Automata Theory and Formal Languages

Introduction to Automata Theory

- What is Automata Theory?
- Central Concepts of Automata Theory
- Formal Proofs

What is Automata Theory?

Automata Theory

- Automata theory is the study of abstract *computing devices (machines)*.
- In 1930s, **Turing** studied an abstract machine (*Turing machine*) that had all the capabilities of today's computers.
 - Turing's goal was to describe precisely the boundary between what *a computing machine could do and what it could not do.*
- In 1940s and 1950s, simpler kinds of machines (finite automata) were studied.
 - **Chomsky** began the study of **formal grammars** that have close relationships to abstract automata and serve today as the basis of some important software components.

Why Study Automata?

- Automata theory is the *core of computer science*.
- Automata theory presents many useful models for software and hardware.
 - In compilers we use finite automata for lexical analyzers, and push down automatons for parsers.
 - In search engines, we use finite automata to determine tokens in web pages.
 - Finite automata model protocols, electronic circuits.
 - Context-free grammars are used to describe the syntax of essentially every programming language.
 - Automata theory offers many useful models for natural language processing.
- When developing solutions to real problems, we often confront the *limitations of what software can do*.
 - Undecidable things no program whatever can do it.
 - Intractable things there are programs, but no fast programs.

Automata, Computability and Complexity

• Automata, Computability and Complexity are linked by the question:

- "What are the fundamental capabilities and limitations of computers?"

- In **complexity theory**, the objective is to classify problems *as easy problems* and *hard problems*.
- In **computability theory**, the objective is to classify problems as **solvable problems** and non-solvable problems.
 - Computability theory introduces several of the concepts used in complexity theory.
- Automata theory deals with the definitions and properties of mathematical models of computation.
 - Finite automata are used in text processing, compilers, and hardware design.
 - Context—free grammars are used in programming languages and artificial intelligence.
 - Turing machines represent computable functions.

Central Concepts of Automata Theory

Central Concepts of Automata Theory - Alphabets

- An **alphabet** is a finite, non empty set of symbols.
- We use the symbol Σ for an alphabet.
- $\Sigma = \{0,1\}$ binary alphabet
- $\sum = \{a, b, c, \dots, z\}$ lowercase letters
- The set of ASCII characters is an alphabet.

Central Concepts of Automata Theory - Strings

- A string is a sequence of symbols chosen from some alphabet.
- A string sometimes is called as **word**.
- 01101 is a string from the alphabet $\Sigma = \{0,1\}$.
 - Some other strings: 11, 010, 1, 0
- The empty string, denoted as ε , is a string of zero occurrences of symbols.
- Length of string: number of symbols in the string

 $- |ab| = 2 |b| = 1 |\varepsilon| = 0$

Central Concepts of Automata Theory - Strings

Powers of an alphabet:

- If \sum is an alphabet, the set of all strings of a certain length from the alphabet by using an exponential notation.
- \sum^{k} is the set of strings of length k from \sum .
- Let $\Sigma = \{0,1\}$. $\Sigma^0 = \{\epsilon\}$ $\Sigma^1 = \{0,1\}$ $\Sigma^2 = \{00,01,10,11\}$
- The set of all strings over an alphabet is denoted by Σ^* .

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$$

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots$$
 - set of nonempty strings

Concatenation of strings

- If x and y are strings xy represents their concatenations.
- If $\mathbf{x} = \mathbf{abc}$ and $\mathbf{y} = \mathbf{de}$ then $\mathbf{xy} = \mathbf{abcde}$

Central Concepts of Automata Theory – (Formal) Languages

- A set of strings that are chosen from \sum^* is called as a **language**.
- If Σ is an alphabet, and $\mathbf{L} \subseteq \Sigma^*$, then L is a **language** over Σ .
- A language over Σ may not include strings with all symbols of Σ .
- Some Languages:
 - The language of all strings consisting of n 0's followed by n 1' for some n≥0: {ε, 01, 00111, 000111, ...}
 - $-\sum^*$ is a language
 - Empty set is a language. The empty language is denoted by Φ .
 - The set $\{\epsilon\}$ is a language, $\{\epsilon\}$ is not equal to the empty language.
 - The set of all identifiers in a programming language is a language.
 - The set of all syntactically correct C programs is a language.
 - Turkish, English are languages.

