
BBM401 Automata Theory and Formal Languages 1

Regular Expressions and

Regular Languages

• Regular Expressions

• Converting Regular Expressions to NFA

• Converting Finite Automata to Regular

Expressions

• Algebraic Laws for Regular Expressions

• We used Finite Automata to describe regular languages.

• We can also use regular expressions to describe regular languages.

• Regular Expressions are an algebraic way to describe languages.

• Regular Expressions describe exactly the regular languages.

• If E is a regular expression, then L(E) is the regular language that it defines.

• For each regular expression E, we can create a DFA A such that L(E) = L(A).

• For each a DFA A, we can create a regular expression E such that L(A) = L(E)

• A regular expression is built up of simpler regular expressions (using defining rules)

Regular Expressions

BBM401 Automata Theory and Formal Languages 2

• Remember: A language is a set of strings

• We can perform operations on languages.

Union: L ∪ M = { w : w ∈ L or w ∈ M }

Concatenation: L.M = { w : w=xy, x ∈ L, y ∈ M }

Powers: L0 = { 𝛆 } , L1 = L , Lk+1 = L. Lk

Kleene Closure: L* 𝒊=𝟎ڂ =
∞ Li

Operations on Languages

BBM401 Automata Theory and Formal Languages 3

L = {00,11} M = {1,01,11}

L ∪ M = {00,11,1,01}

L.M = {001,0001,0011,111,1101,1111}

L0 = {} L1= L ={00,11} L2={0000,0011,1100,1111}

L*={, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011, ...}

Kleene closures of all languages (except two of them) are infinite.

1. ϕ* = {}* = {}

2. {}* = {}

Operations on Languages - Examples

BBM401 Automata Theory and Formal Languages 4

Regular expressions over alphabet 

Reg. Expr. E Language it denotes L(E)

Basis 1: 𝛟 { }

Basis 2:  {}

Basis 3: a   {a}

Note:

{a} is the language containing one string, and that string is of length 1.

Regular Expressions - Definition

BBM401 Automata Theory and Formal Languages 5

Induction 1 – or (union): If E1 and E2 are regular expressions, then E1+E2 is a regular

expression, and L(E1+E2) = L(E1)∪L(E2).

– Sipser’s book use union symbol ∪ to represent or operator instead of +. Some people also

use bar symbol | to represent or operator.

Induction 2 – concatenation: If E1 and E2 are regular expressions, then E1E2 is a regular

expression, and L(E1E2) = L(E1).L(E2) where L(E1).L(E2) is the set of strings wx such

that w is in L(E1) and x is in L(E2).

Induction 3 – Kleene Closure: If E is a regular expression, then E* is a regular

expression, and L(E*) = (L(E))*.

Induction 4 – Parentheses: If E is a regular expression, then (E) is a regular expression,

and L((E)) = L(E).

Regular Expressions - Definition

BBM401 Automata Theory and Formal Languages 6

• Parentheses may be used wherever needed to influence the grouping of operators.

• We may remove parentheses by using precedence and associativity rules.

Operator Precedence Associativity

* highest

concatenation next left associative

+ lowest left associative

ab*+c means (a((b)*))+(c)

Regular Expressions - Parentheses

BBM401 Automata Theory and Formal Languages 7

Alphabet  = {0,1}

Regular Expression: 01

– L(01) = {01} L(01) = L(0) L(1) ={0}{1}={01}

Regular Expression: 01+0

– L(01+0) = {01, 0} L(01+0) = L(01) ∪ L(0) = (L(0) L(1)) ∪ L(0)

= ({0}{1}) ∪ {0} = {01} ∪{0} = {01,0}

Regular Expression: 0(1+0)

– L(0(1+0)) = {01, 00} L(0(1+0)) = L(0) L(1+0) = L(0) (L(1) ∪ L(0))

= {0} ({1} ∪ {0}) = {0} {1,0} = {01,00}

– Note order of precedence of operators.

Regular Expressions - Examples

BBM401 Automata Theory and Formal Languages 8

Alphabet  = {0,1}

Regular Expression: 0*

– L(0*) = {ε, 0, 00, 000,… } = all strings of 0’s, including the empty string

Regular Expression: (0+10)*(ε+1)

– L((0+10)*(ε+1)) = all strings of 0’s and 1’s without two consecutive 1’s.

Regular Expression: (0+1)(0+1)

– L((0+1)(0+1)) = {00,01,10,11} = all strings of 0’s and 1’s of length 2.

