
Basic Text Processing

• Regular Expressions

• Text Normalization

Natural Language Processing 1

Basic Text Processing: Regular Expressions

Natural Language Processing 2

• Regular expressions are the most important tool to describe text patterns and we can

use them to specify the strings to be extracted from the text.

– Regular expressions are widely used in many text preprocessing tasks.

– A set of text preprocessing tasks is called as text normalization.

• Normalizing text means converting it to a more convenient, standard form.

Tokenization: Separating out or tokenizing words from text.

– English words are often separated from each other by whitespace (not enough).

• For processing tweets we’ll need to tokenize emoticons like :) or hashtags like #nlproc.

Lemmatization: Task of determining that words have the same root.

– Words sings, singing, sang, sung have the same root word (lemma) sing.

– Words kitabım, kitaplar,… have the same root word kitap.

– Stemming: a simpler version of lemmatization in which we mainly just strip suffixes from

the end of the word.

Sentence Segmentation: breaking up a text into individual sentences.

Regular Expressions

Natural Language Processing 3

Regular Expressions

• Each Regular Expression (RE) represents a set of strings having certain pattern.

– In NLP, we can use REs to find strings having certain patterns in a given text.

• Regular Expressions are an algebraic way to describe formal languages.

– Regular Expressions describe exactly the regular languages.

• A regular expression is built up of simpler regular expressions (using defining rules).

• Simple Definition for Regular Expressions over alphabet

– is a regular expression

– If a , a is a regular expression

– or : If E1 and E2 are regular expressions, then E1 | E2 is a regular expression

– concatenation : If E1 and E2 are regular expressions, then E1E2 is a regular

expression

– Kleene Closure: If E is a regular expression, then E* is a regular expression

– Positive Closure: If E is a regular expression, then E+ is a regular expression

Natural Language Processing 4

• How can we search for any of following strings?

– woodchuck

– woodchucks

– Woodchuck

– Woodchucks

• The simplest kind of regular expression is a sequence of simple characters.

– The regular expression b will match with the string “b”.

– The regular expression bc will match with the string “bc”.

– The regular expression woodchuck will match with the string “woodchuck”.

– The regular expression woodchucks will match with the string “woodchucks”.

– The regular expression woodchuck will NOT match with the string “Woodchuck”.

Searching Strings with Regular Expressions

(using Python style REs)

Natural Language Processing 5

• Disjunction of Characters: The string of characters inside the braces [] specifies a

disjunction of characters to match.

• The regular expression [wW] matches patterns containing either w or W.

• Ranges in []: If there is a well-defined sequence associated with a set of characters,

dash (-) in brackets can specify any one character in a range.

Regular Expressions: Disjunctions

disjunction of characters []

Natural Language Processing 6

Regular Expression Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit

Regular Expression Matches

[A-Z] An upper case letter

[a-z] A lower case letter

[0-9] A single digit

• Negations in []:

– The square braces can also be used to specify what a single character cannot be, by use of

the caret ^.

– If the caret ^ is the first symbol after the open square brace [, the resulting pattern is

negated.

Regular Expressions: Disjunctions

Negations in []

Natural Language Processing 7

Regular Expression Matches

[^A-Z] Not an upper case letter

[^a-z] Not a lower case letter

[^Ss] Neither ‘S’ nor ‘s’

[^e^] Neither e nor ^

a^b The pattern a^b

• If E1 and E2 are regular expressions, then E1 | E2 is a regular expression

Regular Expressions: Disjunctions

or (disjunction) operator | (pipe symbol)

Natural Language Processing 8

Regular Expression Matches

woodchuck|groundhog woodchuck or groundhog

a|b|c a , b or c

[gG]roundhog|[Ww]oodchuck woodchuck , Woodchuck ,

groundhog or Groundhog

fl(y|ies) fly or flies

• Kleene * (closure) operator: The Kleene star means “zero or more occurrences of the

immediately previous regular expression.

• Kleene + (positive closure) operator: The Kleene plus means “one or more

occurrences of the immediately preceding regular expression.

Regular Expressions: Closure Operators

Kleene * and Kleene +

Natural Language Processing 9

Regular Expression Matches

ba* b, ba, baa, baaa, ...

ba+ ba, baa, baaa, ...

(ba)* , ba, baba, bababa, …

(ba)+ ba, baba, bababa, …

(b|a)+ b, a, bb, ba, aa, ab, …

• {m,n} causes the resulting RE to match from m to n repetitions of the preceding RE.