Set-Formers to Define Languages

A set-former is a common way to define a language
 Set-former: {w | something about w}

```
{w | w consists of equal number of 0's and 1's}{w | w is a binary integer that is prime}
```

Sometimes we replace w with an expression

 $\{0^{n}1^{n} \mid n \ge 1\}$ $\{0^{i}1^{j} \mid 0 \le i \le j\}$

Language – Decision Problem

- In automata theory, a **decision problem** is the question of deciding whether a given string is a member of a particular language.
- If ∑ is an alphabet, and L is a language over ∑, then the decision problem is: Given a string w in ∑^{*}, decide whether or not w is in L.
- In order to make decision requires some computational resources.
 - Deciding whether a given string is a correct C identifier
 - Deciding whether a given string is a syntactically correct C program.
- Some decision problems are simple, some others are harder.
- A decision question may *require exponential resources in the size of its input.*
- A decision question may be *unsolvable*.

Automata

- Automata (singular Automaton) are abstract mathematical devices that can
 - Determine membership in a language (set of strings)
 - Transduce strings from one set to another
- They have all the aspects of a computer
 - input and output
 - memory
 - ability to make decisions
 - transform input to output
- Memory is crucial:
 - Finite Memory
 - Infinite Memory

Automata

- We have different types of automata for different classes of languages.
 - Finite State Automata (for *regular languages*)
 - Pushdown Automata (for context-free languages)
 - Turing Machines (for Turing recognizable languages recursively enumerable languages)
 - Decision problem for Turing recognizable languages are solvable.
 - There are languages that are not Turing recognizable, and the decision problem for them is unsolvable.
- Automata differ in
 - the amount of memory then have (finite vs infinite)
 - what kind of access to the memory they allow.
- Automata can behave **deterministically** or **non-deterministically**
 - For a **deterministic automaton**, there is only one possible alternative at any point, and it can only pick that one and proceed.
 - A **non-deterministic automaton** can at any point, among possible next steps, pick one step and proceed.

Finite Automata

- Finite automata are *finite collections of states with transition rules* that take you from one state to another.
- A finite automaton has finite number of states.
- The *purpose of a state* is to remember the relevant portion of the history.
 - Since there are only a *finite number of states*, the entire history cannot be remembered.
 - So the system must be designed carefully to remember what is important and forget what is not.
 - The advantage of having only a finite number of states is that we can implement the system with a fixed set of resources.

A Simple Finite Automaton – On/Off Switch

In a **finite automaton**:

- States are represented by circles.
- Accepting (final) states are represented by double circles.
- One of the states is a starting state.
- Arcs represent state transitions and labels on arcs represent inputs (external influences) causing transitions.
- The on/off switch remembers whether it is in the on-state or the off-state.
 - It allows the user to press a button whose effect is different depending on the state of the switch.

A Simple Finite Automaton – Recognizing A Word

• A simple finite automaton to recognize the string "ilyas"

• The language of this finite state automaton is {ilyas}

A Simple Finite Automaton – Recognizing Strings Ending in "ing"

- The language of this automaton is the set of all strings ending in "ing".
 - i.e. {ing, aing, bing, going, coming, inging, ...}

Formal Proofs

Formal Proofs

- When we study automata theory, we encounter theorems that we have to prove.
- There are different forms of proofs:
 - Deductive Proofs
 - Inductive Proofs
 - Proof by Contradiction
 - Proof by a counter example (disproof)
- To create a proof may NOT be so easy.

