Regular Expressions and Regular Languages

- Regular Expressions
- Converting Regular Expressions to NFA
- Converting Finite Automata to Regular Expressions
- Algebraic Laws for Regular Expressions

Regular Expressions

- We used **Finite Automata** to describe **regular languages**.
- We can also use **regular expressions** to describe **regular languages**.
- **Regular Expressions** are an algebraic way to describe languages.
- **Regular Expressions** describe exactly the **regular languages**.
- If E is a regular expression, then L(E) is the regular language that it defines.
- For each regular expression E, we can create a DFA A such that L(E) = L(A).
- For each a DFA A, we can create a regular expression E such that L(A) = L(E)
- A regular expression is built up of simpler regular expressions (using defining rules)

Operations on Languages

- Remember: A language is a set of strings
- We can perform operations on languages.

Union:	$\mathbf{L} \cup \mathbf{M} = \{ \mathbf{w} : \mathbf{w} \in \mathbf{L} \text{ or } \mathbf{w} \in \mathbf{M} \}$		
Concatenation:	$L.M = \{ w : w = xy, x \in L, y \in M \}$		
Powers:	$L^0 = \{ \epsilon \}, L^1 = L, L^{k+1} = L. L^k$		
Kleene Closure:	$\mathbf{L}^* = \bigcup_{i=0}^{\infty} \mathbf{L}^i$		

Operations on Languages - Examples

L = {00,11} $M = {1,01,11}$

$$\begin{split} L \cup M &= \{00,11,1,01\} \\ L.M &= \{001,0001,0011,111,1101,1111\} \\ L^0 &= \{\epsilon\} \qquad L^1 &= L = \{00,11\} \quad L^2 &= \{0000,0011,1100,1111\} \\ L^* &= \{\epsilon, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011, ...\} \end{split}$$

Kleene closures of all languages (except two of them) are infinite.

1.
$$\phi^* = \{\}^* = \{\epsilon\}$$

2. $\{\epsilon\}^* = \{\epsilon\}$

Regular Expressions - Definition

Regular expressions over alphabet Σ

	<u>Reg. Expr. E</u>	<u>Language it denotes L(E)</u>
Basis 1:	φ	{ }
Basis 2:	3	{3}
Basis 3:	$a \in \Sigma$	{a}

Note:

{a} is the language containing one string, and that string is of length 1.

Regular Expressions - Definition

Induction 1 – or (union): If E_1 and E_2 are regular expressions, then E_1+E_2 is a regular expression, and $L(E_1+E_2) = L(E_1) \cup L(E_2)$.

Sipser's book use union symbol U to represent or operator instead of +. Some people also use bar symbol | to represent or operator.

Induction 2 – concatenation: If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression, and $L(E_1E_2) = L(E_1).L(E_2)$ where $L(E_1).L(E_2)$ is the set of strings *wx* such that *w* is in $L(E_1)$ and *x* is in $L(E_2)$.

Induction 3 – Kleene Closure: If **E** is a regular expression, then E^* is a regular expression, and $L(E^*) = (L(E))^*$.

Induction 4 – Parentheses: If **E** is a regular expression, then (E) is a regular expression, and L((E)) = L(E).

Regular Expressions - Parentheses

- Parentheses may be used wherever needed to influence the grouping of operators.
- We may remove parentheses by using precedence and associativity rules.

<u>Operator</u>	<u>Precedence</u>	<u>Associativity</u>
*	highest	
concatenation	next	left associative
+	lowest	left associative

 ab^*+c means $(a((b)^*))+(c)$

Regular Expressions - Examples

Alphabet $\Sigma = \{0,1\}$

Regular Expression: 01

 $- L(01) = \{01\} \qquad L(01) = L(0) L(1) = \{0\}\{1\} = \{01\}$

Regular Expression: 01+0

 $- L(01+0) = \{01, 0\}$

 $L(01+0) = L(01) \cup L(0) = (L(0) L(1)) \cup L(0)$ $= (\{0\}\{1\}) \cup \{0\} = \{01\} \cup \{0\} = \{01,0\}$

Regular Expression: **0(1+0)**

 $- L(0(1+0)) = \{01, 00\} \qquad L(0(1+0)) = L(0) L(1+0) = L(0) (L(1) \cup L(0))$

 $= \{0\} (\{1\} \cup \{0\}) = \{0\} \{1,0\} = \{01,00\}$

- Note order of precedence of operators.

