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Regular Expressions and

Regular Languages

• Regular Expressions

• Converting Regular Expressions to NFA

• Converting Finite Automata to Regular 

Expressions

• Algebraic Laws for Regular Expressions



• We used Finite Automata to describe regular languages.

• We can also use regular expressions to describe regular languages.

• Regular Expressions are an algebraic way to describe languages.

• Regular Expressions describe exactly the regular languages.

• If E is a regular expression, then L(E) is the regular language that it defines.

• For each regular expression E, we can create a DFA A  such that L(E) = L(A).

• For each a DFA A, we can create a regular expression E such that L(A) = L(E)

• A regular expression is built up of simpler regular expressions (using defining rules)

Regular Expressions
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• Remember: A language is a set of strings

• We can perform operations on languages.

Union: L ∪ M = { w :  w ∈ L  or w ∈ M }

Concatenation: L.M = { w :  w=xy,  x ∈ L, y ∈ M }

Powers: L0 = { 𝛆 } ,      L1 = L ,    Lk+1 = L. Lk

Kleene Closure: L* 𝒊=𝟎ڂ  =
∞ Li

Operations on Languages
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L = {00,11} M = {1,01,11}

L ∪ M = {00,11,1,01}

L.M = {001,0001,0011,111,1101,1111}

L0 = {}  L1= L ={00,11} L2={0000,0011,1100,1111}

L*={, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011, ...}

Kleene closures of all languages (except two of them) are infinite.

1. ϕ* = {}* = {}

2. {}* = {}

Operations on Languages - Examples
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Regular expressions over alphabet 

Reg. Expr. E Language it denotes L(E)

Basis 1: 𝛟 { }

Basis 2:  {}

Basis 3: a   {a}

Note: 

{a} is the language containing one string, and that string is of length 1.

Regular Expressions - Definition
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Induction 1 – or (union):  If E1 and E2 are regular expressions, then E1+E2 is a regular 

expression,  and L(E1+E2) = L(E1)∪L(E2).

– Sipser’s book use union symbol ∪ to represent or operator instead of +. Some people also 

use bar symbol | to represent or operator.

Induction 2 – concatenation: If E1 and E2 are regular expressions, then E1E2 is a regular 

expression, and L(E1E2) = L(E1).L(E2) where L(E1).L(E2) is the set of strings wx such 

that w is in L(E1) and x is in L(E2).

Induction 3 – Kleene Closure: If E is a regular expression, then E* is a regular 

expression, and L(E*) = (L(E))*.

Induction 4 – Parentheses: If E is a regular expression, then  (E) is a regular expression, 

and  L((E)) = L(E).

Regular Expressions - Definition
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• Parentheses may be used wherever needed to influence the grouping of operators.

• We may remove parentheses by using precedence  and associativity rules.

Operator Precedence Associativity

*   highest

concatenation next left associative

+ lowest left associative

ab*+c    means     (a((b)*))+(c) 

Regular Expressions - Parentheses 
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Alphabet  = {0,1}

Regular Expression: 01

– L(01) = {01} L(01) = L(0) L(1) ={0}{1}={01}

Regular Expression: 01+0

– L(01+0) = {01, 0} L(01+0)  = L(01) ∪ L(0) = (L(0) L(1)) ∪ L(0)

= ({0}{1}) ∪ {0} = {01} ∪{0} = {01,0}

Regular Expression: 0(1+0) 

– L(0(1+0)) = {01, 00} L(0(1+0)) = L(0) L(1+0) = L(0) (L(1) ∪ L(0))

= {0} ({1} ∪ {0}) = {0} {1,0} = {01,00}

– Note order of precedence of operators.

Regular Expressions - Examples
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Alphabet  = {0,1}

Regular Expression: 0*

– L(0*) = {ε, 0, 00, 000,… } = all strings of 0’s, including the empty string

Regular Expression: (0+10)*(ε+1) 

– L((0+10)*(ε+1)) =  all strings of 0’s and 1’s without two consecutive 1’s.

