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Abstract

Moving Object Detection is one of the integral tasks for

aerial reconnaissance and surveillance applications. De-

spite the problem’s rising potential due to increasing avail-

ability of unmanned aerial vehicles, moving object detec-

tion suffers from a lack of widely-accepted, correctly la-

belled dataset that would facilitate a robust evaluation of

the techniques published by the community. Towards this

end, we compile a new dataset by manually annotating sev-

eral sequences from VIVID and UAV123 datasets for mov-

ing object detection. We also propose a feature-based, ef-

ficient pipeline that is optimized for near real-time perfor-

mance on GPU-based embedded SoMs (system on module).

We evaluate our pipeline on this extended dataset for low

altitude moving object detection. Ground-truth annotations

are made publicly available to the community to foster fur-

ther research in moving object detection field.

1. Introduction

In line with the recent trend of Unmanned Aerial Vehi-

cle (UAV) usage in civilian and military sectors, miniature

UAVs became more and more affordable and thus accessi-

ble for everyone. In addition to its vast military deployment

in various armed forces in the world, civilian applications

of UAVs also emerged swiftly; industrial inspection, agri-

culture, mapping, transport, cinematography and numerous

indoor applications are examples for UAV usage in various

fields 1.

The primary issue of UAV-based computer vision (CV)

1http://www.auvsi.org/auvsiresources/

economicreport

applications is the platform itself; it is not stable, it tends

to have sudden movements, it is exposed to weather condi-

tions, it generates non-homogeneous data (scale, angle, ro-

tation, depth, etc.) and most importantly, it is inherently

limited in computational resources. All these difficulties

and constraints further the complexity of conventional vi-

sion problems, such as object tracking, object detection,

object classification and prominently, moving object detec-

tion.

Moving object detection is a well-studied problem in

controlled environments where ego-motion is not present

[31]. Introduction of unconstrained ego-motion, however,

transforms moving object detection into a much harder

problem. Ego-motion estimation and compensation, which

exploits image alignment techniques, is performed to ad-

dress moving object detection in such scenarios [1]. In

Wide Area Motion Imagery (WAMI), these techniques

could suffice due to comparably low effect of motion paral-

lax [25]. However, for low-altitude UAV scenarios, motion

parallax has a far more detrimental effect [32].

Our contributions are primarily as follows: First, we

compile a dataset comprised of sequences from VIVID [6]

and UAV123 [18] datasets. We carefully pick sequences

with various scenarios; motion parallax, altitude variation,

viewpoint variation, presence of multiple objects, vary-

ing object sizes and speeds are considered. We hand-

annotate the sequences specifically for moving object de-

tection. Second, we present our analysis on this dataset us-

ing an efficient, feature-based pipeline which we optimize

for near real-time performance on embedded GPU-based

SoMs. The annotations are also made publicly available on

https://github.com/LAMODDATASET/LAMOD.

The remainder of this paper is organized as follows: re-

lated work is reviewed in Section 2. The proposed moving



object detection framework is explained in-detail in Section

3. Experimental results as well as details on our extended

dataset are given in Section 4. Our conclusions and future

works are outlined in Section 5.

2. Related Work

Moving object detection task has been an active area of

research within the CV community for a couple of decades.

Earlier studies suggest simple background subtraction to

segment foreground (object) and background in videos [8].

Among other techniques, temporal differencing [19] has

been a prominent one. Temporal differencing, however,

does not work properly in slow motion, when moving ob-

jects are small compared to the overall visual and if the ob-

jects have smooth texture. Statistical methods, where back-

ground is adaptively learned, successfully addresses these

issues. Such techniques include the use of mixture of Gaus-

sians, Eigen backgrounds [13], stereo [9] and motion-layer

[4] approaches. For a general overview of the literature,

readers are referred to [24] and [13].