Regular Expressions -- Examples

Alphabet $\Sigma = \{0,1\}$

Regular Expression: **0***

- $L(0^*) = \{\varepsilon, 0, 00, 000, \dots\}$ = all strings of 0's, including the empty string

Regular Expression: (0+10)*(ε+1)

- $L((0+10)*(\varepsilon+1)) =$ all strings of 0's and 1's without two consecutive 1's.

Regular Expression: (0+1)(0+1)

 $- L((0+1)(0+1)) = \{00,01,10,11\} = all strings of 0's and 1's of length 2.$

Regular Expression: $(0+1)^*$

- $L((0+1)^*)$ = all strings with 0 and 1, including the empty string

Regular Expressions for Given Regular Languages -- Examples

Language: All strings of 0's and 1's starting with 0 and ending with 1 0(0+1)*1

Language: All strings of 0's and 1's with at least two consecutive 0's (0+1)*00 (0+1)*

Language: All strings of 0's and 1's without two consecutive 0's $((1+01)^*(\epsilon+0))$

Language: All strings of 0's and 1's with even number of 0's 1*(01*01*)*

- For every regular expression there is a finite automaton.
- We will give an algorithm which converts a given regular expression to a NFA.
- We have already discussed how to convert a NFA to a DFA using subset construction.
- Thus, there is a NFA for each regular expression and their languages are equivalent.
- And, there is a DFA for each regular expression and their languages are equivalent.

Theorem: Every language defined by a regular expression is also defined by a finite automaton.

- This theorem says that every language represented by a regular expression is a regular language (i.e. There is a DFA which recognizes that language)
- In the proof of this theorem, we will create a NFA which recognizes the language of a given regular expression. This means that any language represented by a regular expressions can be recognized by a NFA.
 - Previously, we show how to create an equivalent DFA for a given NFA. This means that any language recognized by a NFA can be recognized by a DFA.

Regular Expressions NFA DFA Regular Languages

Regular Expressions magnetized Regular Languages

Theorem: Every language defined by a regular expression is also defined by a finite automaton.

Proof:

- Suppose that L(R) is the language of a regular expression R.
- A NFA construction for a regular expression: We show that for some NFA A whose language L(A) is equal to L(R), and this NFA A has following properties:
 - 1. NFA A has exactly one accepting state.
 - 2. No arcs into the initial state.
 - 3. No arcs out of the accepting state.
- The **proof is by structural induction on R** following the recursive definition of regular expressions

There are 3 base cases.

- a) Regular Expression $R = \epsilon$ NFA A: ϵ C $L(\epsilon) = {\epsilon}$ L(A) = { ϵ }
- **b**) Regular Expression $\mathbf{R} = \boldsymbol{\phi}$

NFA A: - \bigcirc

 $L(\phi) = \{\}$ $L(A) = \{\}$

c) Regular Expression $\mathbf{R} = \mathbf{a} \in \Sigma$

NFA A: - a - 0

 $L(a) = \{a\}$

 $\mathbf{L}(\mathbf{A}) = \{\mathbf{a}\}$

Converting Regular Expressions to NFA Induction

Inductive Hypothesis:

• We assume that the statement of the theorem is true for immediate subexpressions of a given regular expression; i.e. the languages of these subexpressions are also the languages of NFAs with a single accepting state.

