
BBM401 Automata Theory and Formal Languages 1

Automata Theory and

Formal Languages

BBM401 Automata Theory and Formal Languages 2

Introduction to Automata Theory

• What is Automata Theory?

• Central Concepts of Automata Theory

• Formal Proofs

BBM401 Automata Theory and Formal Languages 3

What is Automata Theory?

• Automata theory is the study of abstract computing devices (machines).

• In 1930s, Turing studied an abstract machine (Turing machine) that had all the

capabilities of today’s computers.

– Turing’s goal was to describe precisely the boundary between what a computing machine

could do and what it could not do.

• In 1940s and 1950s, simpler kinds of machines (finite automata) were studied.

– Chomsky began the study of formal grammars that have close relationships to abstract

automata and serve today as the basis of some important software components.

Automata Theory

BBM401 Automata Theory and Formal Languages 4

• Automata theory is the core of computer science.

• Automata theory presents many useful models for software and hardware.

– In compilers we use finite automata for lexical analyzers, and push down

automatons for parsers.

– In search engines, we use finite automata to determine tokens in web pages.

– Finite automata model protocols, electronic circuits.

– Context-free grammars are used to describe the syntax of essentially every

programming language.

– Automata theory offers many useful models for natural language processing.

• When developing solutions to real problems, we often confront the limitations of what

software can do.

– Undecidable things – no program whatever can do it.

– Intractable things – there are programs, but no fast programs.

Why Study Automata?

BBM401 Automata Theory and Formal Languages 5

• Automata, Computability and Complexity are linked by the question:

– “What are the fundamental capabilities and limitations of computers?”

• In complexity theory, the objective is to classify problems as easy problems and

hard problems.

• In computability theory, the objective is to classify problems as solvable problems

and non-solvable problems.

– Computability theory introduces several of the concepts used in complexity theory.

• Automata theory deals with the definitions and properties of mathematical models of

computation.

– Finite automata are used in text processing, compilers, and hardware design.

– Context–free grammars are used in programming languages and artificial

intelligence.

– Turing machines represent computable functions.

Automata, Computability and Complexity

BBM401 Automata Theory and Formal Languages 6

BBM401 Automata Theory and Formal Languages 7

Central Concepts of Automata Theory

• An alphabet is a finite, non empty set of symbols.

• We use the symbol  for an alphabet.

•  = {0,1} - binary alphabet

•  = {a,b,c,…,z} - lowercase letters

• The set of ASCII characters is an alphabet.

Central Concepts of Automata Theory - Alphabets

BBM401 Automata Theory and Formal Languages 8

• A string is a sequence of symbols chosen from some alphabet.

• A string sometimes is called as word.

• 01101 is a string from the alphabet  = {0,1}.

– Some other strings: 11, 010, 1, 0

• The empty string, denoted as , is a string of zero occurrences of symbols.

• Length of string: number of symbols in the string

– |ab| = 2 |b| = 1 || = 0

Central Concepts of Automata Theory - Strings

BBM401 Automata Theory and Formal Languages 9

Powers of an alphabet:

• If  is an alphabet, the set of all strings of a certain length from the alphabet by using

an exponential notation.

• k is the set of strings of length k from .

• Let  = {0,1}. 0 = {} 1 = {0,1} 2 = {00,01,10,11}

• The set of all strings over an alphabet is denoted by *.

* = 0 ∪ 1 ∪ 2 ∪ …

+ = 1 ∪ 2 ∪ … - set of nonempty strings

Concatenation of strings

• If x and y are strings xy represents their concatenations.

• If x = abc and y = de then xy = abcde

Central Concepts of Automata Theory - Strings

BBM401 Automata Theory and Formal Languages 10

• A set of strings that are chosen from * is called as a language.

• If  is an alphabet, and L ⊆ * , then L is a language over .

• A language over  may not include strings with all symbols of .