Regular Expression: (0+1)*

– L((0+1)*) = all strings with 0 and 1, including the empty string

Regular Expressions -- Examples

BBM401 Automata Theory and Formal Languages 9

Language: All strings of 0’s and 1’s starting with 0 and ending with 1

0(0+1)*1

Language: All strings of 0’s and 1’s with at least two consecutive 0’s

(0+1)*00 (0+1)*

Language: All strings of 0’s and 1’s without two consecutive 0’s

((1+01)*(ε+0))

Language: All strings of 0’s and 1’s with even number of 0’s

1*(01*01*)*

Regular Expressions

for Given Regular Languages -- Examples

BBM401 Automata Theory and Formal Languages 10

BBM401 Automata Theory and Formal Languages 11

Converting Regular Expressions to NFA

• For every regular expression there is a finite automaton.

• We will give an algorithm which converts a given regular expression to a NFA.

• We have already discussed how to convert a NFA to a DFA using subset construction.

• Thus, there is a NFA for each regular expression and their languages are equivalent.

• And, there is a DFA for each regular expression and their languages are equivalent.

Regular Expression  NFA  DFA

NFA construction algorithm subset construction algorithm

Converting Regular Expressions to NFA

BBM401 Automata Theory and Formal Languages 12

Theorem: Every language defined by a regular expression is also defined by a finite

automaton.

• This theorem says that every language represented by a regular expression is a

regular language (i.e. There is a DFA which recognizes that language)

• In the proof of this theorem, we will create a NFA which recognizes the language of a

given regular expression. This means that any language represented by a regular

expressions can be recognized by a NFA.

– Previously, we show how to create an equivalent DFA for a given NFA. This means that

any language recognized by a NFA can be recognized by a DFA.

Regular Expressions NFA DFA Regular Languages

Regular Expressions Regular Languages

Converting Regular Expressions to NFA

BBM401 Automata Theory and Formal Languages 13

Theorem: Every language defined by a regular expression is also defined by a finite

automaton.

Proof:

• Suppose that L(R) is the language of a regular expression R.

• A NFA construction for a regular expression: We show that for some NFA A

whose language L(A) is equal to L(R), and this NFA A has following properties:

1. NFA A has exactly one accepting state.

2. No arcs into the initial state.

3. No arcs out of the accepting state.

• The proof is by structural induction on R following the recursive definition of

regular expressions

Converting Regular Expressions to NFA

BBM401 Automata Theory and Formal Languages 14

There are 3 base cases.

a) Regular Expression R = ε L(ε) = {ε}

NFA A: L(A) = {ε}

b) Regular Expression R = 𝛟 L(𝛟) = {}

NFA A: L(A) = {}

c) Regular Expression R = a   L(a) = {a}

NFA A: L(A) = {a}

Converting Regular Expressions to NFA

Basis

BBM401 Automata Theory and Formal Languages 15

Inductive Hypothesis:

• We assume that the statement of the theorem is true for immediate subexpressions of a

given regular expression; i.e. the languages of these subexpressions are also the

languages of NFAs with a single accepting state.

Induction:

• There are four cases for the induction:

1. R + S

2. R S

3. R*

4. (R)

Converting Regular Expressions to NFA

Induction

BBM401 Automata Theory and Formal Languages 16

Regular Expression: R + S L(R+S) = L(R) ∪ L(S)

NFA A:

– By IH, we have automaton R for regular expression R, and automaton S for regular

expression S, and a new automaton for R+S is constructed as above.

– Starting at new start state, we can go to start states of automatons R or S.

– For some string in L(R) or L(S), we can reach accepting state of R or S.

– From there, we can reach accepting state of the new automaton by ε–transition.

• Thus, L(A) = L(R) ∪ L(S)

Converting Regular Expressions to NFA

Induction Case: R + S

BBM401 Automata Theory and Formal Languages 17

Regular Expression: R S L(RS) = L(R) L(S)

NFA A:

– By IH, we have automaton R for regular expression R, and automaton S for regular

expression S, and a new automaton for RS is constructed as above.

– Starting at starting state of R, we can reach accepting state of R by recognizing a string in

L(R).

– From accepting state of R, we can reach starting state of S by ε–transition.

– From starting state of S, we can reach accepting state of S by recognizing a string in L(S).

– The accepting state of S is also the accepting state of the new automaton A.