Regular Expression: (0+1)(0+1) 

– L((0+1)(0+1) ) = {00,01,10,11} = all strings of 0’s and 1’s of length 2.

Regular Expression: (0+1)*

– L((0+1)*) =  all strings with 0 and 1, including the empty string

Regular Expressions  -- Examples
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Language: All strings of 0’s and 1’s starting with 0 and ending with 1

0(0+1)*1

Language: All strings of 0’s and 1’s with at least two consecutive 0’s

(0+1)*00 (0+1)*

Language: All strings of 0’s and 1’s without two consecutive 0’s

((1+01)*(ε+0))

Language: All strings of 0’s and 1’s with even number of 0’s

1*(01*01*)*

Regular Expressions

for Given Regular Languages -- Examples
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Converting Regular Expressions to NFA



• For every regular expression there is a finite automaton.

• We will give an algorithm which converts a given regular expression to a NFA.

• We have already discussed how to convert a NFA to a DFA using subset construction.

• Thus, there is a NFA for each regular expression and their languages are equivalent.

• And, there is a DFA for each regular expression and their languages are equivalent.

Regular Expression   NFA   DFA

NFA construction algorithm subset construction algorithm

Converting Regular Expressions to NFA
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Theorem: Every language defined by a regular expression is also defined by a finite 

automaton.

• This theorem says that every language represented by a regular expression is a 

regular language (i.e. There is a DFA which recognizes that language)

• In the proof of this theorem, we will create a NFA which recognizes the language of a 

given regular expression. This means that any language represented by a regular 

expressions can be recognized by a NFA.

– Previously, we show how to create an equivalent DFA for a given NFA.  This means that 

any language recognized by a NFA can be recognized by a DFA.

Regular Expressions NFA DFA Regular Languages

Regular Expressions Regular Languages

Converting Regular Expressions to NFA
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Theorem: Every language defined by a regular expression is also defined by a finite 

automaton.

Proof:

• Suppose that L(R) is the language of a regular expression R.

• A NFA construction for a regular expression: We show that for some NFA A 

whose language L(A) is equal to L(R), and this NFA A has following properties:

1. NFA A has exactly one accepting state.

2. No arcs into the initial state.

3. No arcs out of the accepting state.

• The proof is by structural induction on R following the recursive definition of  

regular expressions

Converting Regular Expressions to NFA
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There are 3 base cases.

a)  Regular Expression R = ε L(ε) = {ε}

NFA A: L(A) = {ε}

b)  Regular Expression R = 𝛟 L(𝛟) = {}

NFA A: L(A) = {}

c)  Regular Expression R = a   L(a) = {a}

NFA A: L(A) = {a}

Converting Regular Expressions to NFA

Basis
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Inductive Hypothesis: 

• We assume that the statement of the theorem is true for immediate subexpressions of a 

given regular expression; i.e. the languages of these subexpressions are also the 

languages of NFAs with a single accepting state.

Induction:

• There are four cases for the induction:

1. R + S

2. R S

3. R*

4. (R)

Converting Regular Expressions to NFA

Induction
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Regular Expression:   R + S L(R+S) = L(R) ∪ L(S)

NFA A:

– By IH, we have automaton R for regular expression R, and automaton S for regular 

expression S, and a new automaton for R+S is constructed as above.

– Starting at new start state, we can go to start states of automatons R or S.

– For some string in L(R) or L(S), we can reach accepting state of R or S.

– From there, we can reach accepting state of the new automaton by ε–transition.

• Thus,  L(A) = L(R) ∪ L(S)

Converting Regular Expressions to NFA

Induction Case:  R + S
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Regular Expression:   R S L(RS) = L(R) L(S)

NFA A:

– By IH, we have automaton R for regular expression R, and automaton S for regular 

expression S, and a new automaton for RS is constructed as above.

– Starting at starting state of R, we can reach accepting state of R by recognizing a string in 

L(R).