• {m} specifies that exactly m copies of the previous RE should be matched

• The question mark ? marks optionality of the previous expression.

• A wildcard expression dot . matches any single character (except a carriage return).

Regular Expressions: {} . ?

Natural Language Processing 10

Regular Expression Matches

woodchucks? woodchuck or woodchucks

colou?r color or colour

(a|b)?c ac, bc, c

(ba){2,3} baba, bababa

Regular Expression Matches

beg.n begin, begun, begxn, …

a.*b any string starts with a and ends with b

• Anchors are special characters that anchor regular expressions to particular places in a

string.

• The caret ^ matches the start of a string.

– The regular expression ^The matches the word The only at the start of a string.

• The dollar sign $ matches the end of a line.

Regular Expressions: Anchors ^ $

Natural Language Processing 11

Regular Expression Matches

.$ any character at the end of a string

\.$ dot character at the end of a string

^[A-Z] any uppercase character at the

beginning of a string

^The dog\.$ a string that contains only the phrase

The dog.

• The order precedence of RE operator precedence, from highest precedence to lowest

precedence is as follows

– Parenthesis ()

– Counters * + ? {}

– Sequences and anchors ^ $

– Disjunction |

• The regular expression the* matches theeeee but not thethe

• The regular expression (the)* matches thethe but not theeeee

Regular Expressions: Precedence of Operators

Natural Language Processing 12

• Aliases for common sets of characters

Regular Expressions: backslashed characters

Natural Language Processing 13

RE Expansion Match

\d [0-9] any digit

\D [^0-9] any non-digit

\w [a-zA-Z0-9_] any word character

\W [^a-zA-Z0-9_] any non-word character

\s [\t\n\r\f\v] any whitespace character

\S [^ \t\n\r\f\v] any non-whitespace character

• Special characters need to be backslashed.

Regular Expressions: backslashed characters

Natural Language Processing 14

RE Match

\b a word boundary: A word boundary is the position between a word character

(\w) and a non-word character (\W).

\B a non-word boundary: This is the opposite of \b, and it matches any position

that is not a word boundary.

\n a newline character

\t a tab character

escaping other special characters: We can escape almost any special character

(like *, +, ?, (,), {, }, [,], |, ^, $, ., and \\) by preceding it with a backslash (\).

\. \+ * \\ \? \(\) \[\] \| \^ \$

• We want to write a RE to find cases of the English article the

– We can use findall method in re library for tokenization.

import re

sentence = "The book and the other book are not theology books. We breathe the air."

pre.findall(r"the",sentence)

➔ ['the', 'the', 'the', 'the', 'the']

The book and the other book are not theology books. We breathe the air.

re.findall(r"[tT]he",sentence)

➔ ['The', 'the', 'the', 'the', 'the', 'the']

The book and the other book are not theology books. We breathe the air.

re.findall(r"[tT]he\b",sentence)

➔ ['The', 'the', 'the', 'the']

The book and the other book are not theology books. We breathe the air.

re.findall(r"\b[tT]he",sentence)

➔ ['The', 'the', 'the', 'the']

The book and the other book are not theology books. We breathe the air.

re.findall(r"\b[tT]he\b",sentence)

➔ ['The', 'the', 'the']

The book and the other book are not theology books. We breathe the air.

Regular Expressions: Example

Natural Language Processing 15

• Any regular expression can be realized as a finite state automaton (FSA)

• There are two kinds of FSAs

– Deterministic Finite State Automatons (DFAs)

– Non-deterministic Finite State Automatons (NFAs)

• Any NFA can be converted into a corresponding DFA.

• A DFA (and a regular expression) represents a regular language.

Regular Expressions

Finite Automata Regular Languages

Regular Expressions & FSAs

Natural Language Processing 16

• A regular language: The strings whose second characters from the right end are 1.

• Regular Expression for this regular language: (0|1)*1(0|1)

• A DFA for this language :

Regular Expressions: A DFA and A NFA

Natural Language Processing 17

• FSA is Q x x q0 x F x

• Q: a finite set of N states q0, q1, … qN

• : a finite input alphabet of symbols

• q0: the start state

• F: the set of final states

• (q,i): transition function

– DFA : There is exactly one arc leaving a state q with a symbol a.

There is no arc with the empty string.

