
Logistic Regression

A Discriminative Classifier

Natural Language Processing 1

Generative and Discriminative Classifiers

• The naive Bayes assigns a class c to a document d not by directly computing P(c|d)

but by computing a likelihood and a prior.

Ƹ𝐜 = 𝐚𝐫𝐠𝐦𝐚𝐱
cC

𝐏 𝐝 𝐜 𝐏(𝐜)

• A generative model (like naive Bayes) makes use of likelihood term, which expresses

how to generate the features of a document if we knew it was of class c.

• A discriminative model (like logistic regression) in the text categorization scenario

attempts model to directly compute P(c|d).

– It will learn to assign high weight to document features that directly improve its

ability to discriminate between possible classes, even if it couldn’t generate an

example of one of the classes.

Natural Language Processing 2

likelihood of

the document

prior probability

of the class

• Discriminative (conditional) models are widely used in NLP (and ML generally).

– They give high accuracy performance

– They make it easy to incorporate lots of linguistically important features

– They allow automatic building of language independent NLP modules

• In text classification task, we have some data {(d, c)} of paired observations d and

hidden classes c.

• Generative (joint) models place probabilities over both observed data and the hidden

stuff (generate the observed data from hidden stuff).

– some generative models: n-gram models, Naive Bayes classifiers, hidden Markov models,

probabilistic context-free grammars, …

• Discriminative (conditional) models take the data as given, and put a probability

over hidden structure given the data.

– some discriminative models: logistic regression, maximum entropy models, conditional

random fields, SVMs, perceptron, …

Generative and Discriminative Classifiers

Natural Language Processing 3

• Machine learning classifiers require a training corpus of observations input/output

pairs (x,y).

– In text classification, document/class (d,c) pairs.

• A machine learning system for classification has four components:

1. A feature representation of the input. For each input observation x, this will be

a vector of features [x1,x2,…,xn].

2. A classification function that computes ො𝐲 (the estimated class) via P(y|x). We

will use sigmoid function in logistic regression.

3. An objective function for learning, usually involving minimizing error on

training examples. We will use cross-entropy loss function in logistic regression.

4. An algorithm for optimizing the objective function. We will use stochastic

gradient descent algorithm in logistic regression.

Components of

A Probabilistic Machine Learning Classifier

Natural Language Processing 4

• The goal of binary logistic regression is to train a classifier that can make a binary

decision about the class of a new input observation.

• Training: we train the system to learn a vector of weights for features and a bias term

using stochastic gradient descent and cross-entropy loss function.

– Each weight wi is a real number, and is associated with one of the input features xi.

– The weight wi represents how important that input feature xi is to the classification decision,

positive➔ the feature is associated with the class

negative ➔ the feature is not associated with the class

– In a sentiment task the word awesome to have a high positive weight, and abysmal bias

term to have a very negative weight.

– The bias term is another real number that’s added to the weighted inputs.

• Test: for given a test example x, we compute P(y|x) and return the higher probability

label y=1 (member of class) or y=0 (not member of class).

Logistic Regression

Natural Language Processing 5

• To make a decision on a test instance (after we’ve learned the weights in training) the

classifier first multiplies each xi by its weight wi, sums up the weighted features, and

adds the bias term b.

• The resulting number z expresses the weighted sum of the evidence for the class.

• In short, we can write the weighted sum of the evidence for the class as follows:

• The weighted sum of the evidence z is not a probability value, it ranges from -∞ to

+∞.

Logistic Regression
weighted sum of the evidence for the class

Natural Language Processing 6

• To create a probability, we’ll pass z through the sigmoid function, 𝝈(z).

• The sigmoid function is also called the logistic function.

• The sigmoid function y =
1

1+e−z
takes a real value and maps it to the range [0,1].

Logistic Regression
sigmoid function

Natural Language Processing 7

σ(4)=1/(1+e-4)=0.982

σ(3)=1/(1+e-3)=0.953

σ(2)=1/(1+e-2)=0.881

σ(1)=1/(1+e-1)=0.731

σ(0)=1/(1+e-0)=0.5

σ(-1)=1/(1+e1)=0.269

σ(-2)=1/(1+e2)=0.119

σ(-3)=1/(1+e3)=0.047

σ(-4)=1/(1+e4)=0.018

• The sigmoid function has a number of advantages:

– It maps a real-valued number into range [0,1], which is just what we want for a probability.