Induction:

- There are four cases for the induction:
 - 1. R + S
 - 2. R S
 - 3. R*
 - 4. (R)

Converting Regular Expressions to NFA Induction Case: R + S

 $L(R+S) = L(R) \cup L(S)$

- By IH, we have automaton R for regular expression R, and automaton S for regular expression S, and **a new automaton for R+S is constructed as above**.
- Starting at new start state, we can go to start states of automatons R or S.
- For some string in L(R) or L(S), we can reach accepting state of R or S.
- From there, we can reach *accepting state of the new automaton* by ε -transition.
- Thus, $L(A) = L(R) \cup L(S)$

Regular Expression: R + **S**

Converting Regular Expressions to NFA Induction Case: R S

Regular Expression: R S

 $\mathbf{L}(\mathbf{RS}) = \mathbf{L}(\mathbf{R}) \ \mathbf{L}(\mathbf{S})$

- By IH, we have automaton R for regular expression R, and automaton S for regular expression S, and **a new automaton for RS is constructed as above**.
- Starting at starting state of R, we can reach accepting state of R by recognizing a string in L(R).
- From accepting state of R, we can reach starting state of S by ε -transition.
- From starting state of S, we can reach accepting state of S by recognizing a string in L(S).
- The accepting state of S is also the accepting state of the new automaton A.
- Thus, L(A) = L(R) L(S)

Converting Regular Expressions to NFA Induction Case: R*

- By IH, we have automaton R for regular expression R, and **a new automaton for R* is constructed as above**.
- Starting at *new starting state*, we can reach *new accepting state*. ε is in (L(R))*.
- Starting at *new starting state*, we can reach *starting state of R*. From *starting state of R*, we can reach accepting state of R recognizing a string in L(R). We can repeat this one or more times by recognizing strings in L(R), L(R)L(R),....

Thus, $L(A) = (L(R))^*$

Converting Regular Expressions to NFA Induction Case: (R)

Regular Expression: (R)

- By IH, we have automaton R for regular expression R, and **a new automaton for (R)** is same as the automaton of **R**.
- The **automaton for R** also serves as the **automaton for (R)** since the parentheses do not change the language defined by the expression.

Example: Convert (0+1)*1(0+1) to NFA

Automaton for 1:

Automaton for **0+1**:

Example: Convert (0+1)*1(0+1) to NFA

Automaton for (0+1)*:

Example: Convert (0+1)*1(0+1) to NFA

Automaton for (0+1)*1(0+1):

Example: Convert (0+1)*1 to NFA

Example: Conversion of NFA of (0+1)*1 to DFA

• Convert this NFA to a DFA using subset construction

Example: Conversion of NFA of (0+1)*1 to DFA

Converting Finite Automata to Regular Expressions

Converting DFA to Regular Expressions

Theorem: If a language is regular, then it is described by a regular expression.

- In order to prove this theorem, we will create a regular expression for any given DFA and the language of this regular expression is equivalent to the language of that DFA.
 - Since a regular language is described by a DFA, a regular language is also described by a regular expression.

Regular Languages \implies **DFA** \implies **Regular Expressions**

Regular Languages A Regular Expressions

Converting DFA to Regular Expressions

- In order to create a *regular expression which describes the language of the given DFA*:
- First, we create a Generalized NFA (GNFA) from the given DFA
- A GNFA has **generalized transitions** and a **generalization transition** is a *transition whose label is a regular expression*.
- Then, we will iteratively eliminate states of the GNFA one by one, until only two states (start state and an accepting state) and a single generalized transition is left.
- The label of this single transition (a regular expression) will be the regular expression describes the language of the given DFA.

Converting DFA to Regular Expressions *Generalization Transitions*

• When a DFA has single symbols as transition labels:

- If we are in state **p** and the next input symbol matches **a**, go to state **q**.

• Now , look at a **generalized transition**:

- If we are in state p and a prefix of the remaining input matches the regular expression ab*+ba then go to state q.
- A generalization transition is a transition whose label is a regular expression.

Converting DFA to Regular Expressions *Generalized NFA (GNFA)*

- A Generalized NFA (GNFA) is an NFA with generalized transitions.
- In fact, all standard DFA transitions with single symbols are generalized transitions with regular expressions of a single symbol!