Deductive Proofs

- A **deductive proof** consists of a sequence of statement whose truth leads us from some *initial statement* (hypothesis or given statements) to a *conclusion statement*.
- Each step of a deductive proof MUST follow from a given fact or previous statements (or their combinations) by an accepted **logical principle (inference rules)**.
 - A logical principles guarantees that if its **premises** are correct(true), its **conclusion** is correct (true) too.

premise ₁ premise _n	Hypothesis
Logical Principle	
conclusion	Conclusion

• The theorem that is proved when we go from a hypothesis H to a conclusion C is the statement **"if H then C"**. We say that C is deduced from H.

Deductive Proofs *Example: Proof of a Theorem*

- Assume that the following theorem (initial statement) is given:
 - Given Theorem. (initial statement): If $x \ge 4$, then $2^x \ge x^2$
 - We are not going to prove this theorem, we assume that it is true.
 - If we want we can prove this theorem using proof by induction.
- Theorem to be proved:

Deductive Proofs

Example: Proof of a Theorem

Proof of

If x is the sum of the squares of four positive integers, then $2^x \ge x^2$

Statement	Justification
1. If $x \ge 4$, then $2^x \ge x^2$	Given theorem
2. $x = a^2 + b^2 + c^2 + d^2$	Given
3. $a \ge 1$ $b \ge 1$ $c \ge 1$ $d \ge 1$	Given
4. $a^2 \ge 1$ $b^2 \ge 1$ $c^2 \ge 1$ $d^2 \ge 1$	From (3) and principle of arithmetic
5. $x \ge 4$	From (2), (4) and principle of arithmetic
6. $2^{x} \ge x^{2}$	From (1) and (5)

If-And-Only-If Statements

- Some times theorems contain **if-and-only-if** statements.
 - A if and only if B
 - A iff B
 - A is equivalent to B
- In this case we have to prove in both directions. In order to prove **A if and only if B**, we have to prove the following two statements:
 - 1. If-Part: if B then A
 - 2. Only-If-Part: if A then B

A Sample iff Theorem:

Let x be a real number. Then $\lfloor x \rfloor = \lceil x \rceil$ if and only if x is an integer. Remember: $\lfloor x \rfloor$ is the *floor* of real number x is the greatest integer equal to or less than x $\lceil x \rceil$ is the *ceiling* of real number x is the least integer equal to or greater than x

Proof of an iff Theorem Let x be a real number. Then $\lfloor x \rfloor = \lceil x \rceil$ if and only if x is an integer.

If-Part:

- Given that x is an integer.
- By definitions of ceiling and floor operations. $\lfloor x \rfloor = x$ and $\lceil x \rceil = x$
- Thus, $\lfloor x \rfloor = \lceil x \rceil$.

Only-If-Part:

- Given that $\lfloor x \rfloor = \lceil x \rceil$
- By definitions of ceiling and floor operations. $\lfloor x \rfloor \le x$ and $\lceil x \rceil \ge x$
- Since given that $\lfloor x \rfloor = \lceil x \rceil$, $\lceil x \rceil \le x$ and $\lceil x \rceil \ge x$
- By the properties of arithmetic inequalities, $\lceil x \rceil = x$
- Since $\lceil x \rceil$ is always an integer, x MUST be integer too. \Box

Inductive Proofs

- An **inductive proof** has three parts:
 - Basis
 - Inductive Hypothesis
 - Inductive Step (induction)
- Basis can be one case or more than one case.

Inductive Proofs -- Theorem: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ for all $n \ge 1$

Proof : (by induction on n)

Basis: n = 1 $\sum_{i=1}^{1} i = \frac{1(1+1)}{2}$ 1=1 **Inductive Hypothesis:** Suppose that $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ for some $k \ge 1$. **Inductive Step (Induction):** We have to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1) \quad \text{by the inductive hypothesis}$$

$$= \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$
It follows that
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{for all } n \ge 1. \quad \Box$$

BBM401 Automata Theory and Formal Languages

Structural Inductions

- We need to prove statements about *recursively defined structures*.
- Like *inductions* all **recursive definitions** have
 - A basis case: one or more elementary structures are defined
 - An inductive step: complex structures are defined in terms of previously defined structures.