– It tends to squash outlier values toward 0 or 1.

– And it’s differentiable, This will be handy for learning.

• If we apply the sigmoid to the sum of the weighted features, we get a number between

0 and 1.

• To make it a probability, we just need to make sure that the two cases, P(y=1) and

P(y=0), sum to 1.

Logistic Regression
sigmoid function

Natural Language Processing 8

• The sigmoid function has the property: 𝟏 − 𝛔 𝐱 = 𝛔 −𝐱

𝟏 − 𝛔 𝐱 =
𝒆−𝒙

𝟏 + 𝒆−𝒙
=

𝒆−𝒙

𝟏 +
𝟏
𝒆𝒙

=
𝒆𝒙 ∗ 𝒆−𝒙

𝟏 + 𝒆𝒙
=

𝟏

𝟏 + 𝒆𝒙
= 𝛔(−𝐱)

• The input z=wx+b to the sigmoid function is often called logit.

• Logit function is the inverse of the sigmoid function.

• Logit function is the log of the odds ratio
𝑝

1−𝑝

logit p = σ−1 p = ln
p

1 − p

σ wx + b =
1

1 + e−(wx+b)
logit σ wx + b = wx + b

logit σ(𝑧) = 𝑙𝑛
σ(𝑧)

1−σ(𝑧)
= 𝑙𝑛

1/(1+𝑒−𝑧)

𝑒−𝑧/(1+𝑒−𝑧)
= 𝑙𝑛

1

𝑒−𝑧
= 𝑙𝑛 𝑒𝑧 = 𝑧

Logistic Regression
sigmoid function vs logit function

Natural Language Processing 9

• We have an algorithm that given an instance x computes the probability P(y=1|x).

• When P(y=1|x) is more than 0.5 (decision boundary), the estimated class will be 1

(indicating that the instance x belongs to the class).

• Turning a probability into a classifier

estimated class ො𝐲 = ቊ
1 if P y = 1 x > 0.5
0 otherwise

Logistic Regression
decision boundary for classification

Natural Language Processing 10

estimated class ො𝐲 = ቊ
1 if P y = 1 x > 0.5
0 otherwise

𝐢𝐟 𝐰. 𝐱 + 𝐛 > 𝟎
𝐢𝐟 𝐰. 𝐱 + 𝐛 ≤ 𝟎

Logistic Regression

decision boundary for classification

Natural Language Processing 11

wx+b

P(y=1)

Logistic Regression :

Example on Sentiment Classification

Machine Learning 12

• Suppose we are doing binary sentiment classification on movie review text, and we

want to assign the sentiment class + or - to a review document doc.

• Each input observation (document) will be represented by 6 features of the input:

Logistic Regression
Example: sentiment classification

Natural Language Processing 13

• Let’s assume for the moment that we’ve already learned a real-valued weight for each

of 6 features.

– The 6 weights corresponding to the 6 features are [2.5, -5.0, -1.2, 0.5, 2.0, 0.7], and the bias

term b = 0.1.

– For example, the weight w1 indicates how the number of positive lexicon words (great,

nice, enjoyable, etc.) is important to a positive sentiment decision.

• A sample mini test document showing the extracted features in the vector x.

Logistic Regression
Example: sentiment classification

Natural Language Processing 14

• Given these 6 features and the input review x, P(+|x) and P(-|x) can be computed:

Logistic Regression
Example: sentiment classification

Natural Language Processing 15

Logistic Regression: Learning

Machine Learning 16

• How are the weights w and bias b (the parameters of the model) learned?

– Logistic regression is an instance of supervised classification in which we know the correct

label y (either 0 or 1) for each observation x.

– The estimated value ො𝐲 is the system’s estimate of the true y.

– We want to learn parameters (w and b) that make ො𝐲 for each training observation as close as

possible to the true y.

