion.
The local deformation estimation process uses this function to de-
termine a meaningful correspondence between a given prior and the
evolving object region, and the deformation map estimated in return
supervises the segmentation by enforcing the evolving object bound-
ary towards the prior shape.

Index Terms— prior-based image segmentation, registration,
variational methods

1. INTRODUCTION

The goal of segmentation is partitioning an image into coherent re-
gions that are likely to correspond to objects which are imaged.
Finding region boundaries accurately becomes particularly challeng-
ing when the corrupting influences due to missing regions, partial
occlusions and noise appear in images. Recent works, including
[5, 6, 7, 8, 11, 13, 16], resolve these ambiguities by integrating low-
level image features with high-level shape information. With the
exception of [7], these works represent prior shape globally. In [7],
Hong et al. present an alternative formulation which takes into ac-
count a local deformation model to constrain the shape of theevolv-
ing contour. The model captures a different appearance of the object
of interest with ease by accordingly warping the reference shape.
This, in a certain extent, provides an advantage over the global mod-
els.

In this paper, we employ the local deformation model of Hong
et al. [7] in a new framework for prior-guided image segmentation.
Specifically, our work differs from [7] in two aspects. The first dif-
ference is the way we formulate the segmentation energies. It is
expressed as the minimization of three coupled functionalsdefining
three processes that respectively account forprior-guided segmenta-
tion, shape feature extraction andlocal deformation estimation. The
second difference is the way we represent the shape itself. As the ex-
perimental results demonstrate, our framework not only extracts the
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object of interest from an image but also simultaneously registers the
prior shape on the image data, allowing further semantic analysis to
be performed on the extracted object.

2. REPRESENTATION OF THE PRIOR SHAPE

In our work, we represent the shape knowledge by a smooth edge
indicator functionv called theedge strength function [1, 14] which
is recently applied in prior-guided segmentation [6] in modeling the
shape variability globally.

The edge strength functionv is the minimizer of

1

2

Z

Ω

„

ρ|∇v|2 +
(1 − v)2

ρ

«

dx (1)

whereΩ ⊂ R
2 is an open, bounded and connected domain (the

shape domain) with a boundaryΓ. v varies between0 and1 (s.t.
v|

Γ
= 0), and asρ → 0, v → 1 everywhere except alongΓ. Thus,

the parameterρ may be interpreted as the blurring radius. In [15]
the connections among edge strength function, curve evolution and
diffused distance transform have been shown (see Fig. 1).
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Fig. 1. The edge strength functionv reproduced using the method
in [15]. (a) Binary silhouette. (b)v computed withρ = 8. (c) Level
curves ofv.



3. ANALYSIS OF SHAPES USING A LOCAL
DEFORMATION MODEL

Shape matching plays a key role when analyzing the similarities be-
tween two given shapes by establishing a correspondence. In[7],
Hong et al. suggest a local deformation model for shape matching.
We adopt it in our formulation.

Let v1 andv2 denote the edge strength functions estimated from
two silhouettesS1 andS2, respectively. Matching between the given
shapes is estimated by minimizing the functional

Ematch(h) = Efid(h) + βEreg(h) (2)

with respect to the unknown deformation functionh : Ω → R
2. The

first term in the energyEfid(h) measures the similarity between
the reference edge strength function and the template edge strength
function which is transformed under the displacement vector field h.

In particular, the similarity term is defined as

Efid(h) =
1

2
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(v2(x + h(x)) − v1(x))2 dx (3)

whereΩ denotes the domain in whichv1 andv2 are defined. While
this term provides a driving force for the registration, theregular-
ization termEreg(h) forces the deformation fieldh to be smooth.
The relative importance between smoothing and similarity terms is
determined by the parameterβ.

In literature, several approaches are proposed to regularize the
deformation fieldh. In our formulation, following the approach
in [7], we employ the linear elasticity model proposed in [3]us-
ing a semi-implicit scheme for the time variable where the terms at
the center pixel are treated implicitly while the remainingterms are
treated explicitly:
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where ∂xj
denotes the partial derivative with respect toxj , and

λ, µ̄ > 0 are the Lamé constants that reflect material properties of
an elastic body. This model cannot handle large deformations, and
hence we assume that a global registration is initially performed.

The deformation fieldh minimizing (2) formally satisfies the
Euler-Lagrange equation
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where
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In Fig. 2, we present an example matching result obtained by the
proposed method. As it can be clearly seen, the resulting registration
process determines a meaningful correspondence between the given
silhouettes.

Fig. 2. Matching example. (top row)cow and cat silhouettes
(adapted from [2]). (middle) Corresponding edge strength functions
estimated withρ = 4. (bottom) Estimated deformation vector field
and the matching result.

4. SEGMENTATION FRAMEWORK

In the previous section, a shape matching framework is developed
by using a local deformation model. Now we will discuss how this
model is employed within a segmentation framework to imposea
priori shape information about an object of interest on the ongoing
segmentation process.

