Basic Text Processing

- Regular Expressions
- Text Normalization

Basic Text Processing: Regular Expressions

Regular Expressions

- **Regular expressions** are the most important tool to describe text patterns and we can use them to specify the strings to be extracted from the text.
 - Regular expressions are widely used in many text preprocessing tasks.
 - A set of text preprocessing tasks is called as **text normalization**.
 - Normalizing text means converting it to a more convenient, standard form.

Tokenization: Separating out or tokenizing words from text.

- English words are often separated from each other by whitespace (not enough).
 - For processing tweets we'll need to tokenize emoticons like :) or hashtags like **#nlproc**.

Lemmatization: Task of determining that words have the same root.

- Words *sings, singing, sang, sung* have the same root word (**lemma**) *sing.*
- Words *kitabım, kitaplar,* ... have the same root word *kitap*.
- **Stemming:** a simpler version of lemmatization in which we mainly just strip suffixes from the end of the word.

Sentence Segmentation: breaking up a text into individual sentences.

Regular Expressions

- Each Regular Expression (RE) represents a set of strings having certain pattern.
 In NLP, we can use REs to find strings having certain patterns in a given text.
- Regular Expressions are an algebraic way to describe formal languages.
 - Regular Expressions describe exactly the regular languages.
- A regular expression is built up of simpler regular expressions (using defining rules).
- Simple Definition for Regular Expressions over alphabet Σ
 - ϵ is a regular expression
 - If $\mathbf{a} \in \Sigma$, **a** is a regular expression
 - or : If E_1 and E_2 are regular expressions, then $E_1 | E_2$ is a regular expression
 - concatenation : If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression
 - Kleene Closure: If E is a regular expression, then E^* is a regular expression
 - Positive Closure: If E is a regular expression, then E^+ is a regular expression

Searching Strings with Regular Expressions (using Python style REs)

- How can we search for any of following strings?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks
- The simplest kind of regular expression is a sequence of simple characters.
 - The regular expression **b** will match with the string "b".
 - The regular expression **bc** will match with the string "bc".
 - The regular expression **woodchuck** will match with the string "woodchuck".
 - The regular expression **woodchucks** will match with the string "woodchucks".
 - The regular expression **woodchuck** will NOT match with the string "Woodchuck".

Regular Expressions: Disjunctions disjunction of characters []

- **Disjunction of Characters:** The **string of characters inside the braces** [] specifies a **disjunction** of characters to match.
- The regular expression [wW] matches patterns containing either w or W.

Regular Expression	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

• Ranges in []: If there is a well-defined sequence associated with a set of characters, dash (-) in brackets can specify any one character in a range.

Regular Expression	Matches
[A-Z]	An upper case letter
[a-z]	A lower case letter
[0-9]	A single digit

Regular Expressions: Disjunctions Negations in []

- Negations in []:
 - The square braces can also be used to specify what a single character cannot be, by use of the caret ^.
 - If the caret ^ is the first symbol after the open square brace [, the resulting pattern is negated.

Regular Expression	Matches
[^A-Z]	Not an upper case letter
[^a-z]	Not a lower case letter
[^Ss]	Neither 'S' nor 's'
[^e^]	Neither e nor ^
a^b	The pattern a^b

Regular Expressions: Disjunctions or (disjunction) operator | (pipe symbol)

• If E_1 and E_2 are regular expressions, then $E_1 | E_2$ is a regular expression

Regular Expression	Matches
woodchuck groundhog	woodchuck or groundhog
a b c	a , b or c
[gG]roundhog [Ww]oodchuck	woodchuck , Woodchuck , groundhog or Groundhog
fl(y ies)	fly or flies

Regular Expressions: Closure Operators Kleene * and Kleene +

- Kleene * (closure) operator: The Kleene star means "zero or more occurrences of the immediately previous regular expression.
- Kleene + (positive closure) operator: The Kleene plus means "one or more occurrences of the immediately preceding regular expression.

Regular Expression	Matches
ba*	b, ba, baa, baaa,
ba+	ba, baa, baaa,
(ba) *	ε, ba, baba, bababa,
(ba) +	ba, baba, bababa,
(b a)+	b, a, bb, ba, aa, ab,

Regular Expressions: {} . ?

- {m,n} causes the resulting RE to match from m to n repetitions of the preceding RE.
- {m} specifies that exactly m copies of the previous RE should be matched
- The question mark ? marks optionality of the previous expression.