• Some Languages:

– The language of all strings consisting of n 0’s followed by n 1’ for some n≥0 : {, 01,

0011, 000111, …}

– * is a language

– Empty set is a language. The empty language is denoted by .

– The set {} is a language, {} is not equal to the empty language.

– The set of all identifiers in a programming language is a language.

– The set of all syntactically correct C programs is a language.

– Turkish, English are languages.

Central Concepts of Automata Theory –

(Formal) Languages

BBM401 Automata Theory and Formal Languages 11

• A set-former is a common way to define a language

Set-former: {w | something about w}

{w | w consists of equal number of 0’s and 1’s}

{w | w is a binary integer that is prime}

Sometimes we replace w with an expression

{0n1n | n≥1}

{0i1j | 0 ≤ i ≤ j}

Set-Formers to Define Languages

BBM401 Automata Theory and Formal Languages 12

• In automata theory, a decision problem is the question of deciding whether a given

string is a member of a particular language.

• If  is an alphabet, and L is a language over  , then the decision problem is:

Given a string w in * , decide whether or not w is in L.

• In order to make decision requires some computational resources.

– Deciding whether a given string is a correct C identifier

– Deciding whether a given string is a syntactically correct C program.

• Some decision problems are simple, some others are harder.

• A decision question may require exponential resources in the size of its input.

• A decision question may be unsolvable.

Language – Decision Problem

BBM401 Automata Theory and Formal Languages 13

• Automata (singular Automaton) are abstract mathematical devices that can

– Determine membership in a language (set of strings)

– Transduce strings from one set to another

• They have all the aspects of a computer

– input and output

– memory

– ability to make decisions

– transform input to output

• Memory is crucial:

– Finite Memory

– Infinite Memory

Automata

BBM401 Automata Theory and Formal Languages 14

• We have different types of automata for different classes of languages.

– Finite State Automata (for regular languages)

– Pushdown Automata (for context-free languages)

– Turing Machines (for Turing recognizable languages - recursively enumerable

languages)

• Decision problem for Turing recognizable languages are solvable.

• There are languages that are not Turing recognizable, and the decision problem for them is

unsolvable.

• Automata differ in

– the amount of memory then have (finite vs infinite)

– what kind of access to the memory they allow.

• Automata can behave deterministically or non-deterministically

– For a deterministic automaton, there is only one possible alternative at any point, and it

can only pick that one and proceed.

– A non-deterministic automaton can at any point, among possible next steps, pick one step

and proceed.

Automata

BBM401 Automata Theory and Formal Languages 15

• Finite automata are finite collections of states with transition rules that take you

from one state to another.

• A finite automaton has finite number of states.

• The purpose of a state is to remember the relevant portion of the history.

– Since there are only a finite number of states, the entire history cannot be

remembered.

• So the system must be designed carefully to remember what is important and

forget what is not.

– The advantage of having only a finite number of states is that we can implement

the system with a fixed set of resources.

Finite Automata

BBM401 Automata Theory and Formal Languages 16

In a finite automaton:

• States are represented by circles.

• Accepting (final) states are represented by

double circles.

• One of the states is a starting state.

• Arcs represent state transitions and labels on

arcs represent inputs (external influences)

causing transitions.

• The on/off switch remembers whether it is in the on-state or the off-state.

– It allows the user to press a button whose effect is different depending on the state of the switch.

A Simple Finite Automaton –

On/Off Switch

BBM401 Automata Theory and Formal Languages 17

off on
start

push

push

• A simple finite automaton to recognize the string “ilyas”

• The language of this finite state automaton is {ilyas}

A Simple Finite Automaton –

Recognizing A Word

BBM401 Automata Theory and Formal Languages 18

i
start i l

il ily
y ilya sa

ilyas

A Simple Finite Automaton –

Recognizing Strings Ending in “ing”

BBM401 Automata Theory and Formal Languages 19

nothing saw i
i

not i

saw ingg

i

not i or g

saw in
n

i

not i or n

start i

not i

• The language of this automaton is the set of all strings ending in “ing”.
• i.e. {ing, aing, bing, going, coming, inging, …}

BBM401 Automata Theory and Formal Languages 20

Formal Proofs

• When we study automata theory, we encounter theorems that we have to prove.