Formal Definition of

Finite-State Automaton

Natural Language Processing 18

Basic Text Processing: Text Normalization

Natural Language Processing 19

• Almost every natural language processing task needs to do text normalization.

• Three tasks are commonly applied as part of any normalization process:

1. Segmenting/tokenizing words from the text

2. Normalizing word formats

3. Segmenting sentences in the text.

Text Normalization

Natural Language Processing 20

• Before processing words, we need to decide what counts as a word.

• How many words are in the following sentence?

He stepped out into the hall, was delighted to encounter a water brother.

– If we do NOT count punctuations as words ➔ 13 words

– If we count punctuations as words ➔ 15 words

• Punctuations can be useful to identify boundaries of things and some aspects of

meaning.

• Are capitalized tokens and uncapitalized tokens the same word?

– The and the big possibly

– US and us may be not (US: united states of America)

Words

Natural Language Processing 21

• Are the inflected forms like cat and cats the same word?

• They have the same lemma cat, but they have different wordforms.

• A lemma is a set of lexical forms having the same stem, the same major part-of-

speech, and the same word sense.

• The wordform is the full inflected or derived form of the word.

– For morphologically complex languages, we often need to deal with lemmatization.

– For many tasks in English, however, wordforms are sufficient.

Words

Natural Language Processing 22

• A type is a distinct Word in a corpus.

• V: Vocabulary is the set of types.

– |V| is the size of the vocabulary.

• Each word in a corpus is a token.

– N is the number of tokens in the corpus.

Words: How many words are there in English?

Natural Language Processing 23

Corpus # of Tokens = N # of Types = |V|

Shakespeare 884,000 31 thousand

Switchboard phone conversations 2.4 million 20 thousand

Brown corpus 1 million 38 thousand

Google N-grams 1 trillion 13 million

• Tokenization is the task of segmenting the text into words.

• Normalization is the task of putting words in a standard format.

• We can use regular expressions to segment the text into words for tokenization task.

– Since tokenization needs to be run before any other language processing, it is

important for it to be very fast.

– The method for tokenization/normalization is to use deterministic algorithms

based on regular expressions compiled into very efficient finite state automata.

Word Tokenization and Normalization

Natural Language Processing 24

• Normally we want to break off punctuations as separate tokens, but sometimes we

want to keep them in words internally.

• Punctuations as separate tokens: He ate apple, orange and banana.

• Punctuations kept internally:

– m.p.h. Ph.D. AT&T Prices: $43.55 Dates: 27/09/2019

– URLs: http://www.hacettepe.edu.tr Twitter hashtags: #nlproc

• A tokenizer can also expand clitic contractions that are marked by apostrophes.

– what're to two tokens what are

– we're to two tokens we are

• Tokenization algorithms may also tokenize multiword expressions like New York or

rock 'n' roll as a single token.

Tokenization

Natural Language Processing 25

• We can use methods in re or nltk library for tokenization.

– We can use findall method in re library for tokenization.

– We can use word_tokenize or regexp_tokenize methods in nltk library for tokenization.

• Token patterns are described with regular expressions.

re.findall(pattern,string)

– Returns all non-overlapping matches of pattern in string, as a list of strings or tuples.

– The string is scanned left-to-right, and matches are returned in the order found.

– The result depends on the number of capturing groups in the pattern.
• If there are no groups, return a list of strings matching the whole pattern.

• If there is exactly one group, return a list of strings matching that group.

• If multiple groups are present, return a list of tuples of strings matching the groups.

nltk.regexp_tokenize(string,pattern)

nltk.word_tokenize(string)

– nltk.word_tokenize may require to download some library.

• nltk.download('punkt_tab')

Tokenization in Python

Natural Language Processing 26

• In regular expressions, parentheses are used for two main purposes:

1. Grouping: Parentheses (...) are used to group parts of the pattern together.

2. Non-Grouping: Parentheses (?:...) are used to create non-capturing groups.

• This group is still used to group parts of the pattern together (like regular parentheses),

but it does not create a capturing group.

str = "the evening shows start at 7:00pm and 10:15pm. the morning show at

9:00."