Regular Expression	Matches
woodchucks?	woodchuck or woodchucks
colou?r	color or colour
(a b)?c	ac, bc, c
(ba) {2,3}	baba, bababa

• A wildcard expression **dot** . matches any single character (except a carriage return).

Regular Expression	Matches
beg.n	begin, begun, begxn,
a.*b	any string starts with a and ends with b

Regular Expressions: Anchors ^ \$

- Anchors are special characters that anchor regular expressions to particular places in a string.
- The caret ^ matches the start of a string.
 - The regular expression **^The** matches the word **The** only at the start of a string.
- The **dollar sign \$** matches the end of a line.

Regular Expression	Matches
.\$	any character at the end of a string
\.\$	dot character at the end of a string
^ [A-Z]	any uppercase character at the beginning of a string
^The dog∖.\$	a string that contains only the phrase The dog.

Regular Expressions: Precedence of Operators

- The order precedence of RE operator precedence, from highest precedence to lowest precedence is as follows
 - Parenthesis ()
 - Counters * + ? {}
 - Sequences and anchors ^ \$
 - Disjunction |
- The regular expression **the*** matches **theeeee** but not **thethe**
- The regular expression (the)* matches thethe but not theeeee

Regular Expressions: backslashed characters

• Aliases for common sets of characters

RE	Expansion	Match
\d	[0-9]	any digit
\D	[^0-9]	any non-digit
\ w	[a-zA-Z0-9_]	any word character
\W	[^a-zA-Z0-9_]	any non-word character
\s	$[\t n\r f\v]$	any whitespace character
\s	$[^ \t\n\r\f\v]$	any non-whitespace character

Regular Expressions: backslashed characters

• Special characters need to be **backslashed**.

RE	Match
\b	a word boundary: A word boundary is the position between a word character (\w) and a non-word character (\W).
∖в	a non-word boundary: This is the opposite of b , and it matches any position that is not a word boundary.
∖n	a newline character
\t	a tab character
escap (like *	ing other special characters: We can escape almost any special character * , +, ?, (,), {, }, [,], , ^, \$, ., and \\) by preceding it with a backslash (\).

\. \+ * \\ \? \(\) \[\] \| \^ \\$

Regular Expressions: Example

- We want to write a RE to find cases of the English article the
 - We can use **findall** method in **re** library for tokenization.

```
import re
sentence = "The book and the other book are not theology books. We breathe the air."
pre.findall(r"the", sentence)
  → ['the', 'the', 'the', 'the']
     The book and the other book are not the ology books. We breathe the air.
re.findall(r"[tT]he",sentence)
  → ['The', 'the', 'the', 'the', 'the']
     The book and the other book are not theology books. We breathe the air.
re.findall(r"[tT]he\b",sentence)
  → ['The', 'the', 'the', 'the']
     The book and the other book are not theology books. We breathe the air.
re.findall(r"\b[tT]he",sentence)
  → ['The', 'the', 'the', 'the']
     The book and the other book are not theology books. We breathe the air.
re.findall(r"\b[tT]he\b",sentence)
  → ['The', 'the', 'the']
     The book and the other book are not theology books. We breathe the air.
```

Regular Expressions & FSAs

- Any regular expression can be realized as a finite state automaton (FSA)
- There are two kinds of FSAs
 - Deterministic Finite State Automatons (DFAs)
 - Non-deterministic Finite State Automatons (NFAs)
 - Any NFA can be converted into a corresponding DFA.
- A DFA (and a regular expression) represents a **regular language**.

Regular Expressions: A DFA and A NFA

- A regular language: The strings whose second characters from the right end are 1.
- Regular Expression for this regular language: (0|1)*1(0|1)

• A DFA for this language :

Formal Definition of Finite-State Automaton

- FSA is $Q \ge \Sigma \ge q_0 \ge F \ge \delta$
- Q: a finite set of N states q_0, q_1, \dots, q_N
- Σ : a finite input alphabet of symbols
- q_0 : the start state
- F: the set of final states
- $\delta(q,i)$: transition function
 - DFA : There is exactly one arc leaving a state q with a symbol a.
 There is no arc with the empty string.

Basic Text Processing: Text Normalization

Text Normalization

- Almost every natural language processing task needs to do text normalization.
- Three tasks are commonly applied as part of any normalization process:
 - 1. Segmenting/tokenizing words from the text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in the text.