• There are different forms of proofs:

– Deductive Proofs

– Inductive Proofs

– Proof by Contradiction

– Proof by a counter example (disproof)

• To create a proof may NOT be so easy.

Formal Proofs

BBM401 Automata Theory and Formal Languages 21

• A deductive proof consists of a sequence of statement whose truth leads us from some

initial statement (hypothesis or given statements) to a conclusion statement.

• Each step of a deductive proof MUST follow from a given fact or previous statements

(or their combinations) by an accepted logical principle (inference rules).

– A logical principles guarantees that if its premises are correct(true), its conclusion is

correct (true) too.

premise1 … premisen Hypothesis

-------------------------------- Logical Principle

conclusion Conclusion

• The theorem that is proved when we go from a hypothesis H to a conclusion C is the

statement ’’if H then C’’. We say that C is deduced from H.

Deductive Proofs

BBM401 Automata Theory and Formal Languages 22

• Assume that the following theorem (initial statement) is given:

– Given Theorem. (initial statement): If x ≥ 4, then 2x ≥ x2

– We are not going to prove this theorem, we assume that it is true.

• If we want we can prove this theorem using proof by induction.

• Theorem to be proved:

If x is the sum of the squares of four positive integers, then 2x ≥ x2

Hypothesis Conclusion

Deductive Proofs
Example: Proof of a Theorem

BBM401 Automata Theory and Formal Languages 23

Proof of

If x is the sum of the squares of four positive integers, then 2x ≥ x2

Deductive Proofs
Example: Proof of a Theorem

BBM401 Automata Theory and Formal Languages 24

Statement Justification

1. If x ≥ 4, then 2x ≥ x2 Given theorem

2. x = a2 + b2 + c2 + d2 Given

3. a ≥ 1 b ≥ 1 c ≥ 1 d ≥ 1 Given

4. a2 ≥ 1 b2 ≥ 1 c2 ≥ 1 d2 ≥ 1 From (3) and principle of arithmetic

5. x ≥ 4 From (2), (4) and principle of arithmetic

6. 2x ≥ x2 From (1) and (5)

• Some times theorems contain if-and-only-if statements.

– A if and only if B

– A iff B

– A is equivalent to B

• In this case we have to prove in both directions. In order to prove A if and only if B,

we have to prove the following two statements:

1. If-Part: if B then A

2. Only-If-Part: if A then B

A Sample iff Theorem:

Let x be a real number. Then x = x if and only if x is an integer.

Remember: x is the floor of real number x is the greatest integer equal to or less than x

x is the ceiling of real number x is the least integer equal to or greater than x

If-And-Only-If Statements

BBM401 Automata Theory and Formal Languages 25

If-Part:

• Given that x is an integer.

• By definitions of ceiling and floor operations. x = x and x = x

• Thus, x = x .

Only-If-Part:

• Given that x = x

• By definitions of ceiling and floor operations. x ≤ x and x ≥ x

• Since given that x = x, x ≤ x and x ≥ x

• By the properties of arithmetic inequalities, x = x

• Since x is always an integer, x MUST be integer too. 

Proof of an iff Theorem
Let x be a real number. Then x = x if and only if x is an integer.

BBM401 Automata Theory and Formal Languages 26

• An inductive proof has three parts:

– Basis

– Inductive Hypothesis

– Inductive Step (induction)

• Basis can be one case or more than one case.

Inductive Proofs

BBM401 Automata Theory and Formal Languages 27

Proof : (by induction on n)

Basis: n = 1 1=1

Inductive Hypothesis: Suppose that for some k ≥ 1.

