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Abstract

In this study, we explore whether the cap-
tions in the wild can boost the perfor-
mance of object detection in images. Cap-
tions that accompany images usually pro-
vide significant information about the vi-
sual content of the image, making them
an important resource for image under-
standing. However, captions in the wild
are likely to include numerous types of
noises which can hurt visual estimation. In
this paper, we propose data-driven meth-
ods to deal with the noisy captions and
utilize them to improve object detection.
We show how a pre-trained state-of-the-
art object detector can take advantage of
noisy captions. Our experiments demon-
strate that captions provide promising cues
about the visual content of the images and
can aid in improving object detection.

1 Introduction

Visual data on the Internet is generally coupled
with descriptive text such as tags, keywords or
captions. While tags and keywords are typically
composed of single words, or phrases, and gen-
erally depict the main entities in an image (e.g.
objects, places, etc.), a caption is a complete sen-
tence which is intended to describe the image in
a holistic manner. It can reveal information about
not just the existing objects or the corresponding
event but also the relationships between the ob-
jects/scene elements, their attributes or the actions
in a scene (Figure 1). In this respect, captions pro-
vide a much richer source of information in or-
der to understand the image content. This has re-
cently motivated researchers to automate the task
of describing images in natural languages using
captions (Raffaella et al., 2016). However, most

of these studies employ carefully collected im-
age descriptions which are obtained by services
like Amazon’s Mechanical Turk (Rashtchian et al.,
2010a; Hodosh et al., 2013; Young et al., 2014a;
Lin et al., 2014). Little has been done on utilizing
captions in the wild, i.e. the captions that accom-
pany images readily available on the Web.

Although captions are rich, there are some chal-
lenges that limit their use in computer vision, and
related language tasks. First, a caption may not be
a visual depiction of the scene, but rather a sort of
comment not directly related to the visual content
of the image (Figure 1). The users might avoid ex-
plaining the obvious, but talk about more indirect
aspects, abstract concepts and/or feelings. Third,
the caption may be poorly written, which makes
it difficult to understand the meaning of the text
associated with the image.

On the other hand, there is also a major advan-
tage in having image-caption pairs on the Web;
billions of them are freely available online. Col-
lectively considering image-caption pairs associ-
ated with a certain query image may allow to elim-
inate noisy information. Researchers have used
this idea to collect a large scale images-captions
dataset consisting of clean, descriptive texts paired
with images (Chen et al., 2015). When noisy cap-
tions are eliminated, the rest can serve as an excel-
lent source of information for what is available in
the visual world.

In this paper, we investigate whether we can
leverage captions in the wild to improve object de-
tection. Object detection has seen some signifi-
cant advances in recent years thanks to convolu-
tional neural networks (LeCun et al., 2015). But
in some cases, even state-of-the-art object detec-
tors may fail to accurately locate objects or may
produce false positives (see Figure 2). For such
situations, we propose to utilize captions as an al-
ternative source of information to determine what



the big yellow horse in
Prague

beautiful young woman
sitting near her bicycle
under the tree in forest
with map in her hands

above clouds airplane
window (10)

Hey diddle diddle... the
cat and the fiddle... the
cow jumped over the
M00N!!

Figure 1: Left: Examples of good captions, carrying rich information about the visual content of the
image such as existence, sizes, attributes of objects, or their spatial organization. Right: Examples of
noisy captions, where the mentioned objects may not exist visually (magenta for existing, red for non-
existing objects).

is present in the image. Due to the reasons stated
above, however, leveraging captions directly may
result in errors. Therefore, we suggest to use data-
driven methods which can eliminate the noise in
the captions and inform about which objects are
available in the image.

For our purpose, we first consider a constrained
scenario where we assume access to test image
captions and run detectors for objects mentioned
in the caption, as previously motivated by (Or-
donez et al., 2015). Then, we proceed to explore a
more general setting where we observe captions
only at training stage and infer possible objects
within the test image using similar training im-
ages and their captions. In finding similar im-
ages/captions, we propose to use three different
approaches, based on nearest neighbors, 2-view
Canonical Correlation Analysis (CCA) and 3-view
CCA. When the visual input is combined with cap-
tion information, these approaches not only help
us to eliminate the noise in the captions, but also
to infer about possible objects not even mentioned
in the caption of a test image (see Figure 2). Our
experimental results show that utilizing noisy cap-
tions of visually similar images in the proposed
ways can indeed help in improving the perfor-
mance of the object detection.

