
BBM401 Automata Theory and Formal Languages 1

Properties of

Regular Languages

• Minimization and Equivalence of Automata

• Closure Properties of Regular Languages

• Decision Properties of Regular Languages

• The Pumping Lemma for Regular Languages

BBM401 Automata Theory and Formal Languages 2

Minimization and Equivalence of Automata

• Every DFA defines a regular language

• In general, there can be many DFAs for a given regular language.

• These DFAs accept the same regular language.

– Language: The set of strings of 0’s and 1’s containing even number of 1’s

• In practice, we are interested in the DFA with the minimal number of states.
– Use less memory

– Use less hardware (flip-flops)

• We can find a minimal DFA for any given DFA and their languages are equal.

DFA Minimization

BBM401 Automata Theory and Formal Languages 3

0 0
1

1

0 0
1

1

1
0

A minimal DFA

• Let A = (Q,,,q0,F) be a DFA, and {p,q} Q, we say that p and q are

indistinguishable (equivalent) states if:

for all w∈* 𝛅(p,w)F iff 𝛅(q,w)F

• This means that for all w∈*

– 𝛅(p,w)F iff 𝛅(q,w)F and

– 𝛅(p,w)∉F iff 𝛅(q,w)∉F

• Two indistinguishable states behave same for all possible strings.

• Hence, a state p is distinguishable from state q if there is at least one string w such

that either 𝛅(p,w)F or 𝛅(q,w)F and the other is NOT.

– There exists a string w such that

(𝛅(p,w)F a𝐧𝐝 𝛅 (q,w)∉ F) OR (𝛅(p,w)∉F and 𝛅(q,w)F)

Indistinguishable States

BBM401 Automata Theory and Formal Languages 4

• Indistinguishable states behave the same for all possible strings.

– So, we do not need all of states from a set of indistinguishable states.

– We can eliminate all of them by keeping only one of them to represent that set of

indistinguishable states.

• Indistinguishability is an equivalence relation:

– Reflexive: Each state is indistinguishable from itself

– Symmetric: If p is indistinguishable from q, then q is indistinguishable from p

– Transitive: If p is indistinguishable from q, and q is indistinguishable from r, then

p is indistinguishable from r.

Indistinguishable States

BBM401 Automata Theory and Formal Languages 5

• An equivalence relation on a set of states Q induces a partitioning 1, 2,…,k such

that:

– For all different i and j, i∩j= and

– 𝐢=𝟏ڂ
𝐤 𝛑𝐢 = 𝐐

Indistinguishable States

BBM401 Automata Theory and Formal Languages 6

• We can compute distinguishable states with an inductive table filling algorithm.

Basis:

• Any non-accepting state is distinguishable from any accepting state.

Induction:

• States p and q are distinguishable if there is some input symbol a such that (p,a)

is distinguishable from (q,a).

• All other pairs of states are indistinguishable, and can be merged appropriately.

Finding Distinguishable States –

Table Filling Algorithm

BBM401 Automata Theory and Formal Languages 7

• Consider all pairs of states (p,q)

– if p∈F and q∉F or p∉F and q∈F, mark (p,q) as distinguishable

• 3

• Repeat the following until no previously unmarked pairs are marked:

– p,q∈Q and a∈, find (p,a)=r and (q,a)=s ,

– if (r,s) is marked as distinguishable then mark (p,q) as distinguishable.

Finding Distinguishable States –

Table Filling Algorithm

BBM401 Automata Theory and Formal Languages 8

• We can also use table filling algorithm to minimize a DFA by merging all equivalent

states.

• That is, we replace a state p with its equivalence class found by the table filling

algorithm.

• Equivalence Classes: = {1, 2,…,k}

– So, each equivalence class i will be a state in the minimized DFA.

– For each symbol a, min(i ,a)=j where there are states p,q p∈i q∈j such that (p,a)=q

Minimization of DFA

Table Filling Algorithm

BBM401 Automata Theory and Formal Languages 9

Table Filling Algorithm: Example 1

BBM401 Automata Theory and Formal Languages 10

p

r
0

11
1

q

0

0 • p is distinguishable from q

and r by basis, mark them

• Both q and r go to p with 0, so

no string beginning with 0 will

distinguish them

• Starting in either q and r , an

input of 1 takes us to either,

• so they are indistinguishable.

q x

r x

p q

q x

r x

p q

• Equivalence relation partitions (equivalence

classes): { {p}, {q,r} }

Table Filling Algorithm: Example 1

BBM401 Automata Theory and Formal Languages 11

p

r
0

11
1

q

0

0 • Equivalence relation partitions (equivalence

classes): { {p}, {q,r} }

• q and r are indistinguishable.

p
1{q,r}

0

0,1

DFA with minimal states

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 12

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 13

PASS 0: Distinguish accepting states from

non-accepting states

• C is only accepting state, it is distinguishable

from all other non-acceptingt states.