• In order to learn the parameters of the model, we require two things:

1. A metric for how close the current label (ො𝐲) is to the true gold label y.

– The distance between the system output and the gold truth is called as the loss function or

the cost function.

– The loss function that is commonly used for logistic regression is the cross-entropy loss.

2. An optimization algorithm for iteratively updating the weights so as to minimize

this loss function.

– The standard algorithm for this is gradient descent (or stochastic gradient descent)

Logistic Regression: Learning

Natural Language Processing 17

• We need a loss function that expresses, for an observation x, how close the classifier

output (ො𝐲 = 𝛔(𝐰. 𝐱 + 𝐛)) is to the correct output (y, which is 0 or 1):

L(ෝ𝒚,y) = How much ෝ𝒚 differs from the true y

• For logistic regression, we will use a loss function known as conditional maximum

likelihood estimation that prefers the correct class labels of the training example to be

more likely.

– We choose the parameters w, b that maximize the log probability of the true y

labels in the training data given the observations x.

– The resulting loss function is the negative log likelihood loss, generally called the

cross entropy loss.

• We do not prefer to use the mean squared error as a loss function because it is harder to optimize

for probabilistic classification (it is not convex).

Logistic Regression: Learning
cross-entropy loss function

Natural Language Processing 18

• We’d like to learn weights that MAXIMIZE the probability of the correct label p(y|x).

• Since there are only two discrete outcomes (1 or 0), we can express the probability

p(y|x) as follows:

• Take the log of both sides (whatever values maximize a probability will also maximize

the log of the probability):

– This describes a log likelihood that should be maximized.

Logistic Regression: Learning
cross-entropy loss function

Natural Language Processing 19

p(y|x)= ොy when y=1 and

p(y|x)=1-ොy when y=0

• To obtain cross-entropy loss function for one example, we change the sign in the

equation and we have to MINIMIZE this LCE function:

• Plug in the definition of ොy = σ(w. x + b):

– A perfect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and

probability 0 to the incorrect outcome.

– Higher ොy (close to 1) ➔ better classifier; Lower ොy is (close to 0) ➔ worse classifier.

• The negative log of this probability is a convenient loss metric since it goes from 0 to infinity.

• This loss function also insures that as probability of the correct answer is maximized, the

probability of the incorrect answer is minimized;

Logistic Regression: Learning
cross-entropy loss function

Natural Language Processing 20

y=1 ➔ LCE(ොy,1) = - log(ොy) = - log(σ(w.x+b))

y=0 ➔ LCE(ොy,0) = - log(1-ොy) = - log(1-σ(w.x+b))

LCE(1.0,1) = 0 LCE(0.0,0) = 0

LCE(0.8,1) = 0.223 LCE(0.2,0) = 0.223

LCE(0.5,1) = 0.693 LCE(0.5,0) = 0.693

LCE(0.2,1) = 1.609 LCE(0.8,0) = 1.609

LCE(0.1,1) = 2.303 LCE(0.9,0) = 2.303

LCE(0.01,1) = 4.605 LCE(0.99,0) = 4.605

Logistic Regression: Learning
cross-entropy loss function

Natural Language Processing 21

• We want loss to be

– smaller if the model estimate is close to correct,

– bigger if model is confused

• Sentiment example:

• What will be the loss value for this example if its true value is y=1 or y=0?

Logistic Regression: Learning
cross-entropy loss function: example

Natural Language Processing 22

Current weights of the model:

weights: [2.5,-5.0,-1.2,0.5,2.0,0.7],

and the bias term b = 0.1.

• If its true value is y=1 or y=0, the model produces following probabilty values with the current

weights.

• If its true value is y=1, the loss will be:

• If its true value y=0:

Logistic Regression: Learning
cross-entropy loss function: example

Natural Language Processing 23

• Our goal with the gradient descent is to find the optimal weights which minimize the

loss function.

• The loss function L is parameterized by the weights, which we’ll refer to as θ (in the

logistic regression θ = (w,b), and the optimal weights are:

• Gradient descent is a method that finds a minimum of a function by figuring out in

which direction (in the space of the parameters θ) the function’s slope is rising the

most steeply, and moving in the opposite direction.