2 Related Work

In this section, we briefly review some of the rele-
vant literature related to our problem.

2.1 Employing tags and captions to improve
image parsing

Image parsing refers to the process of densely as-
signing a class label to each pixel in an image,
which traditionally requires a large set of train-

ing images with pixel-level annotations. Similar to
our goals here, some recent studies have focused
on exploiting image tags (Xu et al., 2014) or sen-
tences (Fidler et al., 2013; Cheng et al., 2014) as-
sociated with images to improve the performance
by using objects or attributes exist in the images.

2.2 Weakly-supervised object localization

Another line of research close to ours is weakly-
supervised object localization where the training
set involves image-level labels which indicate the
object classes present in the images. In addition to
generic object detection approaches (e.g. (Pandey
and Lazebnik, 2011; Siva and Xiang, 2011; Cin-
bis et al., 2016)), related studies also include face
recognition with supervision from captions and
script (Berg et al., 2004; Everingham et al., 2009).

2.3 Text-to-image co-referencing

Motivated from co-reference resolution tasks in
NLP, a number of studies have investigated match-
ing free-form phrases with images where the task
is to locate each visual entity mentioned in a cap-
tion by predicting a bounding box in the corre-
sponding image (Hodosh et al., 2010; Kong et
al., 2014; Plummer et al., 2015; Rohrbach et al.,
2015).

2.4 Automatic image captioning

Image captioning aims at automatically generat-
ing a description of a query image (Raffaella et
al., 2016). As opposed to recent neural models,
early image captioning methods mostly follow a
grounded approach and generate descriptions by
first detecting objects present in the images (Or-
donez et al., 2015). The main drawback with this
approach, however, is that object detectors may



Caption: Probably in pursuit of a motorcycle going up on the road past our house, or similar

Faster R-CNN Detections Naive approach: Motorcycle Our approach: Dog
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Figure 2: Motivation. Given an image, Faster R-CNN detects the dog successfully however also pro-
duces many false positives (Left). A naive way to incorporate the caption would be to run detectors only
mentioned in the caption of the image (Middle). This would also lead to false detections as the photog-
rapher did not mention the dog. In our approach, we leverage several captions to estimate the candidate
objects in the image, in this case, the dog (Right).

produce many false positives and moreover, not
all objects are important to be mentioned in the
descriptions (Berg et al., 2012).

2.5 Detecting visual text

Lastly, a few works aim at detecting visual text,
i.e., understanding whether an image caption con-
tains visually relevant phrases or not (Dodge et
al., 2012; Chen et al., 2013). Here, the approach
in (Dodge et al., 2012) is especially quite related
to our work because it involves the subtask of
running several object detectors to infer what is
present in the image using information from the
captions.

3 Dataset

Recent datasets for language and vision research
include natural images with natural language sen-
tences. These sentences are either the photo cap-
tions generated by the users (aka. captions in
the wild) (Ordonez et al., 2015; Chen et al.,
2015; Thomee et al., 2016) or the descriptions col-
lected via crowd-sourcing (Farhadi et al., 2010;
Rashtchian et al., 2010b; Young et al., 2014b;
Keller et al., 2014; Lin et al., 2014; Yatskar
et al., 2014; Plummer et al., 2015). Although
the datasets containing the crowd-sourced descrip-
tions, namely Pascal Sentences (Farhadi et al.,
2010), Visual and Linguistic Treebank (Keller et
al., 2014), Flickr30K Entities (Plummer et al.,
2015), Microsoft Research Dense Visual Anno-
tation Corpus (Yatskar et al., 2014) and MS-
COCO (Lin et al., 2014) datasets have extra

object-level annotations, none of the datasets that
consist of user-generated captions have these kind
of information. Hence, in our work, we collected a
new dataset of object-level annotated images that
includes captions in the wild.