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 14

PASS 1: Consider column A

A ≢ B since (A,1)=F, (B,1)=C and F ≢ C

A ≢ D since (A,0)=B, (D,0)=C and B ≢ C

A ≡ E since

• (A,0)=B, (E,0)=H and B ≡ H

• (A,1)=F, (E,1)=F and F ≡ F

A ≢ F since (A,0)=B, (F,0)=C and B ≢ C

A ≡ G since

• (A,0)=B, (G,0)=G and B ≡ G

• (A,1)=F, (G,1)=E and F ≡ E

A ≢ H since (A,1)=F, (H,1)=C and F ≢ C

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 15

PASS 1: Consider column B

B ≢ D since (B,1)=C, (D,1)=G and C ≢ G

B ≢ E since (B,1)=C, (E,1)=F and C ≢ F

B ≢ F since (B,1)=C, (F,1)=G and C ≢ G

B ≢ G since (B,1)=C, (G,1)=E and C ≢ E

B ≡ H since

• (B,0)=G, (H,0)=G and G ≡ G

• (B,1)=C, (H,1)=C and C ≡ C

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 16

PASS 1: Consider column D

D ≢ E since (D,0)=C, (E,0)=H and C ≢ H

D ≡ F since

• (D,0)=C, (F,0)=C and C ≡ C

• (D,1)=G, (F,1)=G and G ≡ G

D ≢ G since (D,0)=C, (G,0)=G and C ≢ G

D ≢ H since (D,0)=C, (H,0)=G and C ≢ G

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 17

PASS 1: Consider columns E, F, G

E ≢ F since (E,0)=H, (F,0)=C and H ≢ C

E ≢ G since (E,1)=F, (G,1)=E and F ≢ E

E ≢ H since (E,1)=F, (H,1)=C and F ≢ C

F ≢ G since (F,0)=C, (G,0)=G and C ≢ G

F ≢ H since (F,0)=C, (H,0)=G and C ≢ G

G ≢ H since (G,1)=E, (H,1)=C and E ≢ C

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 18

PASS 2: Consider columns A, B, D

A ≡ E since

• (A,0)=B, (E,0)=H and B ≡ H

• (A,1)=F, (E,1)=F and F ≡ F

A ≡ G since (A,1)=F, (G,1)=E and F ≢ E

B ≡ H since

• (B,0)=G, (H,0)=G and G ≡ G

• (B,1)=C, (H,1)=C and C ≡ C

D ≡ F since

• (D,0)=C, (F,0)=C and C ≡ C

• (D,1)=G, (F,1)=G and G ≡ G

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 19

PASS 3: Consider columns A, B, D

A ≡ E since

• (A,0)=B, (E,0)=H and B ≡ H

• (A,1)=F, (E,1)=F and F ≡ F

B ≡ H since

• (B,0)=G, (H,0)=G and G ≡ G

• (B,1)=C, (H,1)=C and C ≡ C

D ≡ F since

• (D,0)=C, (F,0)=C and C ≡ C

• (D,1)=G, (F,1)=G and G ≡ G

No new marked states in PASS 3. We are done, and

we found all distinguishable states (marked ones).

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 20

Equivalence Classes:

{ {A,E}, {B,H}, {C}, {D,F}, {G} }

Minimization of DFA
Table Filling Algorithm: Example 2

BBM401 Automata Theory and Formal Languages 21

Equivalence Classes:

{ {A,E}, {B,H}, {C}, {D,F}, {G} }

• Let M be the minimized DFA found by the table filling algorithm and assume that its

states P = {p0,…,pm} and its transition function is .

• Since all states of M are distinguishable (since M is minimal), there must be distinct

strings w1,…,wm such that δ(p0,wi) = pi for all i.

• Suppose there is an equivalent DFA M1 with transition function 1 but with fewer

states Q = {q0,…,qn} where n<m.

Is the Minimized DFA Really Minimal?

BBM401 Automata Theory and Formal Languages 22

• Since M1 has fewer states than M, then there must be strings wk and wj among distinct

strings w1,…,wm such that δ1(q0,wk) = δ1(q0,wj) (pigeonhole principle)

• Since pk and pj are distinguishable, there must be some string x such that

– δ(p0,wk.x) = δ(pk,x)= is a final state and

– δ(p0,wj.x) = δ(pj,x)= is NOT a final state, or vice versa.