Converting DFA to Regular Expressions *Generalized NFA (GNFA)*

• Consider the following DFA.

- What will be the corresponding GNFA with two states (start state and an accepting state) with a single generalized transition.
 - **0*1** takes the DFA from state p to q
 - (0+10*1)* takes the DFA from q back to q
 - So, 0*1(0+10*1)* represents all strings take the DFA from state p to q.

Converting DFA to GNFA

- We will convert the given DFA to **a GNFA in a special form**. We will add two new states to a DFA:
 - A new start state with an ε-transition to the original start state, but there will be no other transitions from any other state to this new start state.
 - A new final state with an ε-transition from all the original final states, but there will be no other transitions from this new final state to any other state.
- If the label of the DFA is a single symbol, the corresponding label of the GNFA will be that single symbol: 0 → 0
- If there are more than one symbol on the label of the DFA, the corresponding label of the GNFA will be union (OR) of those symbols: 0,1 → 0+1
- The previous start and final states will be non-accepting states in this GNFA.

Converting DFA to GNFA

GNFA in a special form

Reducing A GNFA

• We eliminate all states of the GNFA one-by-one leaving only the start state and the final state.

• When the GNFA is fully converted, the label of the only generalized transition is the regular expression for the language accepted by the original DFA.

Converting a DFA to a Regular Expression

- Assume that our DFA has 3 states.
 - Create a GNFA with 5 states in a special form.
 - Eliminate a state on-by-one until we obtain a GNFA with two states (start state and final state).
 - Label on the arc is the regular expression describing the language of the DFA.

Eliminating States

Suppose we want to eliminate state q_k, and q_i and q_j are two of the remaining states (i=j is possible; i.e. q_i can be equal to q_j).

- How can we modify the transition label between q_i and q_j to reflect the fact that q_k will no longer be there?
 - There are two paths between \mathbf{q}_i and \mathbf{q}_j
 - Direct path with regular expression \mathbf{R}_{ij}
 - Path via $\mathbf{q}_{\mathbf{k}}$ with the regular expression $(\mathbf{R}_{\mathbf{ik}}) (\mathbf{R}_{\mathbf{kk}})^* (\mathbf{R}_{\mathbf{kj}})$

Eliminating States

- There are two paths between \mathbf{q}_i and \mathbf{q}_j
 - Direct path with regular expression \mathbf{R}_{ii}
 - Path via $\mathbf{q}_{\mathbf{k}}$ with the regular expression ($\mathbf{R}_{\mathbf{ik}}$) ($\mathbf{R}_{\mathbf{kk}}$)* ($\mathbf{R}_{\mathbf{kj}}$)

Eliminating States

- When we are eliminating a state q, we have to update labels of state pairs p and r such that there is a transition from p to q and there is a transition from q to r.
 - p and r can be same state.
- Missing arc labels are ϕ

Some Simplification Rules for Regular Expressions

 $\phi^* = \varepsilon$

3 = *3

 $(\epsilon + \mathbf{R})^* = \mathbf{R}^*$

- $\boldsymbol{\varepsilon} \mathbf{R} = \mathbf{R} \boldsymbol{\varepsilon} = \mathbf{R}$ $\boldsymbol{\varepsilon}$ is the identity for concatenation.
- $\phi \mathbf{R} = \mathbf{R} \phi = \phi$ ϕ is an annihilator for concatenation.
- $\phi + \mathbf{R} = \mathbf{R} + \phi = \mathbf{R}$ ϕ is the identity for union.