• Thus, L(A) = L(R) L(S)

Converting Regular Expressions to NFA

Induction Case: R S

BBM401 Automata Theory and Formal Languages 18

Regular Expression: R* L(R*) = (L(R))*

NFA A:

– By IH, we have automaton R for regular expression R, and a new automaton for R* is

constructed as above.

– Starting at new starting state, we can reach new accepting state. ε is in (L(R))*.

– Starting at new starting state, we can reach starting state of R. From starting state of R, we

can reach accepting state of R recognizing a string in L(R). We can repeat this one or more

times by recognizing strings in L(R), L(R)L(R),….

Thus, L(A) = (L(R))*

Converting Regular Expressions to NFA

Induction Case: R*

BBM401 Automata Theory and Formal Languages 19

Regular Expression: (R)

• By IH, we have automaton R for regular expression R, and a new automaton for (R)

is same as the automaton of R.

• The automaton for R also serves as the automaton for (R) since the parentheses do

not change the language defined by the expression.

Converting Regular Expressions to NFA

Induction Case: (R)

BBM401 Automata Theory and Formal Languages 20

Automaton for 0:

Automaton for 1:

Automaton for 0+1:

Example: Convert (0+1)*1(0+1) to NFA

BBM401 Automata Theory and Formal Languages 21

Automaton for (0+1)*:

Example: Convert (0+1)*1(0+1) to NFA

BBM401 Automata Theory and Formal Languages 22

Automaton for (0+1)*1(0+1) :

Example: Convert (0+1)*1(0+1) to NFA

BBM401 Automata Theory and Formal Languages 23

Automaton for 1:

Automaton for (0+1)*:

Automaton for (0+1)*1:

Example: Convert (0+1)*1 to NFA

BBM401 Automata Theory and Formal Languages 24

• Convert this NFA to a DFA using subset construction

Example: Conversion of NFA of (0+1)*1 to DFA

BBM401 Automata Theory and Formal Languages 25

q0
q9q8q7q6

q5

q4

q3

q2

q1

Example: Conversion of NFA of (0+1)*1 to DFA

BBM401 Automata Theory and Formal Languages 26

E-CL(q0)={q0,q1,q2,q3,q7,q8}

E-CL({q4})={q4,q1,q2,q3,q6,q7,q8} E-CL({q5,q9})={q5,q9,q1,q2,q3,q6,q7,q8}

0

0

0

1
1

1

BBM401 Automata Theory and Formal Languages 27

Converting Finite Automata

to Regular Expressions

Theorem: If a language is regular, then it is described by a regular expression.

• In order to prove this theorem, we will create a regular expression for any given DFA

and the language of this regular expression is equivalent to the language of that DFA.

– Since a regular language is described by a DFA, a regular language is also described by a

regular expression.

Regular Languages DFA Regular Expressions

Regular Languages Regular Expressions

Converting DFA to Regular Expressions

BBM401 Automata Theory and Formal Languages 28

• In order to create a regular expression which describes the language of the given

DFA:

• First, we create a Generalized NFA (GNFA) from the given DFA

• A GNFA has generalized transitions and a generalization transition is a transition

whose label is a regular expression.

• Then, we will iteratively eliminate states of the GNFA one by one, until only two

states (start state and an accepting state) and a single generalized transition is left.

• The label of this single transition (a regular expression) will be the regular expression

describes the language of the given DFA.

Converting DFA to Regular Expressions

BBM401 Automata Theory and Formal Languages 29

• When a DFA has single symbols as transition labels:

– If we are in state p and the next input symbol matches a, go to state q.

• Now , look at a generalized transition:

– If we are in state p and a prefix of the remaining input matches the regular

expression ab*+ba then go to state q.

– A generalization transition is a transition whose label is a regular expression.

Converting DFA to Regular Expressions

Generalization Transitions

BBM401 Automata Theory and Formal Languages 30

p qa

p qab*+ba

• A Generalized NFA (GNFA) is an NFA with generalized transitions.

• In fact, all standard DFA transitions with single symbols are generalized transitions

with regular expressions of a single symbol!

Converting DFA to Regular Expressions

Generalized NFA (GNFA)

BBM401 Automata Theory and Formal Languages 31

start

0
1

A B

0

C
1

0

• Consider the following DFA.

• What will be the corresponding GNFA with two states (start state and an accepting

state) with a single generalized transition.