– From accepting state of R, we can reach starting state of S by ε–transition.

– From starting state of S, we can reach accepting state of S by recognizing a string in L(S).

– The accepting state of S is also the accepting state of the new automaton A.

• Thus,  L(A) = L(R) L(S)

Converting Regular Expressions to NFA

Induction Case:  R S
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Regular Expression:   R* L(R*) = (L(R))*

NFA A:

– By IH, we have automaton R for regular expression R, and a new automaton for R* is 

constructed as above.

– Starting at new starting state, we can reach new accepting state. ε is in (L(R))*.

– Starting at new starting state, we can reach starting state of R. From starting state of R, we 

can reach accepting state of R recognizing a string in L(R). We can repeat this one or more 

times by recognizing strings in L(R), L(R)L(R),….

Thus,  L(A) = (L(R))*

Converting Regular Expressions to NFA

Induction Case:  R*
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Regular Expression:   (R)

• By IH, we have automaton R for regular expression R, and a new automaton for (R) 

is same as the automaton of R.

• The automaton for R also serves as the automaton for (R) since the parentheses do 

not change the language defined by the expression.

Converting Regular Expressions to NFA

Induction Case:  (R)
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Automaton for 0:

Automaton for 1:

Automaton for 0+1:

Example: Convert   (0+1)*1(0+1)  to NFA
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Automaton for (0+1)*:

Example: Convert   (0+1)*1(0+1)  to NFA
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Automaton for (0+1)*1(0+1) :

Example: Convert   (0+1)*1(0+1)  to NFA
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Automaton for 1:

Automaton for (0+1)*:

Automaton for (0+1)*1:

Example: Convert   (0+1)*1  to NFA
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• Convert this NFA to a DFA using subset construction

Example: Conversion of NFA of (0+1)*1 to DFA
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Example: Conversion of NFA of (0+1)*1 to DFA
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E-CL(q0)={q0,q1,q2,q3,q7,q8}

E-CL({q4})={q4,q1,q2,q3,q6,q7,q8} E-CL({q5,q9})={q5,q9,q1,q2,q3,q6,q7,q8}

0

0

0

1
1

1
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Converting Finite Automata 

to Regular Expressions



Theorem:  If a language is regular, then it is described by a regular expression.

• In order to prove this theorem, we will create a regular expression for any given DFA 

and the language of this regular expression is equivalent to the language of that DFA.

– Since a regular language is described by a DFA, a regular language is also described by a 

regular expression.

Regular Languages           DFA          Regular Expressions 

Regular Languages            Regular Expressions

Converting DFA to Regular Expressions 

BBM401 Automata Theory and Formal Languages 28



• In order to create a regular expression which describes the language of the given 

DFA:

• First, we create a Generalized NFA (GNFA) from the given DFA

• A GNFA has generalized transitions and a generalization transition is a transition 

whose label is a regular expression.

• Then, we will iteratively eliminate states of the GNFA one by one, until only two 

states (start state and an accepting state) and a single generalized transition is left.

• The label of this single transition (a regular expression) will be the regular expression 

describes the language of the given DFA.

Converting DFA to Regular Expressions 
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• When a DFA has single symbols as transition labels:

– If we are in state p and the next input symbol matches a, go to state q.

• Now , look at a generalized transition:

– If we are in state p and a prefix of the remaining input matches the regular 

expression ab*+ba then go to state q.

– A generalization transition is a transition whose label is a regular expression.

Converting DFA to Regular Expressions 

Generalization Transitions 
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• A Generalized NFA (GNFA) is an NFA with generalized transitions.

• In fact, all standard DFA transitions with single symbols are generalized transitions 

with regular expressions of a single symbol!

Converting DFA to Regular Expressions 

Generalized NFA (GNFA)
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0



• Consider the following DFA.

• What will be the corresponding GNFA with two states (start state and an accepting 

state) with a single generalized transition.

