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Introduction to Automata Theory

• What is Automata Theory?

• Central Concepts of Automata Theory

• Formal Proofs
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What is Automata Theory?



• Automata theory is the study of abstract computing devices (machines).

• In 1930s, Turing studied an abstract machine (Turing machine) that had all the 

capabilities of today’s computers.

– Turing’s goal was to describe precisely the boundary between what a computing machine 

could do and what it could not do.

• In 1940s and 1950s, simpler kinds of machines (finite automata) were studied.

– Chomsky began the study of formal grammars that have close relationships to abstract 

automata and serve today as the basis of some important software components.

Automata Theory
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• Automata theory is the core of computer science.

• Automata theory presents many useful models for software and hardware.

– In compilers we use finite automata for lexical analyzers, and push down 

automatons for parsers.

– In search engines, we use finite automata to determine tokens in web pages.

– Finite automata model protocols, electronic circuits.

– Context-free grammars are used to describe the syntax of essentially every 

programming language.

– Automata theory offers many useful models for natural language processing.

• When developing solutions to real problems, we often confront the limitations of what 

software can do.

– Undecidable things – no program whatever can do it.

– Intractable things – there are programs, but no fast programs.

Why Study Automata?
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• Automata, Computability and Complexity are linked by the question:

– “What are the fundamental capabilities and limitations of computers?”

• In complexity theory, the objective is to classify problems as easy problems and

hard problems.

• In computability theory, the objective is to classify problems as solvable problems

and non-solvable problems. 

– Computability theory introduces several of the concepts used in complexity theory.

• Automata theory deals with the definitions and properties of mathematical models of 

computation.

– Finite automata are used in text processing, compilers, and hardware design.

– Context–free grammars are used in programming languages and artificial 

intelligence.

– Turing machines represent computable functions.

Automata, Computability and Complexity
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Central Concepts of Automata Theory



• An alphabet is a finite, non empty set of symbols.

• We use the symbol  for an alphabet.

•  = {0,1}    - binary alphabet

•  = {a,b,c,…,z}    - lowercase letters

• The set of ASCII characters is an alphabet.

Central Concepts of Automata Theory - Alphabets
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• A string is a sequence of symbols chosen from some alphabet.

• A string sometimes is called as word.

• 01101 is a string from the alphabet   = {0,1}.  

– Some other strings:  11, 010,  1,   0

• The empty string, denoted as  , is a string of zero occurrences of symbols.

• Length of string:  number of symbols in the string

– |ab| = 2     |b| = 1      || = 0

Central Concepts of Automata Theory - Strings
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Powers of an alphabet:

• If  is an alphabet, the set of all strings of  a certain length from the alphabet by using 

an exponential notation.

• k is the set of strings of length k from .

• Let   = {0,1}. 0 = {} 1 = {0,1} 2 = {00,01,10,11}

• The set of all strings over an alphabet is denoted by *.

* = 0 ∪ 1 ∪ 2 ∪ …

+ = 1 ∪ 2 ∪ … - set of nonempty strings

Concatenation of strings

• If x and y are strings xy represents their concatenations.

• If x = abc and y = de then  xy = abcde

Central Concepts of Automata Theory - Strings
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• A set of strings that are chosen from * is called as a language.

• If  is an alphabet, and  L ⊆ * , then L is a language over .

• A language over  may not include strings with all symbols of .

• Some Languages:

– The language of all strings consisting of n 0’s followed by n 1’ for some  n≥0 : {, 01, 

0011, 000111, …}

– * is a language

– Empty set is a language. The empty language is denoted by .

– The set {} is a language, {} is not equal to the empty language.

– The set of all identifiers in a programming language is a language.

– The set of all syntactically correct C programs is a language.

– Turkish, English are languages.

Central Concepts of Automata Theory –

(Formal) Languages
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• A set-former is a common way to define a language

Set-former:    {w | something about w}

{w | w consists of equal number of 0’s and 1’s}

{w | w is a binary integer that is prime}

Sometimes we replace w with an expression

{0n1n | n≥1}

{0i1j | 0 ≤ i ≤ j}

Set-Formers to Define Languages
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• In automata theory, a decision problem is the question of deciding whether a given 

string is a member of a particular language.

• If  is an alphabet, and L is a language over  , then the decision problem is:  

Given a string w in * , decide whether or not w is in L.

• In order to make decision requires some computational resources.

– Deciding whether a given string is a correct C identifier

– Deciding whether a given string is a syntactically correct C program.

• Some decision problems are simple, some others are harder.

• A decision question may require exponential resources in the size of its input.

• A decision question may be unsolvable.