We built on our dataset named SBU-Objects
from (Ordonez et al., 2015) which includes 1 mil-
lion Flickr images and associated captions pro-
vided by the corresponding users. Although much
effort has been made to eliminate noisy, non-visual
captions, an important portion of these images
have sentences that do not directly describe the
visual content of these images. Figure 1 demon-
strates such examples. The first example includes
a caption mentioning an aeroplane, but it is men-
tioned only because the image is captured from the
window of the airplane. The second example as-
sociates an image to a figurative caption that does
not describe the visual content.

We restrict ourselves to the images containing
captions where the object classes from the PAS-
CAL challenge (Everingham et al., 2012) are men-
tioned such as dog, aeroplane, car, etc. To that
end, we queried the dataset considering these PAS-
CAL classes as well as their synonyms (e.g., mo-
torbike, motorcycle). We also favoured image-
caption pairs that include place prepositions such
as in, on, under, front and behind coupled with the
query noun (e.g., dog under the tree) if exist. This
ensures the image-caption pairs to be used for ex-
ploring the effect of spatial information in captions
and images as well. We observed that captions
that are short (e.g., max 4 words) or in the form



Table 1: Corpus statistics. For each object class, we provide the number of instances in the dataset and
their visibility rates p(visible|mentioned).

Class dog bottle chair horse cat d. table bird cow bike sofa
# Instances 289 79 119 289 135 69 308 255 294 289

p(visible|mentioned) 0.77 0.65 0.62 0.61 0.60 0.59 0.58 0.58 0.58 0.77
Class sheep boat p. plant m. bike car plane monitor bus train

# Instances 79 119 289 135 69 308 255 294 321
p(visible|mentioned) 0.65 0.62 0.61 0.60 0.59 0.58 0.58 0.58 0.18

of phrases tend to be cleaner than longer captions.
However, as our main aim is to leverage captions
in the wild for object detection, we uniformly sam-
pled captions that have different lengths between
[3 � 19] tokens, preventing the bias against cap-
tion lengths. We sampled 3.2k of such images
for annotation and collected object-level bounding
boxes for each and every PASCAL object avail-
able in the image. Table 1 shows the distribution
of the number of object instances along with their
visibility rates which is measured as the condi-
tional probability given that a class name is men-
tioned in a caption, how frequent it actually ex-
ists in the image. As can be seen, animate objects
like dogs, horses and cats appear frequently when
mentioned while vehicles like aeroplane, bus and
train have low visibilities.

4 Improving object detection with
captions

In its simplest form, our aim is to determine can-
didate objects that can be detected from the image.
Formally, given an image I

i

, our aim is to estimate
candidate object classes C

i

2 C visually present
in the image, so that to eliminate false positives,
only detectors of C

i

are applied to the image. For
simplicity, we assume that the set of possible ob-
ject classes C is fixed, and the list of mentioned
objects M

i

is simply obtained from the captions
via text-based search.

We begin with a simple, constrained scenario
that assumes access to test image captions. Then,
we proceed to explore more general setting where
the captions are observed only at training.

4.1 Using pure captions
As stated previously, this simple model determines
candidate objects directly from image’s caption
and hence, assumes that the caption of the image
is given (at test time). This idea has previously
been evaluated by (Ordonez et al., 2015) with a

limited set of images for motivational purposes.
Formally, given an image I

i

, its caption T

i

and the
list of mentioned objects within that caption M

i

,
the candidate object classes is simply the list of
mentioned objects, ie. C

i

= {c
j

, c

j

2 M

i

}.
This simple idea works surprisingly well, how-

ever, it restricts the search space for candidate ob-
jects C

i

to the list of mentioned objects in the cap-
tion. The captions may be noisy, thus this pro-
cedure may suffer from typical issues stated pre-
viously; not all objects may be mentioned in the
caption, and not all of the mentioned objects may
be visible in the image.

4.2 Data-driven estimation of candidate
objects

A more general setting is the case where we do
not have access to the captions of newly seen im-
ages. Here, we describe three alternative data-
driven methods for candidate object estimation.

4.2.1 Nearest-neighbor based estimation
For a given image, the captions of the visually sim-
ilar images can be retrieved and utilized to iden-
tify potential object candidates. Our first method
explores this approach, by directly measuring the
similarity between images in visual feature space.
With this setting, our aim is to see how well we
can estimate candidate objects of a test image us-
ing uni-modal similarity.