– 0*1 takes the DFA from state p to q

– (0+10*1)* takes the DFA from q back to q

– So, 0*1(0+10*1)* represents all strings take the DFA from state p to q.

Converting DFA to Regular Expressions

Generalized NFA (GNFA)

BBM401 Automata Theory and Formal Languages 32

p q1

0 0

1

p q0*1(0+10*1)*

• We will convert the given DFA to a GNFA in a special form. We will add two new

states to a DFA:

– A new start state with an -transition to the original start state, but there will be

no other transitions from any other state to this new start state.

– A new final state with an -transition from all the original final states, but there

will be no other transitions from this new final state to any other state.

• If the label of the DFA is a single symbol, the corresponding label of the GNFA will

be that single symbol: 0  0

• If there are more than one symbol on the label of the DFA , the corresponding label of

the GNFA will be union (OR) of those symbols: 0,1  0+1

• The previous start and final states will be non-accepting states in this GNFA.

Converting DFA to GNFA

BBM401 Automata Theory and Formal Languages 33

DFA GNFA in a special form

Converting DFA to GNFA

BBM401 Automata Theory and Formal Languages 34

• We eliminate all states of the GNFA one-by-one leaving only the start state and the

final state.

• When the GNFA is fully converted, the label of the only generalized transition is the

regular expression for the language accepted by the original DFA.

Reducing A GNFA

BBM401 Automata Theory and Formal Languages 35

generalized

transition

GNFA
Reduced GNFA

• Assume that our DFA has 3 states.

– Create a GNFA with 5 states in a special form.

– Eliminate a state on-by-one until we obtain a GNFA with two states (start state and final

state).

– Label on the arc is the regular expression describing the language of the DFA.

Converting a DFA to a Regular Expression

BBM401 Automata Theory and Formal Languages 36

• Suppose we want to eliminate state qk, and qi and qj are two of the remaining states

(i=j is possible; i.e. qi can be equal to qj).

• How can we modify the transition label between qi and qj to reflect the fact that qk will

no longer be there?

– There are two paths between qi and qj

• Direct path with regular expression Rij

• Path via qk with the regular expression (Rik) (Rkk)* (Rkj)

Eliminating States

BBM401 Automata Theory and Formal Languages 37

qi qj

qk

Rij

Rik Rkj

Rkk

• There are two paths between qi and qj

– Direct path with regular expression Rij

– Path via qk with the regular expression

(Rik) (Rkk)* (Rkj)

• After removing qk ,the new label would be

new (Rij) = (Rij) + (Rik) (Rkk)* (Rkj)

Eliminating States

BBM401 Automata Theory and Formal Languages 38

qi qj

qk

Rij

Rik Rkj

Rkk

qi qj

(Rij)+(Rik)(Rkk)*(Rkj)

Eliminating States

BBM401 Automata Theory and Formal Languages 39

• When we are eliminating a state q, we have to update labels of state pairs p and

r such that there is a transition from p to q and there is a transition from q to r.

• p and r can be same state.

• Missing arc labels are 𝛟

p r

q

0

1 0

1

1

Rpp = Rpp + Rpq (Rqq)* Rqp = ϕ + 1(1)* ϕ = 𝛟

Rpr = Rpr + Rpq (Rqq)* Rqr = 0 + 1(1)*0= 0+11*0

Rrr = Rrr + Rrq (Rqq)* Rqr = ϕ + 1(1)*0= 11*0

Rrp = Rrp + Rrq (Rqq)* Rqp = ϕ + 1(1)* ϕ = 𝛟

p r
0+11*0

11*0

𝛟* = 

* = 

(+R)* = R*

R = R = R  is the identity for concatenation.

𝛟R = R𝛟 = 𝛟 𝛟 is an annihilator for concatenation.

𝛟+R = R+𝛟 = R 𝛟 is the identity for union.