Language – Decision Problem
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• Automata (singular Automaton) are abstract mathematical devices that can

– Determine membership in a language (set of strings)

– Transduce strings from one set to another

• They have all the aspects of a computer

– input and output

– memory

– ability to make decisions

– transform input to output

• Memory is crucial:

– Finite Memory

– Infinite Memory

Automata
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• We have different types of automata for different classes of languages.

– Finite State Automata (for regular languages)

– Pushdown Automata (for context-free languages)

– Turing Machines (for Turing recognizable languages - recursively enumerable 

languages)

• Decision problem for Turing recognizable languages are solvable.

• There are languages that are not Turing recognizable, and the decision problem for them is 

unsolvable.

• Automata differ in

– the amount of memory then have (finite vs infinite)

– what kind of access to the memory they allow.

• Automata can behave deterministically or non-deterministically

– For a deterministic automaton, there is only one possible alternative at any point, and it 

can only pick that one and proceed.

– A non-deterministic automaton can at any point, among possible next steps, pick one step 

and proceed.

Automata
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• Finite automata are finite collections of states with transition rules that take you 

from one state to another.

• A finite automaton has finite number of states.

• The purpose of a state is to remember the relevant portion of the history.

– Since there are only a finite number of states, the entire history cannot be 

remembered.

• So the system must be designed carefully to remember what is important and 

forget what is not.

– The advantage of having only a finite number of states is that we can implement 

the system with a fixed set of resources.

Finite Automata 
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In a finite automaton:

• States are represented by circles. 

• Accepting (final) states are represented by 

double circles.

• One of the states is a starting state.

• Arcs represent state transitions and labels on 

arcs represent inputs (external influences) 

causing transitions.

• The on/off switch remembers whether it is in the on-state or the off-state.

– It allows the user to press a button whose effect is different depending on the state of the switch.

A Simple Finite Automaton –

On/Off Switch
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• A simple finite automaton to recognize the string  “ilyas”

• The language of this finite state automaton is {ilyas}

A Simple Finite Automaton –

Recognizing A Word
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A Simple Finite Automaton –

Recognizing Strings Ending in “ing”
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nothing saw i
i

not i

saw ingg

i

not i or g

saw in
n

i
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start i

not i

• The language of this automaton is the set of all strings ending in “ing”.
• i.e. {ing, aing, bing, going, coming, inging, …}
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Formal Proofs



• When we study automata theory, we encounter theorems that we have to prove.

• There are different forms of proofs:

– Deductive Proofs

– Inductive Proofs

– Proof by Contradiction

– Proof by a counter example (disproof)

• To create a proof may NOT be so easy.

Formal Proofs
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• A deductive proof consists of a sequence of statement whose truth leads us from some 

initial statement (hypothesis or given statements) to a conclusion statement.

• Each step of a deductive proof MUST follow from a given fact or previous statements 

(or their combinations) by an accepted logical principle (inference rules).

– A logical principles guarantees that if its premises are correct(true), its conclusion is 

correct (true) too.

premise1 …   premisen Hypothesis

-------------------------------- Logical Principle

conclusion Conclusion

• The theorem that is proved when we go from a hypothesis H to a conclusion C is the 

statement ’’if H then C’’. We say that C is deduced from H.

Deductive Proofs
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• Assume that the following theorem (initial statement) is given:

– Given Theorem. (initial statement): If x  ≥ 4, then 2x ≥ x2

– We are not going to prove this theorem, we assume that it is true.

• If we want we can prove this theorem using proof by induction.

• Theorem to be proved:

If x is the sum of the squares of four positive integers, then 2x ≥ x2

Hypothesis Conclusion

Deductive Proofs
Example: Proof of a Theorem
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Proof of

If x is the sum of the squares of four positive integers, then 2x ≥ x2

Deductive Proofs
Example: Proof of a Theorem
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Statement Justification

1. If x  ≥ 4, then 2x ≥ x2 Given theorem

2. x = a2 + b2 + c2 + d2 Given

3. a ≥ 1     b ≥ 1     c ≥ 1     d ≥ 1 Given

4. a2 ≥ 1    b2 ≥ 1   c2 ≥ 1    d2 ≥ 1 From (3) and principle of arithmetic

5. x ≥ 4 From (2), (4) and principle of arithmetic

6. 2x ≥ x2 From (1) and (5)



• Some times theorems contain if-and-only-if statements.

– A if and only if  B

– A iff B 

– A is equivalent to B

• In this case we have to prove in both directions. In order to prove A if and only if  B, 

we have to prove the following two statements:

1. If-Part:  if B then A

2. Only-If-Part: if A then B

A Sample iff Theorem:

Let x be a real number.  Then  x = x if and only if  x is an integer.