The majority of above-mentioned algorithms, however,

are not devised to address the presence of ego-motion,

therefore fail to successfully operate in such cases. Towards

this end, image alignment based algorithms have emerged.

The principle idea is to align the images before performing

frame differencing; affine or perspective transformation ma-

trix is used to warp the images. Assuming accurate align-

ment, frame differencing ideally provides the moving re-

gions in the sequence with the help of morphological oper-

ations and connected component analysis [12]. Such tech-

niques can be unified as “feature-based” techniques, where

various feature keypoints/descriptors can be used to match

images for warping. Another way of addressing the perti-

nent problem is “motion-based” techniques, where motion-

layers [4] and optical flow are used to detect moving re-

gions. Stereo vision [26], flow vector segmentation [20]

based on orientation have found use in the field as well.

Such algorithms can be considered as good fit for WAMI

applications where high altitude bird-eye view images are

concerned. When planar surface assumption does not hold

in the scene (i.e. low altitude UAV footage), false positives

due to motion parallax become more severe.

Parallax handling is inherently a costly operation; it re-

quires camera calibration and compliance to various con-

straints. In [14], epipolar constraint along with a “plane-

parallax” based structure consistency is implemented to dis-

tinguish moving regions from parallax-induced false posi-

tives. Another work reported in [21] compare epipolar line

directions with optical flow orientation to accurately iden-

tify moving objects. Work reported in [15] handles parallax

via enforcing epipolar and flow-bound constraints with the

help of camera pose estimation via Parallel Tracking and

Mapping (PTAM). The authors of [7] handle parallax via

a parametrized epipolar constraint without the need of mo-

tion registration. In [29], a “three-view distance constraint”

along with epipolar constraint is used to facilitate moving

object detection.

Handling parallax does not necessarily require compli-

ance to epipolar constraints, as shown in various studies.

[20] and [5] use optical flow and an artificial flow to infer

moving regions while handling parallax implicitly. Another

study presented in [23] follows an image warping based

scheme where moving regions are clustered into moving

objects and parallax is handled via object size priors and

Kalman-filter based persistency check. There are studies

where other priors, such as classifiers for moving object to

be detected, are used but this is out of our work’s scope as

we do not concentrate on specific classes of objects [22]

[28].

Due to operational requirements, moving object detec-

tion generally needs to work in real-time. Performing the

resource-heavy calculations on a dedicated server is inher-

ently limited by the quality of the data link between the

server and the platform. The alternative is to perform the

calculations on the UAV itself using a dedicated embedded

resource, which is non-trivial from an engineering perspec-

tive. There have been several attempts on speeding up mov-

ing object detection such as GPU implementations reported

in [30] and [3]. For mobility, FPGA has also been used

extensively [16], [27]. To the best of our knowledge, how-

ever, there has not been an attempt on moving object de-

tection with parallax handling using on-platform embedded

resources with near real-time performance.

3. Our Approach

The pipeline of our approach is shown in Figure 1. We

propose a feature-based, efficient pipeline mostly imple-

mented on GPU. We have divided our approach to four steps

for ease of understanding: pre-processing, ego-motion com-

pensation, moving object detection and parallax-filtering.

3.1. Preprocessing

In the pre-processing step, the input frames are down-

sampled for faster processing. The downsampled frames

are pushed to a frame-buffer whose size varies depend-

ing on number of frame difference to be used. The num-

ber of frame difference depends on height and the mini-

mum desired motion to be detected; as the frame differ-

ence increases, smaller motion can be detected. At each ac-

quired frame, keypoints and corresponding descriptors (for

our case; SURF [2]) are calculated. Lastly, the descrip-

tors are matched to previous frame to calculate homogra-

phy and fundamental matrix. An important step is the fil-

tering of the keypoints and the corresponding descriptors

based on the (candidate) moving objects found in the pre-

vious frame. Without filtering, these unwanted keypoints
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Figure 1. Our proposed moving object detection pipeline. The steps with * are run on CPU whereas the rest of the pipeline runs on GPU.

have a detrimental effect on homography calculation and

results in inferior perspective warping. One such example

is shown in Figure 2, where the bottom left image shows the

result of inferior perspective warping and the bottom right

image shows accurate warping.