To retrieve visually similar images, we need ro-
bust descriptors V that can represent the visual
content effectively. To this end, we use two al-
ternatives; first is the fc-7 activations of VGG-
19 (Simonyan and Zisserman, 2014) and second
is fc-7 activations of Hybrid model (Zhou et al.,
2014). VGG-19 is a Convolutional Neural Net-
work (CNN) model trained on ImageNet dataset
which consists of 1000 different image classes
(Russakovsky et al., 2015), while Hybrid is an
CNN architecture that is trained on a combina-



A big plane flying below the drop zone above clouds airplane window (10)

V =  [0.1 0.3 0.2]

T =  [0.4 0.4 0.2]

S =  [0 0 0 1]

Cosine-sim 2-view CCA 3-view CCA
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Figure 3: Here, three different embedding spaces are shown. Suppose red circle denotes the image on
the left (and all images with aeroplanes visible) and green triangle denotes the image on the right (and all
images with aeroplane missing). Nearest neighbor approach takes only visual representation of images
V as input, thus these images may be considered similar. Projection gets better for 2-view CCA using
[V, T ], however since they have similar textual representations, they still lie close in space. For 3-view
CCA, with the inclusion of semantic category S, the embedding becomes distinguishable.

tion of Places (Zhou et al., 2014) (a large-scale
scene recognition dataset) and ImageNet. Both ar-
chitectures yield a 4096d representation per im-
age. We use cosine-similarity between visual de-
scriptors of each image and retrieve N nearest
neighbors (images and their captions) per query.
When measuring similarity, we also experimented
with Euclidean distance, but found cosine dis-
tance to perform better for our purposes. Af-
ter retrieving N neighbors, denoted as NN(I

i

),
the candidate object classes for image I

i

is the
list of all objects in the captions of the neigh-
bors M

NN(Ii) that occur more than the mean fre-
quency of the class occurrence counts. Formally,
C

i

= {c
j

, c

j

2 M

NN(Ii), |cj | � ⌧}, where
⌧ = 1

N

P
cj2MNN(Ii)

|c
j

|.

4.2.2 2-view CCA based estimation

Canonical Correlation Analysis (CCA) embed-
ding (Hardoon et al., 2004) is an excellent tool
for modelling data of different modalities, such
as images I and their captions T (Hodosh et al.,
2013). By using CCA, one can measure similar-
ities (or differences) between different modalities
in a common embedding space. Formally, CCA
aims to minimize the following objective function:

minimize
W1,W2

k(V
train

)W1 � (L
train

)W2kF2 (1)

where W1 and W2 are visual and textual projec-
tion vectors and V

train

and L

train

are visual and
textual representations of the training data, respec-
tively. Here, for textual representation of captions,
we use Fisher-encoded word2vec features (Klein
et al., 2014; Plummer et al., 2015; Mikolov et
al., 2013). Each word in a caption is first repre-
sented with a 300-D word2vec feature, then en-
coded within a Fisher Vector framework using 30
clusters. This results in a 18.000-D textual repre-
sentation of each caption. Before projection, we
reduce each modality’s dimension to 1000-D for
computational efficiency. Then, we learn the pro-
jection vectors using training data.

At test stage, we project the visual representa-
tion of a test image V

test

to the common embed-
ding space as V

projected

= V

test

.W1 and measure
similarity between projections of training images
and the test image. Here, we again use the co-
sine similarity metric between projections. In our
experiments, we use normalized-CCA as it yields
better performance (Gong et al., 2014b) and nor-
malize projections using corresponding eigenvec-
tors. Similar to nearest-neighbour based candi-
date object estimation, we again retrieve N train-
ing images (and captions M

NN2CCA(Ii)) on the
common embedding space, and use the list of
all object classes frequently occurring in the re-



trieved captions as C

i

, ie. C

i

= {c
j

, c

j

2
M

NN2CCA(Ii), |ci| � ⌧}.