Remember: x is the floor of real number x is the greatest integer equal to or less than x

x is the ceiling of real number x is the least integer equal to or greater than x

If-And-Only-If Statements
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If-Part:

• Given that x is an integer.

• By definitions of ceiling and floor operations. x = x   and  x = x

• Thus, x = x .

Only-If-Part:

• Given that  x = x

• By definitions of ceiling and floor operations.  x ≤ x   and  x ≥ x

• Since given that  x = x,     x ≤ x   and  x ≥ x

• By the properties of arithmetic inequalities, x = x 

• Since x is always an integer, x MUST be integer too.  

Proof of an iff Theorem
Let x be a real number. Then x = x if and only if x is an integer.
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• An inductive proof has three parts:

– Basis

– Inductive Hypothesis

– Inductive Step (induction)

• Basis can be one case  or more than one case.

Inductive Proofs
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Proof : (by induction on n)

Basis:  n = 1 1=1

Inductive Hypothesis:   Suppose that                             for some k ≥ 1.

Inductive Step (Induction): We have to show that 

Inductive Proofs -- Theorem:          for all n≥1  
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It follows that                                  for all n ≥ 1.     □



• We need to prove statements about recursively defined structures. 

• Like inductions all recursive definitions have 

– A basis case: one or more elementary structures are defined

– An inductive step: complex structures are defined in terms of previously defined structures.

A recursive definition of a non-empty tree:

• A single node is a non-empty tree and  that node is the root of that tree.

• If T1,T2,…,Tk are non-empty trees (k≥1) and N is a new node, the a new non-empty 

tree T can be created using new node N, new k edges and T1,T2,…,Tk as follows:

where N is the root of the tree

Structural Inductions
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• Let |V| be the number nodes and |E| be the number of edges of a non-empty tree T.

Theorem: For a non-empty tree T, |V| = |E| + 1.

Proof: Structural induction on number of nodes.

Basis: |V|=1  The tree contains only one node and no edges (|E|=0). Thus 1=0+1.

Inductive Hypothesis: Suppose that for a non-empty tree T with m nodes where 1≤m≤n, |V|=|E|+1

Induction: Let T be a non-empty tree with n+1 nodes. T must be created as follows:

Each of trees T1,…,Tk must contain nodes less than or equal to n.

So, we can apply IH to each of trees T1,…,Tk. Thus, |V1|=|E1|+1  … |Vk|=|Ek|+1 

For T,   |V| = |V1|+…+ |Vk|+1 |E| = |E1|+…+ |Ek|+k 

|V| = |V1|+…+ |Vk|+1 = |E1|+1+…+ |Ek|+1+1   by IH 

= |E1|+…+ |Ek|+k+1  = |E| + 1 □

Structural Inductions
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• In order to prove two sets are equal ( S = T ), we have to prove that

1. If x is a member of S, then x is also a member of T   (S  T), and

2. If x is a member of T, than x is also a member of S  (T  S), 

Theorem:    R  ( S  T) = (R  S)  (R  T)

We have to show that

1. If x is in R  ( S  T) , than x is in (R  S)  (R  T), and

2. If x is in (R  S)  (R  T), than x is in R  ( S  T) 

Proving Equivalences about Sets
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Proof of If-Part: 

Proof of R  ( S  T) = (R  S)  (R  T)
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Statement Justification

1. x is in R  ( S  T) Given

2. x is in R  or  x is in ( S  T) (1) and definition union

3. x is in R  or  x is in both S and T (2) and definition of intersection

4. x is in (R  S) (3) and definition of union

5. x is in (R  T) (3) and definition of union

6. x is in (R  S)  (R  T) (4), (5) and definition of intersection



• Proof of Only-If-Part: 

Proof of R  ( S  T) = (R  S)  (R  T)
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Statement Justification

1. x is in (R  S)  (R  T) Given

2. x is in (R  S) (1) and definition intersection

3. x is in (R  T) (1) and definition of intersection

4. x is in R  or  x is in both S and T (2), (3) and reasoning about unions

5. x is in R  or  x is in ( S  T) (4) and definition of intersection

6. x is in R  ( S  T) (5) and definition of union



• Another way to prove a statement of the form “if H then C” is to prove the statement.

“H and not C implies falsehood”

• In order create the proof:

– Start by assuming both the hypothesis H and the negation of the conclusion C.

– Complete the proof by showing that something known to be false follows logically 

from H and not C

– Then, conclude C

• This form of proof is called proof by contradiction.

Proof by Contradiction
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