Figure 2. Effect of filtering keypoints on moving objects (from pre-

vious detection) before calculating the current homography ma-

trix. Top to bottom; extracted keypoints, thresholded two frame

difference and final results are given. Left and right column im-

ages show the results without and with the proposed keypoint fil-

tering loop, respectively.

3.2. Egomotion compensation

Based on the descriptor matching, firstly homography

matrix is calculated. RANSAC is used to reject outliers

in the process. Secondly, using the calculated homography

matrix, previous frame is warped onto the current one using

perspective transformation.

3.3. Moving object detection

Since the camera motion is compensated in the previ-

ous step, basically two-frame differencing gives the moving

pixels. In our approach, we are using three-frame differenc-

ing method which is an improved version of two-frame dif-

ferencing in the sense that it removes noise more effectively.

We basically apply logical AND operation for two adjacent

two-frame difference results. After obtaining the moving

pixels, various morphological operations are applied to fil-

ter noise and unite points belonging to same object. Finally,

connected component analysis is applied to extract individ-

ual object bounding boxes.

3.4. Parallax removal with geometric constraints

The final step is the removal of objects that are falsely

detected as moving due to parallax effect. At this step, in-

stead of pixel wise decisions, we make object wise deci-

sions for efficiency. We use the keypoints already extracted

on each frame thus we only make decisions for the candi-

date objects on which keypoints exists. We basically apply

two geometric constraints that is proposed in the literature





Figure 6. Displacement of keypoints and corresponding epipolar lines in the presence of parallax. Each row belongs to a different scene.

Two-frame differences are shown in first column, displacement of keypoints and corresponding epipolar lines are shown in the second.

Keypoints on moving object candidates are shown in red, displacement of the keypoints is shown in green and the corresponding epilines

are shown in white.

ject/point, assuming the camera translates by t, the move-

ment of the point is given by [17]

pt2 = pt1 +
Kt

z
, (2)

where z is the depth of the scene and K is the intrinsic

matrix of the camera. Since we are dealing with already

captured videos in this study and we do not have the camera

parameters, we can use the following

Kt = et1
t2
, (3)

where et1
t2

is the epipole location on It2. Because of

the lack of camera matrix and and the camera translation

amount, we only have the ability to calculate relative depth

between matched points (zi
r
) as suggested in [10, 14]

zi
r
=

(

Ht2

t1
pi
t1
× pi

t2

)T (

pi
t2
× et1

t2

)

∥

∥pi
t2
× et1

t2

∥

∥

2
. (4)

Using Equations 2, 3 and 4 we can compute the displace-

ment bounds along the epipolar line, dmin and dmax. If a

point’s displacement is not between dmin and dmax, it is

more likely to be a point on a moving object. Since we also

have the point pair matches (in our case, keypoint matches),

we also check the deviation between the matched location

and result of Equation 2. An example degenerate motion

and the result of applying FVB constraint in shown in Fig-

ure 7.

4. Experiments

4.1. Dataset

Even though a handful of moving object detection stud-

ies have been published, the field still suffers from the lack

of a content-rich and accurately labelled dataset. A general

trend in moving object detection literature, especially for

low-altitude UAVs, is the use of custom datasets compiled

by respective authors. Best to our knowledge, however, nei-

ther these datasets nor their ground-truth labels are shared

with the community in general.

UAV footage datasets have emerged in recent years due

to the increased availability of the platforms, however, they

are generally labelled for object tracking purposes [18] .

This means only a select number of objects present are la-

belled. Moreover, tracked objects may or may not be mov-

ing, therefore such labels are not reliable for moving object

detection evaluation.