Some Simplification Rules

for Regular Expressions

BBM401 Automata Theory and Formal Languages 40

A DFA

A GNFA in a special form:

Converting DFA to Regular Expressions: Example

BBM401 Automata Theory and Formal Languages 41

start

0
1

A B

0

C
1

0

S A B C F0

0

0

1

1 

new RSB = RSB + RSA (RAA)* RAB = ϕ +  (ϕ)* 0 = 0

Converting DFA to Regular Expressions: Example

Eliminate A

BBM401 Automata Theory and Formal Languages 42

S A B C F0

0

0

1

1 

S B C F0

0

0

1

1 

new RSC = RSC + RSB (RBB)* RBC = ϕ + 0 (0)* 1 = 00*1

new RCC = RCC + RCB (RBB)* RBC = 1 + 0 (0)* 1 = 1+00*1

Converting DFA to Regular Expressions: Example

Eliminate B

BBM401 Automata Theory and Formal Languages 43

S B C F0

0

0

1

1 

S C F
00*1 

1+00*1

new RSF = RSF + RSC (RCC)* RCF = ϕ + 00*1 (1+00*1)*  = 00*1 (1+00*1)*

Thus, the regular expression is: 00*1 (1+00*1)*

Converting DFA to Regular Expressions: Example

Eliminate C

BBM401 Automata Theory and Formal Languages 44

S C F
00*1 

1+00*1

S F
00*1 (1+00*1)*

• A DFA

• A GNFA in a special form:

Converting DFA to Regular Expressions: Example 2

BBM401 Automata Theory and Formal Languages 45

start

1

0

A B

0

S A B F

0

0

1 



RSF = RSF + RSA (RAA)* RAF = ϕ +  (0)*  = 0*

RSB = RSB + RSA (RAA)* RAB = ϕ +  (0)* 1 = 0*1

RBB = RBB + RBA (RAA)* RAB = ϕ + 0 (0)* 1 = 00*1

RBF = RBF + RBA (RAA)* RAF =  + 0 (0)*  =  + 00* = 0*

Converting DFA to Regular Expressions: Example 2

Eliminate A

BBM401 Automata Theory and Formal Languages 46

S A B F

0

0

1 



S B F
0*1

0*

00*1
0*

RSF = RSF + RSB (RBB)* RBF = 0*+ 0*1 (00*1)* 0* = 0*+0*1(00*1)* 0*

Thus, the regular expression is: 0*+0*1(00*1)*0*

Converting DFA to Regular Expressions: Example 2

Eliminate B

BBM401 Automata Theory and Formal Languages 47

S B F
0*1

0*

00*1

S F
0*+0*1(00*1)* 0*

0*

• We can use the conversion by state elimination algorithm for NFA too.

• First, we have to represent the given NFA as a GNFA.

– If the label is a single symbol, the label of the generalized automaton will be that

single symbol.

• 0  0   

– If there are more than one symbol, the label will be union (OR) of those symbols.

• 0,1  0+1 0,1,  0+1+

Converting NFA to Regular Expressions by

Eliminating States

BBM401 Automata Theory and Formal Languages 48

Convert a NFA to a regular expression

Convert a NFA to a GNFA in a special form.

Converting NFA to Regular Expressions: Example

BBM401 Automata Theory and Formal Languages 49

S A B C F1

0+1

0+1  D0+1



RSB = RSB + RSA (RAA)* RAB = ϕ +  (0+1)* 1 = (0+1)*1

Converting NFA to Regular Expressions: Example

Eliminate A

BBM401 Automata Theory and Formal Languages 50

S A B C F1

0+1

0+1  D0+1



S B C F
(0+1)*1 0+1 

D0+1



RSC = RSC + RSB (RBB)* RBC = ϕ + (0+1)*1 (ϕ)* (0+1) = (0+1)*1(0+1)

Converting NFA to Regular Expressions: Example

Eliminate B

BBM401 Automata Theory and Formal Languages 51

S C F(0+1)*1(0+1) 
D0+1



S B C F
(0+1)*1 0+1 

D0+1



RSD = RSD + RSC (RCC)* RCD = ϕ + (0+1)*1(0+1) (ϕ)* (0+1) = (0+1)*1(0+1)(0+1)

RSF = RSF + RSC (RCC)* RCF = ϕ + (0+1)*1(0+1) (ϕ)*  = (0+1)*1(0+1)

Converting NFA to Regular Expressions: Example

Eliminate C

BBM401 Automata Theory and Formal Languages 52

S F
(0+1)*1(0+1)(0+1) 

D

(0+1)*1(0+1)

S C F(0+1)*1(0+1) 
D0+1



RSF = RSF + RSD (RDD)* RDF = (0+1)*1(0+1) + (0+1)*1(0+1)(0+1) (ϕ)* 

= (0+1)*1(0+1) + (0+1)*1(0+1)(0+1)

Thus, the regular expression is: (0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

Converting NFA to Regular Expressions: Example

Eliminate D

BBM401 Automata Theory and Formal Languages 53

S F(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

S F
(0+1)*1(0+1)(0+1) 

D

(0+1)*1(0+1)

DFA Regular Expressions

Regular Languages NFA

DFA Regular Expressions

Regular Languages

Regular Languages, DFA, Regular Expressions

BBM401 Automata Theory and Formal Languages 54

BBM401 Automata Theory and Formal Languages 55

Algebraic Laws for Regular Expressions
(or Algebraic Laws for Regular Languages)

• Two regular expressions were equivalent iff they define the same language.