Inductive Step (Induction): We have to show that

Inductive Proofs -- Theorem: for all n≥1

BBM401 Automata Theory and Formal Languages 28

2

)1(

1






nn
i

n

i

2

)11(11

1




i

i

2

)1(

1






kk
i

k

i

2

)2)(1(1

1








kk
i

k

i

)1(
1

1

1








kii
k

i

k

i

)1(
2

)1(



 k

kk

2

)1(2)1(


kkk

2

)2)(1(


kk

by the inductive hypothesis

2

)1(

1






nn
i

n

i

It follows that for all n ≥ 1. □

• We need to prove statements about recursively defined structures.

• Like inductions all recursive definitions have

– A basis case: one or more elementary structures are defined

– An inductive step: complex structures are defined in terms of previously defined structures.

A recursive definition of a non-empty tree:

• A single node is a non-empty tree and that node is the root of that tree.

• If T1,T2,…,Tk are non-empty trees (k≥1) and N is a new node, the a new non-empty

tree T can be created using new node N, new k edges and T1,T2,…,Tk as follows:

where N is the root of the tree

Structural Inductions

BBM401 Automata Theory and Formal Languages 29

• Let |V| be the number nodes and |E| be the number of edges of a non-empty tree T.

Theorem: For a non-empty tree T, |V| = |E| + 1.

Proof: Structural induction on number of nodes.

Basis: |V|=1 The tree contains only one node and no edges (|E|=0). Thus 1=0+1.

Inductive Hypothesis: Suppose that for a non-empty tree T with m nodes where 1≤m≤n, |V|=|E|+1

Induction: Let T be a non-empty tree with n+1 nodes. T must be created as follows:

Each of trees T1,…,Tk must contain nodes less than or equal to n.

So, we can apply IH to each of trees T1,…,Tk. Thus, |V1|=|E1|+1 … |Vk|=|Ek|+1

For T, |V| = |V1|+…+ |Vk|+1 |E| = |E1|+…+ |Ek|+k

|V| = |V1|+…+ |Vk|+1 = |E1|+1+…+ |Ek|+1+1 by IH

= |E1|+…+ |Ek|+k+1 = |E| + 1 □

Structural Inductions

BBM401 Automata Theory and Formal Languages 30

• In order to prove two sets are equal (S = T), we have to prove that

1. If x is a member of S, then x is also a member of T (S  T), and

2. If x is a member of T, than x is also a member of S (T  S),

Theorem: R  (S  T) = (R  S)  (R  T)

We have to show that

1. If x is in R  (S  T) , than x is in (R  S)  (R  T), and

2. If x is in (R  S)  (R  T), than x is in R  (S  T)

Proving Equivalences about Sets

BBM401 Automata Theory and Formal Languages 31

Proof of If-Part:

Proof of R  (S  T) = (R  S)  (R  T)

BBM401 Automata Theory and Formal Languages 32

Statement Justification

1. x is in R  (S  T) Given

2. x is in R or x is in (S  T) (1) and definition union

3. x is in R or x is in both S and T (2) and definition of intersection

4. x is in (R  S) (3) and definition of union

5. x is in (R  T) (3) and definition of union

6. x is in (R  S)  (R  T) (4), (5) and definition of intersection

• Proof of Only-If-Part:

Proof of R  (S  T) = (R  S)  (R  T)

BBM401 Automata Theory and Formal Languages 33

Statement Justification

1. x is in (R  S)  (R  T) Given

2. x is in (R  S) (1) and definition intersection

3. x is in (R  T) (1) and definition of intersection

4. x is in R or x is in both S and T (2), (3) and reasoning about unions

5. x is in R or x is in (S  T) (4) and definition of intersection

6. x is in R  (S  T) (5) and definition of union

• Another way to prove a statement of the form “if H then C” is to prove the statement.

“H and not C implies falsehood”

• In order create the proof:

– Start by assuming both the hypothesis H and the negation of the conclusion C.

– Complete the proof by showing that something known to be false follows logically

from H and not C

– Then, conclude C

• This form of proof is called proof by contradiction.

Proof by Contradiction

BBM401 Automata Theory and Formal Languages 34