LAMOD Dataset. In order to address said chal-

lenges, we compile our own ground-truths for a combined



Figure 7. Example of degenerate motion and filtering of static points by FVB constraint. From top-left to bottom-right, the detected motion

areas, the corresponding keypoint-displacement and epipolar lines on those areas, result without applying FVB constraint and final result

with FVB constraint applied are shown in each image.

Table 1. Execution time without parallax filtering.

Video Resolution TX1 TX2

640x360 110 ms 79 ms

640x480 115 ms 85 ms

1280x720 350 ms 250 ms

dataset called LAMOD (Low Altitude Moving Object De-

tection) via annotating sequences from VIVID and UAV123

datasets. We hand-label the sequences for moving objects

spanning various classes (i.e. bird, pedestrian, car, etc..).

We use an internally-developed annotation tool, which uses

an optimized version of KCF tracker [11] to aid and auto-

mate the labelling process.

As of now, six sequences from VIVID [6] (egtest01-

02-03-04-05, redteam) and eight sequences from UAV123

[18] (car1-2-3-4-6-8-10 and person12) have been labelled.

The reasoning behind sequence choices is to make sure a

number of scenarios are present; occlusion, motion par-

allax, out-of-focus, sudden platform motion, altitude and

viewpoint variation. We are increasing the number of la-

belled sequences and also in the process of sequence-wise

labelling for various effects (i.e. altitude variation, parallax,

occlusion, etc.). New releases will be publicly available for

the community. A representative figure for our ground-truth

labels is shown in Figure 8.

Table 2. Execution time with parallax filtering.

Video Resolution TX1 TX2

640x360 163 ms 135 ms

640x480 175 ms 140 ms

1280x720 450 ms 350 ms

4.2. Results

Following the annotation of the extended dataset, we

evaluate our pipeline with and without parallax handling.

We tune some hyper-parameters with respect to each video

to see the extent of this pipeline with optimal tuning. Pa-

rameters that are tuned are the number of frames to be

differenced and morphology operations. These parame-

ters could have been adaptively changed if external sen-

sory (i.e. IMU) data were present, but for sequences in

LAMOD dataset, they are not available. It must be noted

that the pipeline does not make use of split/merge handling

or shadow suppression, therefore readers are reminded that

these values are produced to be used as benchmarks only.

We use NVidia Jetson TX1/TX2 modules in our experi-

ments. Execution times are shown in Table 1 and 2.

For evaluation metrics, we use precision/recall and F-

Score, where we take a minimum of 50% overlap to be a

correct detection.



Figure 8. Annotations for (top, left to right) car2, car4, car6 from UAV123 and (bottom, left to right), egtest01, egtest04 and egtest05 from

VIVID dataset.

Table 3. Precision-recall and F-Score values without parallax handling.

Sequence egtest01 egtest02 egtest04 egtest05 redteam car1 car2 car3 car4 car6 car10

Precision 0.93 0.85 0.72 0.71 0.70 0.68 0.84 0.85 0.77 0.10 0.09

Recall 0.82 0.53 0.72 0.68 0.88 0.58 0.78 0.54 0.39 0.45 0.59

F-Score 0.87 0.65 0.72 0.69 0.77 0.63 0.81 0.65 0.52 0.16 0.15

4.2.1 Without parallax handling

Precision/recall and F-Score values without parallax han-

dling are shown in Table 3. A figure representing the steps

of the pipeline is shown in Figure 9.

It is apparent that for egtest01 results are the best among

others. This is expected as this video does not have paral-

lax, viewpoint/altitude variation or any sudden movements.

The movement speed is minimal as well. For egtest02, a

reduction in recall is obvious as severe occlusion exists, as

well as sudden movements. egtest04 shows the detrimental

effect of viewpoint variation and out-of-focus effect, which

degrades the gradients and thus the feature extraction qual-

ity. Egtest05 has the highest amount of occlusion, although

the stability of number of object numbers and altitude helps

retain an adequate result. Redteam sequence has the lowest

resolution, and even though a single object is present, the

effect of minor parallax degrades the result quality.