Words

- Before processing words, we need to decide what counts as a **word**.
- How many words are in the following sentence?

He stepped out into the hall, was delighted to encounter a water brother.

- If we do NOT count punctuations as words
- If we count punctuations as words

- \rightarrow 13 words
- \rightarrow 15 words
- Punctuations can be useful to identify boundaries of things and some aspects of meaning.
- Are capitalized tokens and uncapitalized tokens the same word?
 - The and the big possibly
 - US and us may be not (US: united states of America)

Words

- Are the inflected forms like cat and cats the same word?
- They have the same **lemma cat**, but they have different **wordforms**.
- A **lemma** is a set of lexical forms having the same stem, the same major part-of-speech, and the same word sense.
- The **wordform** is the full inflected or derived form of the word.
 - For morphologically complex languages, we often need to deal with lemmatization.
 - For many tasks in English, however, wordforms are sufficient.

Words: How many words are there in English?

- A type is a distinct Word in a corpus.
- V: Vocabulary is the set of types.
 - **|V|** is the size of the vocabulary.
- Each word in a corpus is a token.
 - N is the number of tokens in the corpus.

Corpus	# of Tokens = N	# of Types = V			
Shakespeare	884,000	31 thousand			
Switchboard phone conversations	2.4 million	20 thousand			
Brown corpus	1 million	38 thousand			
Google N-grams	1 trillion	13 million			

Word Tokenization and Normalization

- **Tokenization** is the task of segmenting the text into words.
- Normalization is the task of putting words in a standard format.
- We can use **regular expressions** to segment the text into words for **tokenization** task.
 - Since tokenization needs to be run before any other language processing, it is important for it to be very fast.
 - The method for tokenization/normalization is to use deterministic algorithms
 based on regular expressions compiled into very efficient finite state automata.

Tokenization

- Normally we want to break off **punctuations** as separate tokens, but sometimes we want to keep them in words internally.
- Punctuations as separate tokens: He ate apple, orange and banana.
- Punctuations kept internally:
 - m.p.h. Ph.D. AT&T Prices: \$43.55 Dates: 27/09/2019
 - URLs: http://www.hacettepe.edu.tr Twitter hashtags: #nlproc
- A tokenizer can also expand **clitic** contractions that are marked by apostrophes.
 - what're to two tokens what are
 - we're to two tokens we are
- Tokenization algorithms may also tokenize multiword expressions like New York or rock 'n' roll as a single token.

Tokenization in Python

- We can use methods in **re** or **nltk** library for tokenization.
 - We can use **findall** method in **re** library for tokenization.
 - We can use **word_tokenize** or **regexp_tokenize** methods in **nltk** library for tokenization.
- Token patterns are described with regular expressions.
- re.findall(pattern, string)
 - Returns all non-overlapping matches of *pattern* in *string*, as a list of strings or tuples.
 - The *string* is scanned left-to-right, and matches are returned in the order found.
 - The result depends on the number of capturing groups in the pattern.
 - If there are no groups, return a list of strings matching the whole pattern.
 - If there is exactly one group, return a list of strings matching that group.
 - If multiple groups are present, return a list of tuples of strings matching the groups.

nltk.regexp_tokenize(string,pattern)

nltk.word_tokenize(string)

- nltk.word_tokenize may require to download some library.
 - nltk.download('punkt_tab')

Tokenization in Python

- In regular expressions, **parentheses** are used for two main purposes:
 - 1. Grouping: Parentheses (...) are used to group parts of the pattern together.
 - 2. Non-Grouping: Parentheses (?:...) are used to create non-capturing groups.
 - This group is still used to group parts of the pattern together (like regular parentheses), but it does not create a capturing group.

```
str = "the evening shows start at 7:00pm and 10:15pm. the morning show at
9:00."
# Parentheses identify a group within the pattern
matches = re.findall(r"(\d\d?:\d\d)(am|pm)?", str)

→ [('7:00', 'pm'), ('10:15', 'pm'), ('9:00', '')]
matches = re.findall(r"(?:\d\d?:\d\d)(am|pm)?", str)

→ ['pm', 'pm', '']
matches = re.findall(r"(\d\d?:\d\d)(?:am|pm)?", str)

→ ['7:00', '10:15', '9:00']
```