– 0*1 takes the DFA from state p to q

– (0+10*1)* takes the DFA from q back to q

– So, 0*1(0+10*1)* represents all strings take the DFA from state p to q.

Converting DFA to Regular Expressions 

Generalized NFA (GNFA)
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p q1

0 0

1

p q0*1(0+10*1)*



• We will convert the given DFA to a GNFA in a special form. We will add two new 

states to a DFA:

– A new start state with an -transition to the original start state, but there will be 

no other transitions from any other state to this new start state.

– A new final state with an -transition from all the original final states, but there 

will be no other transitions from this new final state to any other state.

• If the label of the DFA is a single symbol, the corresponding label of the GNFA will 

be that single symbol:   0   0

• If  there are more than one symbol on the label of the DFA , the corresponding label of 

the GNFA will be union (OR)  of those symbols:   0,1   0+1

• The previous start and final states will be non-accepting states in this GNFA.

Converting DFA to GNFA
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DFA GNFA in a special form

Converting DFA to GNFA
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• We eliminate all states of the GNFA one-by-one leaving only the start state and the 

final state.

• When the GNFA is fully converted, the label of the only generalized transition is the 

regular expression for the language accepted by the original DFA.

Reducing A GNFA
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• Assume that our DFA has 3 states.

– Create a GNFA with 5 states in a special form.

– Eliminate a state on-by-one until we obtain a GNFA with two states (start state and final 

state).

– Label on the arc is the regular expression describing the language of the DFA.

Converting a DFA to a Regular Expression
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• Suppose we want to eliminate state qk, and qi and qj are two of the remaining states 

(i=j is possible; i.e. qi can be equal to qj).

• How can we modify the transition label between qi and qj to reflect the fact that qk will 

no longer be there?

– There are two paths between qi and qj

• Direct path with regular expression Rij

• Path via qk with the regular expression (Rik) (Rkk)* (Rkj)

Eliminating States
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qk

Rij

Rik Rkj
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• There are two paths between qi and qj

– Direct path with regular expression Rij

– Path via qk with the regular expression

(Rik) (Rkk)* (Rkj)

• After removing qk ,the new label would be

new (Rij) = (Rij) + (Rik) (Rkk)* (Rkj)

Eliminating States
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qi qj

qk

Rij

Rik Rkj

Rkk

qi qj

(Rij)+(Rik)(Rkk)*(Rkj)



Eliminating States
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• When we are eliminating a state q, we have to update labels of state pairs p and 

r such that there is a transition from p to q and there is a transition from q to r.

• p and r can be same state. 

• Missing arc labels are 𝛟

p r

q

0

1 0

1

1

Rpp = Rpp + Rpq (Rqq)* Rqp = ϕ + 1(1)* ϕ = 𝛟

Rpr = Rpr + Rpq (Rqq)* Rqr = 0 + 1(1)*0= 0+11*0

Rrr = Rrr + Rrq (Rqq)* Rqr = ϕ + 1(1)*0= 11*0

Rrp = Rrp + Rrq (Rqq)* Rqp = ϕ + 1(1)* ϕ = 𝛟

p r
0+11*0

11*0



𝛟* = 

* = 

(+R)* = R*

R = R = R  is the identity for concatenation.

𝛟R = R𝛟 = 𝛟 𝛟 is an annihilator for concatenation.

𝛟+R = R+𝛟 = R 𝛟 is the identity for union.