Rest of the videos, car2-3-4-6, are harder as altitude vari-

ation, parallax and sudden movements are more frequent.

With careful tuning, car2 still manages to keep a good qual-

ity, however the others have severely degraded results, es-

pecially in recall. Car4 has parallax, occlusion and various

object sizes/movement speeds. Car6 and car10 sequences,

on the other hand, produce the worst results as severe par-

allax (degrades precision) coupled with occlusion and vary-

ing object sizes (small objects degrade recall) have apparent

detrimental effects.

4.2.2 With parallax handling

As mentioned in the previous section, one of the most se-

vere parallax cases are observed in car6, car10 and car1

sequences. Therefore, we evaluate only these videos with

our proposed parallax handling scheme. A representative

figure of the flow is shown in Figure 10. Results are shown

in Table 4.

We evaluate our technique using the segments of the

videos where parallax is quite severe. As can be seen from

the results, we observe solid increase in F-Scores in each

video. Parallax primarily degrades precision due to false

positives, and accordingly, parallax handling increases the

precision the most. As parallax handling eliminates candi-

date moving objects, it is apparent that some true positives

are eliminated as well, thus the slightly lowered recall.

5. Conclusions and Future Work

Inspired by the lack of a widely-accepted and carefully

annotated dataset for moving object detection from low al-

titude UAV imagery, we present our hand-annotated dataset



Table 4. Precision-recall and F-Score values with parallax handling. PH stands for parallax handling.

Sequence car1 (first 1020 frames) car6 (first 700 frames) car10 (first 750 frames)

Technique without PH with PH without PH with PH without PH with PH

Precision 0.55 0.70 0.12 0.78 0.13 0.83

Recall 0.51 0.50 0.71 0.64 0.63 0.41

F-Score 0.52 0.58 0.20 0.70 0.21 0.55

Figure 9. Moving object detection result on VIVID egtest01.

Previous frame, current frame, matched features, warped im-

age, three frame difference, morphology result, enclosing rect-

angles/keypoint mask, blended pixel-wise result and result vs.

ground-truth are shown from top left to bottom right respectively.

LAMOD which extends the ground-truth annotations of

VIVID and UAV123 datasets for moving object detection.

Figure 10. Parallax handling result on car6 sequence. From top

left to bottom right; pixel-wise results without parallax handling,

epipolar lines for keypoints present on moving object candidates,

final results before parallax handling and after parallax handling.

We carefully pick the sequences to facilitate the inclusion of

a variety of scenarios and effects, such as motion parallax,

occlusion and altitude/viewpoint/object size variation.

We propose a feature-based, lightweight pipeline that

draws its strength from object-wise decisions while elimi-

nating parallax-induced false positives. This pipeline makes

use of two separate feedback loops to realise accurate ho-

mography and fundamental matrix calculation. We evaluate

the proposed pipeline for scenarios with and without paral-

lax, and observe favourable quantitative results with near-

real time performance on embedded GPU-based SoMs. Our

quantitative results will serve as a future benchmark for the

community.

As future work, we plan to use three frame geometric

constraints instead of two to better handle degenerate mo-

tion cases [29]. We plan to use our own camera, allowing us

to calibrate and obtain camera parameters, thus using essen-

tial matrix instead of fundamental matrix. We believe this

will lead to more robust and accurate calculation of epipolar

lines. Additionally, we plan to use the IMU measurements

to dynamically adapt the system parameters that depend on

altitude. Migrating the remaining parts of the pipeline to

GPUs is also considered for faster execution. Lastly, our

work on LAMOD dataset will be updated with new ground-

truths and sequence-wise labels (i.e. presence of occlusion,

motion parallax, etc.) along with benchmark results of ex-

isting techniques.
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