Parentheses identify a group within the pattern

matches = re.findall(r"(\d\d?:\d\d)(am|pm)?", str)

➔ [('7:00', 'pm'), ('10:15', 'pm'), ('9:00', ‘’)]

matches = re.findall(r"(?:\d\d?:\d\d)(am|pm)?", str)

➔ ['pm', 'pm', ‘’]

matches = re.findall(r"(\d\d?:\d\d)(?:am|pm)?", str)

➔ ['7:00', '10:15', '9:00’]

matches = re.findall(r"(?:\d\d?:\d\d)(?:am|pm)?", str)

➔ ['7:00pm', '10:15pm', '9:00']

Tokenization in Python

Natural Language Processing 27

import nltk

import re

sentence = 'That U.S.A. poster-print costs $12.40...'

nltk.word_tokenize(sentence)

➔ ['That', 'U.S.A.', 'poster-print', 'costs', '$', '12.40', '...’]

pattern = r"\w+" # tokens are any non-empty sequence of word characters

nltk.regexp_tokenize(sentence,pattern) # or findall of re

re.findall(pattern,sentence)

➔ ['That', 'U', 'S', 'A', 'poster', 'print', 'costs', '12', '40']

pattern = r"\S+" # tokens are white space separated

nltk.regexp_tokenize(sentence,pattern)

➔ ['That', 'U.S.A.', 'poster-print', 'costs', '$12.40...’]

pattern = r"""(?x) # multiline and set verbose for regular expressions

(?:[A-Z]\.)+ # abbreviations

| \w+(?:-\w+)* # words with optional internal hyphens

| \$?\d+(?:\.\d+)?%? # currency, percentages, e.g. $12.40, 45%

| \.\.\. # ellipsis (three dots)

| [][.,;\"\'?():_-] # other single character tokens

"""

nltk.regexp_tokenize(sentence,pattern)

➔ ['That', 'U.S.A.', 'poster-print', 'costs', '$', '12.40', '...']

Tokenization in Python

Natural Language Processing 28

• French:

– L'ensemble to two words un ensemble

• German noun compounds are not segmented:

– Lebensversicherungsgesellschaftsangestellter

– German tokenizer needs compound splitter.

• Chinese and Japanese no spaces between words:

– 莎拉波娃现在居住在美国东南部的佛罗里达。

– 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

– Sharapova now lives in US southeastern Florida

Tokenization: Language Issues

Natural Language Processing 29

• Word tokenization is also called Word Segmentation

• Chinese words are composed of characters

– Characters are generally 1 syllable and 1 morpheme.

– Average word is 2.4 characters long.

• Standard baseline segmentation algorithm: Maximum Matching

Given a wordlist of Chinese, and a string.

1. Start a pointer at the beginning of the string

2. Find the longest word in dictionary that matches the string starting at pointer

3. Move the pointer over the word in string

4. Go to 2

Word Tokenization in Chinese

Natural Language Processing 30

• Thecatinthehat the cat in the hat

• Thetabledownthere the table down there

theta bled own there

– Doesn’t generally work in English!

• But works well in Chinese

– 莎拉波娃现在居住在美国东南部的佛罗里达。

– 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

• Modern probabilistic segmentation algorithms even better

Max-match segmentation

Natural Language Processing 31

• Another option for text tokenization➔ Subword Tokenization

• Instead of white-space word segmentation, use single-character segmentation

• Use the data (training corpus) to tell us how to tokenize.

• Subword tokenization (because tokens can be parts of words as well as whole words)

• To deal with this unknown word problem, modern tokenizers (used by Large

Language Models) automatically induce sets of tokens that include tokens smaller than

words, called subwords.

– Subwords can be arbitrary substrings, or they can be meaning-bearing units like the

morphemes -est or -er.

– In modern tokenization schemes, most tokens are words, but some tokens are frequently

occurring morphemes or other subwords like -er.

– Every unseen word like lower can thus be represented by some sequence of known subword

units, such as low and er, or even as a sequence of individual letters if necessary.

Subword Tokenization

Natural Language Processing 32

• Three common algorithms for subword tokenization:

– Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

– Unigram language modeling tokenization (Kudo, 2018)

– WordPiece (Schuster and Nakajima, 2012)

• All algorithms have 2 parts:

– A token learner that takes a raw training corpus and induces a vocabulary (a set

of tokens).

– A token segmenter that takes a raw test sentence and tokenizes it according to

that vocabulary

Subword Tokenization

Natural Language Processing 33

• Let vocabulary be the set of all individual characters

= {A, B, C, D,…, a, b, c, d….}

• Repeat:

– Choose the two symbols that are most frequently adjacent in the training corpus

(say 'A', 'B')

– Add a new merged symbol 'AB' to the vocabulary

– Replace every adjacent 'A' 'B' in the corpus with 'AB’.