Converting DFA to Regular Expressions: Example

A DFA

A GNFA in a special form:

Converting DFA to Regular Expressions: Example Eliminate A

new $R_{SB} = R_{SB} + R_{SA} (R_{AA})^* R_{AB} = \phi + \varepsilon (\phi)^* 0 = 0$

Converting DFA to Regular Expressions: Example Eliminate B

new $R_{SC} = R_{SC} + R_{SB} (R_{BB})^* R_{BC} = \phi + 0 (0)^* 1 = 00^* 1$ new $R_{CC} = R_{CC} + R_{CB} (R_{BB})^* R_{BC} = 1 + 0 (0)^* 1 = 1 + 00^* 1$

Converting DFA to Regular Expressions: Example Eliminate C

new $R_{SF} = R_{SF} + R_{SC} (R_{CC})^* R_{CF} = \phi + 00^*1 (1+00^*1)^* \epsilon = 00^*1 (1+00^*1)^*$

Thus, the regular expression is: 00*1 (1+00*1)*

Converting DFA to Regular Expressions: Example 2

• A DFA

• A GNFA in a special form:

Converting DFA to Regular Expressions: Example 2 Eliminate A

 $\begin{aligned} R_{SF} &= R_{SF} + R_{SA} (R_{AA})^* R_{AF} = \phi + \varepsilon (0)^* \varepsilon = 0^* \\ R_{SB} &= R_{SB} + R_{SA} (R_{AA})^* R_{AB} = \phi + \varepsilon (0)^* 1 = 0^* 1 \\ R_{BB} &= R_{BB} + R_{BA} (R_{AA})^* R_{AB} = \phi + 0 (0)^* 1 = 00^* 1 \\ R_{BF} &= R_{BF} + R_{BA} (R_{AA})^* R_{AF} = \varepsilon + 0 (0)^* \varepsilon = \varepsilon + 00^* = 0^* \end{aligned}$

Converting DFA to Regular Expressions: Example 2 Eliminate B

 $R_{SF} = R_{SF} + R_{SB} (R_{BB}) * R_{BF} = 0* + 0*1 (00*1) * 0* = 0* + 0*1(00*1) * 0*$

Thus, the regular expression is: $0^{*}+0^{*}1(00^{*}1)^{*}0^{*}$

Converting NFA to Regular Expressions by Eliminating States

- We can use the conversion by state elimination algorithm for NFA too.
- First, we have to represent the given NFA as a GNFA.
 - If the label is a single symbol, the label of the generalized automaton will be that single symbol.
 - $\bullet \quad 0 \rightarrow 0 \qquad \qquad \varepsilon \rightarrow \varepsilon$
 - If there are more than one symbol, the label will be union (OR) of those symbols.
 - $0,1 \rightarrow 0+1$ $0,1,\epsilon \rightarrow 0+1+\epsilon$

Converting NFA to Regular Expressions: Example

Convert a NFA to a regular expression

Convert a NFA to a GNFA in a special form.

Converting NFA to Regular Expressions: Example Eliminate A

Converting NFA to Regular Expressions: Example Eliminate B

 $R_{SC} = R_{SC} + R_{SB} (R_{BB}) * R_{BC} = \phi + (0+1) * 1 (\phi) * (0+1) = (0+1) * 1(0+1)$

Converting NFA to Regular Expressions: Example Eliminate C

Converting NFA to Regular Expressions: Example Eliminate D

Thus, the regular expression is: (0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

Regular Languages, DFA, Regular Expressions

Algebraic Laws for Regular Expressions (or Algebraic Laws for Regular Languages)

Algebraic Laws for Regular Expressions

- Two regular expressions were equivalent iff they define the same language.
- Algebraic laws that bring to a higher level the issue of when two regular expressions are equivalent.
- Instead of examining specific regular expressions, we consider pairs of regular expressions with variables as arguments.
- Two regular expressions with variables are equivalent if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Algebraic Laws for Languages – *Associativity and Commutativity*

- **Commutativity** is the property of an operator that says we can switch the order of its operands and get the same result.
- Associativity is the property of an operator that allows us to regroup the operands when the operator is applied twice.

Commutative Law for Union: $\mathbf{M} \cup \mathbf{N} = \mathbf{N} \cup \mathbf{M}$

- we may take the union of two languages in either order.