• Algebraic laws that bring to a higher level the issue of when two regular expressions

are equivalent.

• Instead of examining specific regular expressions, we consider pairs of regular

expressions with variables as arguments.

• Two regular expressions with variables are equivalent if whatever languages we

substitute for the variables, the results of the two expressions are the same language.

Algebraic Laws for Regular Expressions

BBM401 Automata Theory and Formal Languages 56

• Commutativity is the property of an operator that says we can switch the order of its

operands and get the same result.

• Associativity is the property of an operator that allows us to regroup the operands

when the operator is applied twice.

Commutative Law for Union: M ∪ N = N ∪ M

– we may take the union of two languages in either order.

Associative Law for Union: (M ∪ N) ∪ R = M ∪ (N ∪ R)

– we may take the union of three languages either by taking the union of the first two initially

or taking the union of the last two initially.

Associative Law for Concatenation: (M N) R = M (N R)

– we can concatenate three languages by concatenating either first two or last two initially.

Concatenation is NOT commutative: MN  NM

Algebraic Laws for Languages –

Associativity and Commutativity

BBM401 Automata Theory and Formal Languages 57

• An identity for an operator is a value such that when the operator is applied to the

identity and some other value, the result is the other value.

• An annihilator for an operator is a value such that when the operator is applied to the

annihilator and some other value, the result is the annihilator.

•  is identity for union:  ∪ N = N ∪  = N

• {} is left and right identity for concatenation: {} N = N {} = N

•  is left and right annihilator for concatenation:  N = N  = 

Algebraic Laws for Languages –

Identities and Annihilators

BBM401 Automata Theory and Formal Languages 58

• A distributive law involves two operators, and asserts that one operator can be pushed

down to be applied to each argument of the other operator individually.

• Concatenation is left and right distributive over union:

R (M ∪ N) = RM ∪ RN

(M ∪ N) R = MR ∪ NR

• An operator is said to be idempotent if the result of applying it to two of the same

values as arguments is that value.

• Union is idempotent: M ∪ M = M

Algebraic Laws for Languages –

Distributive Law and Idempotent

BBM401 Automata Theory and Formal Languages 59

Languages Regular Expressions

* = {} * = 

{}* = {} * = 

L+ = LL* = L*L R+ = RR* = R*R

L* = L+ ∪ {} R* = R+ + 

L? = L ∪ {} R? = R + 

(L*)* = L* (R*)* = R*

Algebraic Laws for Languages –

Closure Laws

BBM401 Automata Theory and Formal Languages 60

• There is an infinite variety of algebraic laws about regular expressions that might be

proposed.

• Methodology: Exp1 = Exp2

– Replace each variable in the law (in Exp1 and Exp2) with unique symbols to

create concrete regular expressions, RE1 and RE2.

– Check the equality of the languages of RE1 and RE2, ie. L(RE1) = L(RE2)

– Two regular languages are equal if their DFAs are equal.

Discovering Algebraic Laws for

Regular Expressions

BBM401 Automata Theory and Formal Languages 61

Law: R(M+N) = RM + RN

Replace R with a, M with b, and N with c.

 a(b+c) = ab + ac

Then, check whether L(a(b+c)) is equal to L(ab+ac)

If their languages are equal, the law is TRUE.

Since, L(a(b+c)) is equal to L(ab+ac)

 R(M+N) = RM + RN is a true algebraic law

Discovering Algebraic Laws for

Regular Expressions - Example

BBM401 Automata Theory and Formal Languages 62

Law: (M+N)* = (M*N*)*

Replace M with a, and N with b.

 (a+b)* = (a*b*)*

Then, check whether L((a+b)*) is equal to L((a*b*)*)

Since, L((a+b)*) is equal to L((a*b*)*)

 (M+N)* = (M*N*)* is a true law

Discovering Algebraic Laws for

Regular Expressions – Example2

BBM401 Automata Theory and Formal Languages 63