4.2.3 3-view CCA based estimation
Our final retrieval strategy utilizes 3-view CCA
embeddings. 3-view CCA, firstly proposed by
(Gong et al., 2014a) is a generalized form of 2-
view CCA by including a third view that cor-
relates with the other views. In (Gong et al.,
2014a), the authors propose 3-view CCA to
achieve multi-modal retrieval between images and
tags/keywords associated with images on the web.
Third view can be seen as an additional supervi-
sion that guides visual and textual projections W1-
W2 such that semantically related data are more
accurately grouped. Formally, 3-view CCA solves
the following minimization problem:

minimize
W1,W2,W3

k(V
train

)W1 � (L
train

)W2kF2 +

k(V
train

)W1 � (S
train

)W3kF2 +
k(L

train

)W2 � (S
train

)W3kF2 +

where the first term is equal to the 2-view formu-
lation and third view is induced by second and
third terms, using S

train

and W3. S

train

repre-
sents our third-view representation for the training
set and W3 is the corresponding projection ma-
trix into embeddding space. Semantically, similar
visual and textual representations should be pro-
jected to nearby locations and the semantic view
S should be aligned with both V and L. For V

and L, we use the same setting as in 2-view CCA.
In (Gong et al., 2014a), the authors use keyword

or tag-derived textual representations for the third
view. In our case, we use two alternatives:

• Class view from captions (denoted as S

T

):
Each class name is assigned a unique index
i 2 [1, 19] and then convert it to a 16-bit bi-
nary 2 (0, 1). For each training image, we
assign corresponding binary vector to anno-
tated object’s class(es). If more than one ob-
ject is available, we apply bitwise OR opera-
tion to account for each object in the image.

• Visual view from annotated image regions
(denoted as S

R

): For each annotated object
region in an image, we extract visual descrip-
tors. Note that, the first view is extracted
from the whole image, whereas this third
view alternative uses visual information from
individual regions. If there is more than one
image annotation, we apply mean pooling.

Both alternatives try to assign images and cap-
tions with similar (candidate) objects to lie on
close regions in the embedding space. Similar to
nearest-neighbor and 2-view CCA, we retrieve N

most similar images and corresponding captions
for each test image to form the set of candidate
object classes.

Figure 3 illustrates an example for the intuition
behind using the third view. Suppose there are
two images where each caption includes the aero-
plane class. Although one of the images really
shows an image of an aeroplane, the other is cap-
tured from an aeroplane window, so no aeroplane
is seen. Both their textual representations T in-
clude aeroplane, whereas their visual representa-
tions V and semantic representations S differ sig-
nificantly. Using both of these views, these images
project into farther points in the embedding space
compared to the naive cosine-similarity space and
2-view CCA embeddings, thus can easily be dis-
tinguished.

5 Experiments

For experiments, we split our dataset as 50%-50%
as training and test. We use Faster R-CNN (Ren
et al., 2015) as our base object detector. The de-
tector itself is trained on the PASCAL VOC 2012
data (Everingham et al., 2012). We emply PAS-
CAL (Everingham et al., 2012) conventions while
evaluating the methods and also set the set of pos-
sible object classes C to Pascal classes (excluding
the person class, due to the high level of ambigu-
ity of the captions of this class), so we have 19
classes in total. Following the regular detection
experimental settings, we measure intersection-
over-union (IoU) between detection and annota-
tion windows and count the detections as posi-
tive detections if their IoU exceeds the threshold
0.50%. We evaluate the performance using aver-
age precision (AP). While selecting the similar im-
ages, the number of nearest images N is assigned
to different values of (10, 20, 50, 100, 150).

The first experiments evaluate the performance
of Faster R-CNN by running the detector for ev-
ery object class without considering any textual
information, referred as All classes. In the sec-
ond experiment, we assume that we have access
to the captions of the test images and run the de-
tector only for the objects mentioned in these cap-
tions. This experiment can be interpreted as using
an unreliable oracle, since the objects mentioned



All classes Ours All classes Ours

Figure 4: Example detection results illustrating the performance improvements using caption informa-
tion. The last row shows two failure cases.

in the text do not need to exist in the images as
discussed before. We refer to this method as Men-
tioned classes. The quantitative results of these
experiments are given in Table 4. As can be seen,
based detector results are quite inferior, compared
to the case when the list of objects are limited to
the set of objects in the given image captions.