Associative Law for Union: $(\mathbf{M} \cup \mathbf{N}) \cup \mathbf{R} = \mathbf{M} \cup (\mathbf{N} \cup \mathbf{R})$

 we may take the union of three languages either by taking the union of the first two initially or taking the union of the last two initially.

Associative Law for Concatenation: (M N) R = M (N R)

- we can concatenate three languages by concatenating either first two or last two initially.

Concatenation is NOT commutative: $MN \neq NM$

Algebraic Laws for Languages – *Identities and Annihilators*

- An **identity** for an operator is a value such that when the operator is applied to the identity and some other value, the result is the other value.
- An **annihilator** for an operator is a value such that when the operator is applied to the annihilator and some other value, the result is the annihilator.

- Φ is identity for union: $\Phi \cup N = N \cup \Phi = N$
- $\{\epsilon\}$ is left and right identity for concatenation: $\{\epsilon\} N = N \{\epsilon\} = N$
- Φ is left and right annihilator for concatenation: $\Phi N = N \Phi = \Phi$

Algebraic Laws for Languages – *Distributive Law and Idempotent*

- A **distributive law** involves two operators, and asserts that one operator can be pushed down to be applied to each argument of the other operator individually.
- Concatenation is left and right distributive over union:

 $\mathbf{R} (\mathbf{M} \cup \mathbf{N}) = \mathbf{R}\mathbf{M} \cup \mathbf{R}\mathbf{N}$ $(\mathbf{M} \cup \mathbf{N}) \mathbf{R} = \mathbf{M}\mathbf{R} \cup \mathbf{N}\mathbf{R}$

- An operator is said to be **idempotent** if the result of applying it to two of the same values as arguments is that value.
- Union is idempotent: $\mathbf{M} \cup \mathbf{M} = \mathbf{M}$

Algebraic Laws for Languages – Closure Laws

<u>Languages</u>	Regular Expressions
$\Phi^* = \{\epsilon\}$	$\Phi^* = \varepsilon$
$\{a\} = \{a\}$	$a = a^*$
$\mathbf{L}^{+} = \mathbf{L}\mathbf{L}^{*} = \mathbf{L}^{*}\mathbf{L}$	$\mathbf{R}^{+} = \mathbf{R}\mathbf{R}^{*} = \mathbf{R}^{*}\mathbf{R}$
$L^* = L^+ \cup \{\epsilon\}$	$\mathbf{R}^* = \mathbf{R}^+ + \mathbf{\epsilon}$
$L? = L \cup {\epsilon}$	$\mathbf{R?} = \mathbf{R} + \boldsymbol{\varepsilon}$
$(L^*)^* = L^*$	$({\bf R}^*)^* = {\bf R}^*$

Discovering Algebraic Laws for Regular Expressions

- There is an infinite variety of algebraic laws about regular expressions that might be proposed.
- **Methodology**: Exp1 = Exp2
 - Replace each *variable* in the law (in Exp1 and Exp2) with *unique symbols* to create concrete regular expressions, RE1 and RE2.
 - Check *the equality of the languages of RE1 and RE2*, ie. L(RE1) = L(RE2)
 - Two regular languages are equal if their DFAs are equal.

Discovering Algebraic Laws for Regular Expressions - Example

Law: R(M+N) = RM + RN

Replace R with a, M with b, and N with c.

 \Rightarrow a(b+c) = ab + ac

Then, check whether L(a(b+c)) is equal to L(ab+ac)

If their languages are equal, the law is TRUE.

Since, L(a(b+c)) is equal to L(ab+ac)

\Rightarrow R(M+N) = RM + RN is a true algebraic law

Discovering Algebraic Laws for Regular Expressions – Example2

Law: $(M+N)^* = (M^*N^*)^*$

Replace M with a, and N with b.

→ $(a+b)^* = (a^*b^*)^*$

Then, check whether L((a+b)*) is equal to L((a*b*)*)

Since, L((a+b)*) is equal to L((a*b*)*)

$$\rightarrow$$
 (M+N)* = (M*N*)* is a true law