• For logistic regression, the loss function is conveniently convex.

– A convex function has just one minimum; there are no local minima to get stuck

in, so gradient descent starting from any point is guaranteed to find the minimum.

Logistic Regression: Learning
Gradient Descent

Natural Language Processing 24

• Although the gradient descent algorithm is designed for direction vectors, let’s first

consider the algorithm for a single value w.

• After the random initial value w1 (normally 0), the gradient descent algorithm tell us

our direction at the next iteration to reach the minimum.

– move w in positive direction (to right) when slope of loss is negative (making w2 bigger than w1) or

– move w in negative direction (to left) when slope of loss is positive (making w2 smaller than w1).

Logistic Regression: Learning
Gradient Descent

Natural Language Processing 25

• The gradient of a function of

many variables is a vector

pointing in the direction of the

greatest increase in a function.

• Gradient Descent: Find the

gradient of the loss function at

the current point and move in the

opposite direction.

• In order to reach to the minimum, the gradient descent algorithm finds the gradient

of the loss function at the current point and it moves in the opposite direction.

• The gradient is the increase direction, and it is equal to the slope:
𝐝

𝐝𝐰
𝐋(𝐟 𝐱;𝐰 , 𝐲)

• The magnitude of the amount to move in gradient descent is the value of the slope
𝐝

𝐝𝐰
𝐋(𝐟 𝐱;𝐰 , 𝐲) weighted by a learning rate 𝜼.

– Learning rate 𝜼 is a hyperparameter.

• Update weight w by subtracting (the learning rate times the gradient)

Logistic Regression: Learning
Gradient Descent

Natural Language Processing 26

gradient of the loss functionlearning rate

• When we have a weight vector, we want to know where in the N-dimensional space

(N parameters in θ) we should move.

• The gradient is just such a vector which expresses the directional components of the

sharpest slope along each of those N dimensions.

• Visualization of the gradient vector in two dimensions w and b.

Logistic Regression: Learning
Gradient Descent – N Dimensions

Natural Language Processing 27

• For each variable wi in w, the gradient will have a component that tells us the slope

with respect to that variable.

– “How much would a small change in that variable wi influence the total loss function L?”

• In each dimension wi, we express the slope as a partial derivative
𝛛

𝛛𝐰𝐢
of the loss

function.

• The gradient is then defined as a vector of these partials.

Logistic Regression: Learning
Gradient Descent – N Dimensions

Natural Language Processing 28

where f(x;𝛉) is ෝ𝒚

• The equation for updating 𝛉 based on the gradient is:

• In order to update 𝛉, we need a definition for the gradient .

• The cross-entropy loss function for logistic regression is:

• The partial derivative of this function for one observation vector x is:

Logistic Regression: Learning
Gradient Descent - N Dimensions

Natural Language Processing 29

LCE(ෝ𝒚,y) = - (y.ln(σ(z)) + (1-y).ln(1-σ(z))) where z=w.x+b ොy=σ(z))

𝜕LCE(ොy,y)

𝜕wj
=
𝜕LCE(ොy,y)

𝜕σ(z)

𝜕σ(z)

𝜕z

𝜕z

𝜕wj

𝜕LCE(ෝy,y)
𝜕σ(z)

= −(y.
1

σ z
+ 1 − y .

−1

1−σ z
)

𝜕σ(z)

𝜕z
= σ z .(1 − σ z)

𝜕z

𝜕wj
= xj

𝜕LCE(ොy,y)

𝜕wj
= − y.

1

σ z
+ 1 − y .

−1

1 − σ z
. σ z .(1 − σ z) . xj

𝜕LCE(ොy,y)

𝜕wj
= − y. (1 − σ z) + 1 − y . −σ z . xj − y − σ z . xj = σ z − 𝑦 . xj = ොy − 𝑦 . xj

𝛛LCE(ො𝐲,y)

𝛛𝐰𝐣
= ො𝐲 − 𝐲 . 𝐱𝐣 = 𝛔 𝐰. 𝐱 + 𝐛 − 𝐲 . 𝐱𝐣

Logistic Regression: Learning
Gradient Descent – Math. for Partial Derivation of LCE

Natural Language Processing 30

• The cost function (or loss function) for all m examples in the training set.