A recursive definition of a non-empty tree:

- A single node is a non-empty tree and that node is the root of that tree.
- If $T_1, T_2, ..., T_k$ are non-empty trees (k ≥ 1) and N is a new node, the a new non-empty tree T can be created using new node N, new k edges and $T_1, T_2, ..., T_k$ as follows:

where N is the root of the tree

Structural Inductions

Let |V| be the number nodes and |E| be the number of edges of a non-empty tree T. ٠

Theorem: For a non-empty tree T, |V| = |E| + 1.

Proof: Structural induction on number of nodes.

Basis: |V|=1 The tree contains only one node and no edges (|E|=0). Thus 1=0+1.

Inductive Hypothesis: Suppose that for a non-empty tree T with m nodes where $1 \le m \le n$, |V| = |E| + 1**Induction:** Let T be a non-empty tree with n+1 nodes. T must be created as follows:

Each of trees T_1, \ldots, T_k must contain nodes less than or equal to n. So, we can apply IH to each of trees T_1, \dots, T_k . Thus, $|V_1| = |E_1| + 1 \dots |V_k| = |E_k| + 1$ For T, $|V| = |V_1| + \dots + |V_k| + 1$ $|E| = |E_1| + \dots + |E_k| + k$

 $|\mathbf{V}| = |\mathbf{V}_1| + \ldots + |\mathbf{V}_k| + 1 = |\mathbf{E}_1| + 1 + \ldots + |\mathbf{E}_k| + 1 + 1$ by IH $= |E_1| + \ldots + |E_k| + k + 1 = |E| + 1$

Proving Equivalences about Sets

- In order to prove two sets are equal (S = T), we have to prove that
 - 1. If x is a member of S, then x is also a member of T (S \subseteq T), and
 - 2. If x is a member of T, than x is also a member of S $(T \subseteq S)$,

Theorem: $R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$

We have to show that

- 1. If x is in $R \cup (S \cap T)$, than x is in $(R \cup S) \cap (R \cup T)$, and
- 2. If x is in $(R \cup S) \cap (R \cup T)$, than x is in $R \cup (S \cap T)$

Proof of $\mathbf{R} \cup (\mathbf{S} \cap \mathbf{T}) = (\mathbf{R} \cup \mathbf{S}) \cap (\mathbf{R} \cup \mathbf{T})$

Proof of If-Part:

	Statement	Justification
1.	x is in R \cup (S \cap T)	Given
2.	x is in R or x is in ($S \cap T$)	(1) and definition union
3.	x is in R or x is in both S and T	(2) and definition of intersection
4.	x is in $(R \cup S)$	(3) and definition of union
5.	x is in (R \cup T)	(3) and definition of union
6.	x is in $(R \cup S) \cap (R \cup T)$	(4), (5) and definition of intersection

Proof of $\mathbf{R} \cup (\mathbf{S} \cap \mathbf{T}) = (\mathbf{R} \cup \mathbf{S}) \cap (\mathbf{R} \cup \mathbf{T})$

• Proof of Only-If-Part:

	Statement	Justification
1.	x is in $(R \cup S) \cap (R \cup T)$	Given
2.	x is in $(R \cup S)$	(1) and definition intersection
3.	x is in (R \cup T)	(1) and definition of intersection
4.	x is in R or x is in both S and T	(2), (3) and reasoning about unions
5.	x is in R or x is in ($S \cap T$)	(4) and definition of intersection
6.	x is in $R \cup (S \cap T)$	(5) and definition of union

Proof by Contradiction

- Another way to prove a statement of the form "if H then C" is to prove the statement.
 "H and not C implies falsehood"
- In order create the proof:
 - Start by assuming both the hypothesis H and the negation of the conclusion C.
 - Complete the proof by showing that something known to be **false** follows logically from **H** and **not** C
 - Then, conclude C
- This form of proof is called **proof by contradiction**.