Some Simplification Rules 

for Regular Expressions
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A DFA

A GNFA in a special form:

Converting DFA to Regular Expressions: Example 
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C
1

0

S A B C F0

0

0

1

1 



new RSB = RSB + RSA (RAA)* RAB = ϕ +  (ϕ)* 0 = 0

Converting DFA to Regular Expressions: Example

Eliminate A
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S A B C F0

0

0

1

1 

S B C F0

0

0

1

1 



new RSC = RSC + RSB (RBB)* RBC = ϕ + 0 (0)* 1 = 00*1

new RCC = RCC + RCB (RBB)* RBC = 1 + 0 (0)* 1 = 1+00*1

Converting DFA to Regular Expressions: Example

Eliminate B

BBM401 Automata Theory and Formal Languages 43

S B C F0

0

0

1

1 

S C F
00*1 

1+00*1



new RSF = RSF + RSC (RCC)* RCF = ϕ + 00*1 (1+00*1)*  = 00*1 (1+00*1)* 

Thus, the regular expression is:   00*1 (1+00*1)*

Converting DFA to Regular Expressions: Example

Eliminate C
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S C F
00*1 

1+00*1

S F
00*1 (1+00*1)*



• A DFA

• A GNFA in a special form:

Converting DFA to Regular Expressions: Example 2
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RSF = RSF + RSA (RAA)* RAF = ϕ +  (0)*  = 0*

RSB = RSB + RSA (RAA)* RAB = ϕ +  (0)* 1 = 0*1

RBB = RBB + RBA (RAA)* RAB = ϕ + 0 (0)* 1 = 00*1

RBF = RBF + RBA (RAA)* RAF =  + 0 (0)*  =  + 00* = 0*

Converting DFA to Regular Expressions: Example 2

Eliminate A

BBM401 Automata Theory and Formal Languages 46

S A B F

0

0

1 



S B F
0*1

0*

00*1
0*



RSF = RSF + RSB (RBB)* RBF = 0*+ 0*1 (00*1)* 0* = 0*+0*1(00*1)* 0*

Thus, the regular expression is:   0*+0*1(00*1)*0*

Converting DFA to Regular Expressions: Example 2

Eliminate B
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S B F
0*1

0*

00*1

S F
0*+0*1(00*1)* 0*

0*



• We can use the conversion by state elimination algorithm for NFA too.

• First, we have to represent the given NFA as a GNFA.

– If the label is a single symbol, the label of the generalized automaton will be that 

single symbol.

• 0   0   

– If  there are more than one symbol, the label will be union (OR)  of those symbols.

• 0,1   0+1 0,1,  0+1+

Converting NFA to Regular Expressions by

Eliminating States
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Convert a NFA to a regular expression

Convert a NFA to a GNFA in a special form.

Converting NFA to Regular Expressions: Example
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S A B C F1

0+1

0+1  D0+1





RSB = RSB + RSA (RAA)* RAB = ϕ +  (0+1)* 1 = (0+1)*1

Converting NFA to Regular Expressions: Example

Eliminate A
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S A B C F1

0+1

0+1  D0+1



S B C F
(0+1)*1 0+1 

D0+1





RSC = RSC + RSB (RBB)* RBC = ϕ + (0+1)*1 (ϕ)* (0+1) = (0+1)*1(0+1)

Converting NFA to Regular Expressions: Example

Eliminate B
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S C F(0+1)*1(0+1) 
D0+1



S B C F
(0+1)*1 0+1 

D0+1
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RSD = RSD + RSC (RCC)* RCD = ϕ + (0+1)*1(0+1) (ϕ)* (0+1) = (0+1)*1(0+1)(0+1)

RSF = RSF + RSC (RCC)* RCF = ϕ + (0+1)*1(0+1) (ϕ)*  = (0+1)*1(0+1)

Converting NFA to Regular Expressions: Example

Eliminate C
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S F
(0+1)*1(0+1)(0+1) 

D

(0+1)*1(0+1)

S C F(0+1)*1(0+1) 
D0+1





RSF = RSF + RSD (RDD)* RDF = (0+1)*1(0+1) + (0+1)*1(0+1)(0+1) (ϕ)* 

= (0+1)*1(0+1) + (0+1)*1(0+1)(0+1)

Thus, the regular expression is:   (0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

Converting NFA to Regular Expressions: Example

Eliminate D
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S F(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

S F
(0+1)*1(0+1)(0+1) 

D

(0+1)*1(0+1)



DFA         Regular Expressions 

Regular Languages NFA

DFA Regular Expressions 

Regular Languages

Regular Languages, DFA, Regular Expressions
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Algebraic Laws for Regular Expressions
(or Algebraic Laws for Regular Languages)



• Two regular expressions were equivalent  iff they define the same language.