Tokenization in Python

```
import nltk
import re
sentence = 'That U.S.A. poster-print costs $12.40...'
nltk.word tokenize(sentence)
→ ['That', 'U.S.A.', 'poster-print', 'costs', '$', '12.40', '...']
pattern = r'' + tokens are any non-empty sequence of word characters
nltk.regexp tokenize(sentence, pattern)  # or findall of re
re.findall(pattern, sentence)
→ ['That', 'U', 'S', 'A', 'poster', 'print', 'costs', '12', '40']
pattern = r'' + tokens are white space separated
nltk.regexp tokenize(sentence, pattern)
→ ['That', 'U.S.A.', 'poster-print', 'costs', '$12.40...']
pattern = r"""(?x)  # multiline and set verbose for regular expressions
  (?:[A-Z] \) +  # abbreviations
 | \ w+(?:-w+) *  # words with optional internal hyphens
 | \$?\d+(?:\.\d+)?%? # currency, percentages, e.g. $12.40, 45%
  # ellipsis (three dots)
  [][.,;\"\'?():_-] # other single character tokens
  ** ** **
nltk.regexp tokenize(sentence, pattern)
```

```
→ ['That', 'U.S.A.', 'poster-print', 'costs', '$', '12.40', '...']
```

Tokenization: Language Issues

- French:
 - *L'ensemble* to two words *un ensemble*
- German noun compounds are not segmented:
 - Lebensversicherungsgesellschaftsangestellter
 - German tokenizer needs compound splitter.
- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在居住在 美国东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida

Word Tokenization in Chinese

- Word tokenization is also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm: Maximum Matching

Given a wordlist of Chinese, and a string.

- 1. Start a pointer at the beginning of the string
- 2. Find the longest word in dictionary that matches the string starting at pointer
- 3. Move the pointer over the word in string
- 4. Go to 2

Max-match segmentation

• Thecatinthehat

_

• Thetabledownthere

the cat in the hat

the table down there theta bled own there

Doesn't generally work in English!

- But works well in Chinese
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Subword Tokenization

- Another option for text tokenization → Subword Tokenization
- Instead of white-space word segmentation, use single-character segmentation
- Use the data (**training corpus**) to tell us how to tokenize.
- Subword tokenization (because tokens can be parts of words as well as whole words)
- To deal with this unknown word problem, modern tokenizers (used by Large Language Models) automatically induce sets of tokens that include tokens smaller than words, called **subwords**.
 - Subwords can be arbitrary substrings, or they can be meaning-bearing units like the morphemes -est or -er.
 - In modern tokenization schemes, most tokens are words, but some tokens are frequently occurring morphemes or other subwords like -er.
 - Every unseen word like lower can thus be represented by some sequence of known subword units, such as low and er, or even as a sequence of individual letters if necessary.

Subword Tokenization

- Three common algorithms for subword tokenization:
 - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
 - Unigram language modeling tokenization (Kudo, 2018)
 - WordPiece (Schuster and Nakajima, 2012)
- All algorithms have 2 parts:
 - A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Byte-Pair Encoding (BPE) - Token Learner

• Let vocabulary be the set of all individual characters

= {A, B, C, D,..., a, b, c, d....}

- Repeat:
 - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
 - Add a new merged symbol 'AB' to the vocabulary
 - Replace every adjacent 'A' 'B' in the corpus with 'AB'.
- Until k merges have been done.

Byte-Pair Encoding (BPE) - Token Learner

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

 $V \leftarrow$ all unique characters in C # initial set of tokens is characters for i = 1 to k do # merge tokens k times $t_L, t_R \leftarrow$ Most frequent pair of adjacent tokens in C $t_{NEW} \leftarrow t_L + t_R$ # make new token by concatenating $V \leftarrow V + t_{NEW}$ # update the vocabulary Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus return V

- Most subword algorithms are run inside space-separated tokens.
- So we commonly first add a special end-of-word symbol '_' before space which comes after each word in training corpus
- Next, separate into letters (character).
- Tiny Corpus:

low low low low lowest lowest newer newer newer newer wider wider new new

• Add end-of-word tokens

→ Initial Vocabulary: __, d, e, i, l, n, o, r, s, t, w

cor]	pus							voc	abu	lary	7							
5	1	0	W		_			,	d,	e,	i,	1,	n,	Ο,	r,	s,	t,	W
2	1	0	W	e	S	t												
6	n	e	W	e	r													
3	W	i	d	e	r													
2	n	e	W															