We formulate image segmentation by minimization of three cou-
pled functionals,E1, E2, andE3 defined as follows:

E1(φ|h) = ECV (φ) + µ1Eshape(φ|h), µ1 ≥ 0 , (8)

E2(v|φ) = Efeature(v|φ) , (9)

E3(h|v, φ) = Ematch(h|v, φ) . (10)

Each functional has a distinct role in the overall process. The
first functionalE1 is an extended version of the functional in [4]

ECV (φ) =
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with an additional prior shape term

Eshape(φ|h) =

Z

Ω

(H(φ(x))− T (x + h(x)))2 dx (12)

and mainly accounts for the prior-guided segmentation.
From computational point of view the functional (11), which

is a well-known approximation for the Mumford-Shah segmenta-
tion model [9], follows a level-set based curve evolution formula-
tion [10]. In (11),φ represents a level set function whose zero-level
line corresponds to the contour segmenting the input imagef , H is



a Heaviside function,c1 andc2 respectively denote the average gray
values of foreground and background regions, andλ1, λ2 > 0 and
µ ≥ 0 are fixed parameters. The prior shape term (12) is similar to
the one used in [12] and constrains the shape of the evolving fore-
ground/object regions by making use of a binary templateT given a
priori. Mainly, it measures the difference in the areas of the evolv-
ing object region represented byH(φ) and the priorT transformed
under the deformationh. As a result, while (11) leads to an image
force that attracts the zero-level curve of the evolving level set func-
tion φ to object boundaries, the prior term enforces the zero-level
curve towards the given templateT under transformation.

The second functionalE2 is utilized for extracting shape fea-
tures from the image regarding the object to be segmented andde-
fined by

Efeature(v|φ) = α
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In fact, (13) is a modified version of the functional in [15] where
the fidelity term is excluded and the gray value image is replaced
with H(φ). As a result, the edge strength functionv denoting the
minimizer of (13) represents the shape of the evolving object region.

The third functionalE3 corresponds to the matching energy de-
fined in (2) and responsible for estimation of the local deformation.
With fixedv, minimizing this functional with respect to the unknown
variableh establishes a correspondence between the evolving object
region and the prior shape that are respectively represented by the
edge strength functionsv andvT .

The functionalsE1-E3 are coupled in the sense that the defor-
mation fieldh found by (10) determines the level setφ; the level
setφ estimated by (8) specifies the edge strength functionv, andv
defines the deformation fieldh. These functionals work jointly to
partition an image into object vs. background regions.

Our strategy is to alternate between these functionals whenwe
apply the gradient descent. We fix the deformation fieldh when we
try to minimize the first functionalE1, and determine the level set
φ. Similarly, we fix the level set functionφ when we try to mini-
mize the second functionalE2, and estimate the evolving shape rep-
resented by the edge strength functionv. After that, with fixedv
we estimate the deformation fieldh. Note that we could have com-
bined these functionals and have started with it, interpreting it as a
general framework. The main disadvantage of such a formulation
is that when we apply the gradient descent, the deformation field h
depends on not only the edge strength functions, but also thebinary
silhouettes, which may yield inaccurate correspondences.

We now apply gradient descent to the functionalsE1-E3 to ob-
tain segmentation. Minimizing the first functional (8) withrespect
to φ leads to the following evolution equation:
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With fixedφ, minimizing the second functional (9) with respect

Algorithm 1 The proposed segmentation algorithm
1: Compute the edge strength functionvT representing the given

binary templateT
2: Initialize the variables withφ0 = φ0, v0 = vT , h0 = 0
3: while stopping criteria is not reacheddo
4: Transform the templateT under the currently estimated de-

formation fieldh.
5: Update the level set functionφ according to (14) by taking

the transformed template into account
6: Update the edge strength functionv by iterating (15) 500

times
7: Update the deformation fieldh by iterating (5) 200 times
8: end while

to v leads to the evolution equation
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Finally, the evolution equation forh obtained from the third
functional is similar to (5) wherev2 is replaced withvT , andv1 with
v. The whole minimization procedure of the proposed framework is
summarized in Algorithm 1. In the experiments, the iterations con-
tinue until the overall energyE1 + E2 + E3 is no more decreasing.

In Fig. 3, we present sample segmentation results on variousnat-
ural images. In order to demonstrate the performance of our frame-
work and to illustrate what it is gained by introducing priorshape
knowledge, we compare the results of our method with those ofthe
model in [4] using the same values for the common parameters and
the same initial conditions. Note that settingµ1 to zero and exclud-
ing E2 and E3 from computations reduce our formulation to the
model in [4], yielding a model that does not take prior shape into
account. In all experiments, we setρ = 4, α = 500, β = 0.01,
λ = 0, µ̄ = 1 unless stated otherwise, and assume that a global reg-
istration is initially performed. An advantage of our framework is
that it performs image segmentation with simultaneously registering
the prior shape on the image data. Fig. 4 presents a joint segmenta-
tion and registration result on a partially occluded horse image. The
initial zero-level curve is broken into meaningful parts (head, tails,
legs, etc.) and transformed under the estimated displacement vector
field accordingly.

5. SUMMARY

We have presented a new prior-shape based image segmentation
framework using the edge strength function within a local deforma-
tion model. The edge strength function has been previously used in
prior-guided segmentation with a global deformation model. The
prior shape information explicitly imposes higher-level influences
on the ongoing segmentation process, yielding robustness against
undesirable conditions such as partial occlusions and noise. Fur-
thermore, the local deformation model determines a meaningful
correspondence between a given template and the evolving object
region, and leads to joint registration results. Due to thisjointly
performed registration process, our framework allows to perform
additional semantic analysis as well when a shape analysis carried
out beforehand.



Fig. 3. Segmenting corrupted hand images with partial occlusionsand significant amount of noise. (first column) Input images -top image
is from [7]. (second) Unregistered prior shapes superimposed on the input images (initial zero-level curves). (third)Segmentation results
without prior shape information. (fourth) Final segmentation results. (fifth) Deformed grids under the estimated displacement vector fields.
(the parameters areµ1 = 17500, β = 0.025 (top row),µ1 = 12500 (bottom row) andµ = 20000).

Fig. 4. Analysis of the registration process. Different colors are
used for different parts of the segmenting contour in order to show
how meaningful the obtained correspondences are (the parameters
areµ = 18000 andµ1 = 20000).
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