• Gradient for the whole training set is:

Logistic Regression: Learning
Gradient Descent - N Dimensions

Natural Language Processing 31

• Stochastic gradient descent minimizes the loss function by computing its gradient

after each training example, and nudging 𝛉 in the right direction.

Logistic Regression: Learning
Stochastic Gradient Descent Algorithm

Natural Language Processing 32

// T times or some stopping condition is reached

• We will give some steps of stochastic gradient descent algorithm for a simplified

version of sentiment classification task.

– It sees a single observation x, whose correct value is y = 1 (this is a positive review), and

– There are only two features:

• x1 = 3 (count of positive lexicon words)

• x2 = 2 (count of negative lexicon words)

• Initial weights and bias in 𝛉1, and the learning rate 𝜼 are:

Logistic Regression: Learning
Stochastic Gradient Descent: Example – sentiment classification

Natural Language Processing 33

• The single update step:

• Since there are three parameters, so the gradient vector has 3 dimensions, for w1, w2,

and b. We can compute the gradient as follows:

• we compute 𝛉2 by moving 𝛉1 in the opposite direction from the gradient:

Logistic Regression: Learning
Stochastic Gradient Descent: Example – sentiment classification

Natural Language Processing 34

Logistic Regression: Learning
Stochastic Gradient Descent: Example – sentiment classification

Natural Language Processing 35

Logistic Regression: Learning
Stochastic Gradient Descent: Example – sentiment classification

Natural Language Processing 36

Logistic Regression: Learning
Stochastic Gradient Descent: Example – sentiment classification

Natural Language Processing 37

• Stochastic gradient descent chooses a single random example at a time.

– That can result in choppy movements

• We compute the gradient over the entire dataset.

– batch gradient descent

– By seeing so many examples, batch training over the entire dataset offers a superb estimate

of which direction to move the weights, at the cost of spending a lot of time processing

every single example in the training set to compute this perfect direction.

• More common to compute gradient over mini-batches of m examples of training

instances.

– mini-batch training: m examples (512, or 1024) is less than size of the dataset.

– m=1 ➔ stochastic gradient descent

– m is the size of the dataset➔ gradient descent

Logistic Regression: Learning
Mini-Batch Training

Natural Language Processing 38

• Cost function for the mini-batch of m examples is the average loss for each example:

• The mini-batch gradient is the average of the individual gradients:

Logistic Regression: Learning
Mini-Batch Training

Natural Language Processing 39

• The weights for features will attempt to perfectly fit details of the training set,

modeling noisy factors that just accidentally correlate with the class.

• This problem is called overfitting.

– A good model should be able to generalize well from the training data to the unseen test

set, but a model that overfits will have poor generalization.

• One way to avoid overfitting, adding a regularization term to the objective function:

– The new component, R(θ) is called a regularization term, and is used to penalize large

weights.

Logistic Regression: Learning
Overfitting and Regularization

Natural Language Processing 40

• In some classification tasks, we need more than two classes.

– Positive/negative/neutral in sentiment analysis

– Parts of speech (noun, verb, adjective, adverb, preposition, etc.)

– Classify emergency SMSs into different actionable classes

• In such cases, we can use multinominal logistic regression, also it is also called as

softmax regression (or it is also called as maxent classifier).

– logistic regression will just mean binary classification (2 output classes)

• In multinominal logistic regression, the target y is a variable that ranges over more

than two classes.

– We want label an observation with a class c∈C={c1,c2,…,ck} where k>2, and only one of

these classes is correct (hard classification – observation cannot be in multiple classes)

– We want to know the probability of y being in each potential class c∈C, p(y=c|x).

Multinomial Logistic Regression

Natural Language Processing 41

• The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) + P(neutral|doc) = 1

• The multinominal logistic classifier uses a generalization of the sigmoid function,

called as the softmax function, to compute the probability p(y=c|x).