• Merge **e r** to **er**

 corpus
 vocabulary

 5
 low _______, d, e, i, l, n, o, r, s, t, w, er

 2
 low est _______

 6
 new er _______

 3
 wid er _______

 2
 new ______

corpus

vocabulary

- 5 low __
 2 lowest__
 6 newer__
 3 wider__
 2 new__
- _, d, e, i, l, n, o, r, s, t, w, er

• Merge **er** to **er**

 corpus
 vocabulary

 5
 1 o w _____
 __, d, e, i, 1, n, o, r, s, t, w, er, er__

 2
 1 o w e s t _____

 6
 n e w er______

 3
 w i d er______

 2
 n e w ______

corpus		vocabulary
5	l o w	, d, e, i, l, n, o, r, s, t, w, er, er_
2	lowest_	
6	n e w er_	
3	wider_	
2	n e w	

• Merge **n** e to **n**e

corpus

vocabulary

- 5 low_
- 2 lowest_
- 6 ne w er_
- 3 wider_
- 2 ne w _

__, d, e, i, l, n, o, r, s, t, w, er, er__, ne

• Next Merges:

Merge	Current Vocabulary
(ne, w)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new
(l, o)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo
(lo, w)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low
(new, er_)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer
(low,)	, d, e, i, l, n, o, r, s, t, w, er, er, ne, new, lo, low, newer, low

Byte-Pair Encoding (BPE) - Token Segmenter

- On the test data, run each merge learned from the training data:
 - Greedily
 - In the order we learned them
- So: merge every e r to er, then merge er _ to er_, etc.
- Result:
 - Test set "n e w e r _" would be tokenized as a full word "newer_"
 - Test set "l o w e r _" would be two tokens: "low er_"

Properties of Byte-Pair Encoding Tokens

- Usually include frequent words
- And frequent subwords
 - Which are often morphemes like *-est* or *-er*
- A morpheme is the smallest meaning-bearing unit of a language
 - unlikeliest has 3 morphemes un-, likely, and -est

Text Normalization

- **Tokens** can also be **normalized**, in which a single normalized form is chosen for words with multiple forms like USA and US.
 - This standardization may be valuable, despite the spelling information that is lost in the normalization process.
 - For information retrieval, we want a query for US to match a document that has USA.
- **Case folding** is another kind of normalization: Reduce all letters to lower case.
 - For most applications (information retrieval), case folding is helpful.
 - For some NLP applications (MT, information extraction) cases can be helpful.
 - US versus us are important

Lemmatization

- Lemmatization is the task of determining that two words have the same root, despite their surface differences.
 - am, are, is $\rightarrow be$
 - car, cars, car's, cars' \rightarrow car
- Lemmatization: have to find correct dictionary headword form of the Word.
- The most sophisticated methods for lemmatization involve complete **morphological parsing** of the word.
- **Morphology** is the study of the way words are built up from smaller meaning-bearing units called **morphemes**.
- Two broad classes of morphemes can be distinguished:
 - Stems : the central morpheme of the word, supplying the main meaning
 - Affixes : adding "additional" meanings of various kinds.

Lemmatization

- Lemmatization algorithms can be complex.
- For this reason we sometimes make use of a simpler but cruder method, which mainly consists of chopping off word-final affixes.
- This naive version of morphological analysis is called **stemming**.
- One of the most widely used stemming algorithms is **Porter Stemmer.**
 - The algorithm is based on series of **rewrite rules** run in series, in which the output of each pass is fed as input to the next pass.
 - Some rules are:
 - ATIONAL \rightarrow ATE
 - ING $\rightarrow \epsilon$ if stem contains vowel
 - SSES \rightarrow SS

(e.g., relational → relate)
(e.g., motoring → motor)
(e.g., grasses → grass)

Sentence Segmentation

- Sentence segmentation is another important step in text processing.
- The most useful cues for segmenting a text into sentences are **punctuation**, like **periods**, **question marks**, **exclamation points**.
- Question marks and exclamation points are relatively unambiguous markers of sentence boundaries.
- Periods, on the other hand, are more ambiguous.
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Summary

- The **regular expression** language is a powerful tool for pattern-matching.
- Word tokenization and normalization are generally done by cascades of simple *regular expression substitutions* or finite automata.