• Until k merges have been done.

Byte-Pair Encoding (BPE)

- Token Learner

Natural Language Processing 34

Byte-Pair Encoding (BPE)

- Token Learner

Natural Language Processing 35

• Most subword algorithms are run inside space-separated tokens.

• So we commonly first add a special end-of-word symbol ‘_' before space which comes

after each word in training corpus

• Next, separate into letters (character).

• Tiny Corpus:

low low low low low lowest lowest newer newer newer

newer newer newer wider wider wider new new

• Add end-of-word tokens

➔ Initial Vocabulary:

Byte-Pair Encoding (BPE)

- Token Learner: Example

Natural Language Processing 36

• Merge e r to er

Byte-Pair Encoding (BPE)

- Token Learner: Example

Natural Language Processing 37

• Merge er _ to er_

Byte-Pair Encoding (BPE)

- Token Learner: Example

Natural Language Processing 38

• Merge n e to ne

Byte-Pair Encoding (BPE)

- Token Learner: Example

Natural Language Processing 39

• Next Merges:

Byte-Pair Encoding (BPE)

- Token Learner: Example

Natural Language Processing 40

• On the test data, run each merge learned from the training data:

– Greedily

– In the order we learned them

• So: merge every e r to er, then merge er _ to er_, etc.

• Result:

– Test set "n e w e r _" would be tokenized as a full word "newer_"

– Test set "l o w e r _" would be two tokens: "low er_"

Byte-Pair Encoding (BPE)

- Token Segmenter

Natural Language Processing 41

• Usually include frequent words

• And frequent subwords

– Which are often morphemes like -est or –er

• A morpheme is the smallest meaning-bearing unit of a language

– unlikeliest has 3 morphemes un-, likely, and -est

Properties of Byte-Pair Encoding Tokens

Natural Language Processing 42

• Tokens can also be normalized, in which a single normalized form is chosen for

words with multiple forms like USA and US.

– This standardization may be valuable, despite the spelling information that is lost

in the normalization process.

– For information retrieval, we want a query for US to match a document that has

USA.

• Case folding is another kind of normalization: Reduce all letters to lower case.

– For most applications (information retrieval), case folding is helpful.

– For some NLP applications (MT, information extraction) cases can be helpful.

• US versus us are important

Text Normalization

Natural Language Processing 43

• Lemmatization is the task of determining that two words have the same root, despite

their surface differences.

– am, are, is → be

– car, cars, car's, cars' → car

• Lemmatization: have to find correct dictionary headword form of the Word.

• The most sophisticated methods for lemmatization involve complete morphological

parsing of the word.

• Morphology is the study of the way words are built up from smaller meaning-bearing

units called morphemes.

• Two broad classes of morphemes can be distinguished:

– Stems : the central morpheme of the word, supplying the main meaning

– Affixes : adding “additional” meanings of various kinds.

Lemmatization

Natural Language Processing 44

• Lemmatization algorithms can be complex.

• For this reason we sometimes make use of a simpler but cruder method, which mainly

consists of chopping off word-final affixes.

• This naive version of morphological analysis is called stemming.

• One of the most widely used stemming algorithms is Porter Stemmer.

– The algorithm is based on series of rewrite rules run in series, in which the output

of each pass is fed as input to the next pass.

– Some rules are:

• ATIONAL → ATE (e.g., relational→ relate)

• ING → if stem contains vowel (e.g., motoring→ motor)

• SSES → SS (e.g., grasses→ grass)

Lemmatization

Natural Language Processing 45

• Sentence segmentation is another important step in text processing.

• The most useful cues for segmenting a text into sentences are punctuation, like

periods, question marks, exclamation points.

• Question marks and exclamation points are relatively unambiguous markers of

sentence boundaries.

• Periods, on the other hand, are more ambiguous.

– Abbreviations like Inc. or Dr.

– Numbers like .02% or 4.3

• Build a binary classifier

– Looks at a “.”

– Decides EndOfSentence/NotEndOfSentence

– Classifiers: hand-written rules, regular expressions, or machine-learning

Sentence Segmentation

Natural Language Processing 46

• The regular expression language is a powerful tool for pattern-matching.

• Word tokenization and normalization are generally done by cascades of simple

regular expression substitutions or finite automata.

Summary

Natural Language Processing 47