– The softmax function takes a vector z = [z1, z2, …, zk] of k arbitrary values and

maps them to a probability distribution,

– each value in the range (0,1]

– all the values summing to 1.

• Like the sigmoid, the softmax function is also an exponential function.

Multinomial Logistic Regression
Softmax

Natural Language Processing 42

• The softmax function turns a vector z = [z1, z2, ... , zk] of k arbitrary values into

probabilities.

• The denominator σ𝑗=1
𝑘 exp 𝑧𝑗 is used to normalize all the values into probabilities.

Multinomial Logistic Regression
Softmax

Natural Language Processing 43

where exp(zi) = 𝑒𝑧𝑖

• For a given vector

• The the resulting softmax values is

softmax(z) = [0.055, 0.090, 0.007, 0.100, 0.738, 0.010]

using the softmax function

Multinomial Logistic Regression
Softmax

Natural Language Processing 44

• Input for the softmax function is still the dot product between weight vector w

(including bias b) and input vector x.

• But now we will need separate weight vectors for each of the k classes.

• The probability of each of our output classes y=c can thus be computed as:

Multinomial Logistic Regression
Softmax in moltinominal logistic regression

Natural Language Processing 45

• Binary logistic regression uses a single weight vector w, and has a scalar output ො𝐲.

• In multinomial logistic regression we have k separate weight vectors corresponding

to the k classes, all packed into a single weight matrix W, and a vector output

ොy=[ොy1,…, ොyk].

Multinomial Logistic Regression
Features in binary versus moltinominal logistic regression

Natural Language Processing 46

output y

sigmoid scalar

weight W

vector [1xf]

input X

vector [fx1]

input words

Binary Logistic Regression

output y

sigmoid [kx1]

weight W

vector [kxf]

input X

vector [fx1]

input words

Multinominal Logistic Regression

matrix

softmax

• Consider the following feature for the sentiment classification:

• In binary logistic regression, there is a single weight w5 for this feature.

– A positive weight w5 on a feature influences the classifier toward y = 1 (positive sentiment)

and a negative weight influences it toward y = 0 (negative sentiment) with the absolute

value indicating how important the feature is.

• In multinomial logistic regression, there are separate weights for each class, a feature

can be evidence for or against each individual class.

• In 3-way multiclass sentiment classification, for example, we must assign each

document one of the 3 classes +, -, or 0 (neutral).

– Now this feature will have a negative weight for 0 documents, and a positive weight for +

or – documents according to follwing weightd:

Multinomial Logistic Regression
Features in binary versus moltinominal logistic regression

Natural Language Processing 47

• Cross-entropy loss for binary logistic regression

• For multinomial logistic regression we’ll represent both y and ො𝐲 as vectors.

– The true label y is a vector with K elements, each corresponding to a class, with yc = 1 if the

correct class is c, with all other elements of y being 0.

– Our classifier will produce an estimate vector with K elements ො𝐲 , each element ො𝐲𝐤
represents the estimated probability p(yk=1|x).

• Cross-entropy loss for multinomial logistic regression

Multinomial Logistic Regression
Learning

Natural Language Processing 48

• Gradient (for a single example) in multinomial logistic regression

– This derivative turns out to be just the difference between the true value for the class k

(which is either 1 or 0) and the probability the classifier outputs for class k, weighted by the

value of the input xi corresponding to the ith element of the weight vector for class k:

Multinomial Logistic Regression
Learning

Natural Language Processing 49

• Logistic regression is a supervised machine learning classifier that extracts real-

valued features from the input, multiplies each by a weight, sums them, and passes the

sum through a sigmoid function to generate a probability.

– A threshold is used to make a decision.

• The weights (vector w and bias b) are learned from a labeled training set via a loss

function, such as the cross-entropy loss, that must be minimized.

• Minimizing this loss function is a convex optimization problem, and iterative

algorithms like gradient descent are used to find the optimal weights.

• Regularization is used to avoid overfitting.

• Logistic regression can be used with two classes or with multiple classes

(multinomial logistic regression).

• Multinomial logistic regression uses the softmax function to compute probabilities.

Logistic Regression: Summary

Natural Language Processing 50