The third set of experiments consider a more
general setup, where we do not have access to cap-
tions of newly seen images, and assess the perfor-
mance of data-driven estimation of object classes
from similar images. In particular, we run the de-
tector for only those candidate object classes that
are gathered by retrieving the N closest images and
using the frequent object classes mentioned in the
retrieved captions. Here, we consider three dif-
ferent approaches. Firstly, we consider only vi-
sual similarities of VGG (Simonyan and Zisser-
man, 2014) and Hybrid (Zhou et al., 2014) activa-
tions of the test and training images as described
in Sec.4.2.1. In the second and third approaches,
we use the embedding spaces learned via the 2-
view and 3-view CCA as introduced in Sec.4.2.2

and Sec.4.2.3, respectively.
Table 2 shows the results of our object detection

schemes which consider data-driven approaches to
limit the object detectors. In general, we observe
that VGG activations as deep features yield better
results than HYBRID activations. As the number
of closest images increase, we are able to predict
the candidate object classes more accurately, and
obtain better performances for all retrieval scenar-
ios. In general, 3-view CCA gives the best results
over the other alternatives.

In Table 3, we show the object detection results
for different choices of the third view for 3-way
CCA. As demonstrated, the region-based deep ac-
tivations result in a better embedding space than
the binary class vectors, providing more accurate
object detection results.

Finally, we compare the results of all of our ex-
periments. As can be seen in Table 4 and Figure 4,
Faster R-CNN produces many false positive when
run with all the object classes. When it is run
with the classes mentioned in the given caption,
the accuracy improves as expected. Interestingly,



Table 2: Mean Average precision (mAP) values for detection through data-driven estimation of object
classes. Each approach is tested by retrieving N = (10, 20, 50, 100, 150) similar images. For 3-view
CCA, the binary class (S

T

) is used as the third view.
Deep image feature Method 10 20 50 100 150

Hybrid
Single view 0.385 0.428 0.473 0.495 0.504
2-view CCA 0.396 0.421 0.480 0.492 0.504
3-view CCA 0.399 0.425 0.487 0.501 0.499

VGG
Single view 0.403 0.432 0.479 0.492 0.499
2-view CCA 0.413 0.443 0.484 0.511 0.512
3-view CCA 0.416 0.451 0.486 0.508 0.515

Table 3: Mean Average precision (mAP) values for detection using the embedding spaces learned through
3-view CCA using binary class vectors (S

T

) or deep visual feature averaged over annotated object regions
(S

R

) as the third views. V and S represents our first and third view choices respectively.
V S Method 10 20 50 100 150

Hybrid Binary class (S
T

) 3-view CCA 0.399 0.425 0.487 0.501 0.499
Region features (S

R

) 3-view CCA 0.418 0.455 0.496 0.511 0.517

VGG Binary class (S
T

) 3-view CCA 0.416 0.451 0.486 0.508 0.515
Region features (S

R

) 3-view CCA 0.419 0.448 0.503 0.508 0.518

Table 4: Mean Average precision (mAP) values of the Faster R-CNN run with all classes, classes men-
tioned in the captions and the predicted candidate object classes.

Predicted classes
Method All classes Mentioned classes Single view 2-view CCA 3-view CCA

AP 0.304 0.508 0.504 0.512 0.518

our multi-view prediction approaches give highly
competitive and even better results than using the
captions of the test images.

6 Conclusion

In this paper, we develop methods to improve
performance of object detection using captions in
the wild. Captions are freely available textual
image descriptions written by the users, exhibit-
ing a high range of challenges due to excessive
noise. To overcome these limitations, we develop
data-driven methods that can achieve better per-
formance than the current state-of-the-art object
detector Faster R-CNN by means of estimating
likely objects in the images. We compare differ-
ent strategies that use different levels of supervi-
sion. We show that superior results can be ob-
tained even without access to image’s own cap-
tion, by leveraging (somewhat noisy) captions of
similar images. The results clearly indicate that
captions are beneficial supervisory signals for ob-
ject detection problem, when used in a data-driven
manner.

In the future, we plan to extend our dataset us-
ing larger-scale image-caption pairs datasets such
as Flickr-100M (Thomee et al., 2016). We also
plan to apply similar ideas to co-localization prob-
lem (Tang et al., 2014) where noisy images can
also be determined by data-driven methods.
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