• Algebraic laws that bring to a higher level the issue of when two regular expressions 

are equivalent.

• Instead of examining specific regular expressions, we consider pairs of regular 

expressions with variables as arguments. 

• Two regular expressions with variables are equivalent if whatever languages we 

substitute for the variables, the results of the two expressions are the same language.

Algebraic Laws for Regular Expressions
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• Commutativity is the property of an operator that says we can switch the order of its 

operands and get the same result. 

• Associativity is the property of an operator that allows us to regroup the operands 

when the operator is applied twice. 

Commutative Law for Union: M ∪ N = N ∪ M

– we may take the union of two languages in either order.

Associative Law for Union: (M ∪ N) ∪ R  = M ∪ (N ∪ R)

– we may take the union of three languages either by taking the union of the first two initially 

or taking the union of the last two initially.

Associative Law for Concatenation: (M N) R  = M (N R)

– we can concatenate three languages by concatenating either first two or last two initially.

Concatenation is NOT commutative: MN  NM

Algebraic Laws for Languages –

Associativity and Commutativity 
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• An identity for an operator is a value such that when the operator is applied to the 

identity and some other value, the result is the other value.

• An annihilator for an operator is a value such that when the operator is applied to the 

annihilator and some other value, the result is the annihilator. 

•  is identity for union:  ∪ N = N ∪  = N

• {} is left and right identity for concatenation: {} N = N {} = N

•  is left and right annihilator for concatenation:  N = N  = 

Algebraic Laws for Languages –

Identities and Annihilators

BBM401 Automata Theory and Formal Languages 58



• A distributive law involves two operators, and asserts that one operator can be pushed 

down to be applied to each argument of the other operator individually. 

• Concatenation is left and right distributive over union:

R (M ∪ N)   = RM ∪ RN 

(M ∪ N) R   = MR ∪ NR 

• An operator is said to be idempotent if the result of applying it to two of the same 

values as arguments is that value. 

• Union is idempotent: M ∪ M   = M  

Algebraic Laws for Languages –

Distributive Law and Idempotent
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Languages Regular Expressions

*  = {} *  = 

{}* = {} * = 

L+ = LL* = L*L R+ = RR* = R*R

L* = L+ ∪ {} R* = R+ + 

L? = L ∪ {} R? = R + 

(L*)*   = L*  (R*)*   = R*  

Algebraic Laws for Languages –

Closure Laws
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• There is an infinite variety of  algebraic laws about regular expressions that might be 

proposed. 

• Methodology:  Exp1 = Exp2

– Replace each variable in the law (in Exp1 and Exp2) with unique symbols  to 

create concrete regular expressions, RE1 and RE2.

– Check the equality of the languages of RE1 and RE2,  ie. L(RE1) = L(RE2)

– Two regular languages are equal if their DFAs are equal.

Discovering Algebraic Laws for 

Regular Expressions 
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Law:    R(M+N) = RM + RN 

Replace R with a, M with b, and N with c.

 a(b+c) = ab + ac

Then, check whether L(a(b+c)) is equal to L(ab+ac)

If their languages are equal, the law is TRUE.

Since, L(a(b+c)) is equal to L(ab+ac) 

 R(M+N) = RM + RN    is a true algebraic law

Discovering Algebraic Laws for 

Regular Expressions - Example
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Law:    (M+N)* = (M*N*)*

Replace M with a, and N with b.

 (a+b)* = (a*b*)*

Then, check whether L((a+b)*) is equal to L((a*b*)*)

Since, L((a+b)*) is equal to L((a*b*)*) 

 (M+N)* = (M*N*)*  is  a true law

Discovering Algebraic Laws for 

Regular Expressions – Example2
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