– So wk.x is accepted and wj.x is not (or vice versa)

• But

𝛅1(q0,wk.x) =𝛅1(
𝛅1(q0,wk),x) =𝛅1(

𝛅1(q0,wj),x) = 𝛅1(q0,wj.x)

• So M1 either accepts both wk.x and wj.x or rejects both.

• So M1 and M can not be equivalent. So M1 can not exist.

Is the Minimized DFA Really Minimal?

BBM401 Automata Theory and Formal Languages 23

1st Approach to Test Equivalence:

– Minimize their DFAs,

– Check whether they are isomorphic (ie. they are same with renaming states)

2nd Approach to Test Equivalence:

– Let L and M be regular languages, to test whether L = M

– Create DFAs for both L and M

– Imagine the DFA that is the union of the two DFA's (never mind there are two

start states)

– If the table filling algorithm says that the two start states are distinguishable, then

L M, otherwise L = M.

Testing Equivalence of Regular Languages

with Table Filling Algorithm

BBM401 Automata Theory and Formal Languages 24

Testing Equivalence of Regular Languages

with Table Filling Algorithm - Example

BBM401 Automata Theory and Formal Languages 25

• Since A and C are equivalent,

these two DFAs are equivalent.

• Their languages are also equivalent.

BBM401 Automata Theory and Formal Languages 26

Closure Properties of Regular Languages

• Closure Properties of Regular Languages are the theorems indicate that the regular

languages are closed under certain operations.

• A closure property of regular languages say that

– If a language is created from regular languages using the operation

mentioned in the theorem, it is also a regular language.

• Closure properties of regular languages also indicate that how their DFAs can be

created from DFAs of other regular languages using certain operations.

Closure Properties of Regular Languages

BBM401 Automata Theory and Formal Languages 27

1. The union of two regular languages is regular.

2. The concatenation of regular languages is regular.

3. The closure (star) of a regular language is regular.

4. The complement of a regular language is regular.

5. The intersection of two regular languages is regular.

6. The difference of two regular languages is regular.

7. The reversal of a regular language is regular.

8. A homomorphism (substitution of strings for symbols) of a regular language is

regular.

9. The inverse homomorphism of a regular language is regular.

Principal Closure Properties

of Regular Languages

BBM401 Automata Theory and Formal Languages 28

Theorem: (closure under union)

If L and M are regular languages, then L∪M is regular.

Proof:

• Since L and M are regular, they have regular expressions; say L = L(R) and M = L(S).

• Then L∪M = L(R+S) by the definition of the + operator for regular expressions.

• Thus, L∪M is regular.

Union of Two Regular Languages is Regular

BBM401 Automata Theory and Formal Languages 29

Theorem: (closure under concetanation)

If L and M are regular languages, then LM is regular.

Proof:

• Since L and M are regular, they have regular expressions; say L=L(R) and M=L(S).

• Then LM=L(RS) by the definition of the concatenation operator for regular

expressions.

• Thus, LM is regular

Concatenation of Regular Languages is Regular

BBM401 Automata Theory and Formal Languages 30

Theorem: (closure under star)

If L is a regular language, then L* is regular.

Proof:

• Since L is regular, it has a regular expression; say L=L(R).

• Then L*=L(R*) by the definition of the closure operator for regular expressions.

• Thus, L* is regular.

Closure of a Regular Language is Regular

BBM401 Automata Theory and Formal Languages 31

Theorem: (closure under complement)

If L is a regular language over alphabet , then its complement ҧ𝐋= *-L is also a

regular language.

Proof:

• Let L=L(A) for some DFA A = (Q, , , q0, F).

• Then തL=L(B), where B is the DFA = (Q, , , q0, Q-F).

• That is, B is exactly like A, but the accepting states of A have become non-accepting

states of B, and vice versa.

• Then, w is in L(B) if and only if δ(q0,w) in Q-F, which occurs if and only if w is not

in L(A).

• Thus, തL is regular.

Complement of a Regular Language is Regular

BBM401 Automata Theory and Formal Languages 32

Closure Under Complement - Example

BBM401 Automata Theory and Formal Languages 33

L=L(A) : strings of 0's and l’s

that end in 01;

In regular-expression terms,

L(A) = L((0+l)*01).

L=L(A) : strings of 0's and l’s

that do not end in 01;

Theorem: (closure under intersection)

If L and M are regular languages, then L∩M is regular.

Proof: (Simple Proof)

• By DeMorgan’s law L∩M = തL ∪ ഥM.

• We already know that regular languages are closed under complement and union.

• So, L∩M is regular when L and M are regular.

Intersection of Two Regular Languages is Regular

BBM401 Automata Theory and Formal Languages 34

Theorem: (closure under intersection)

If L and M are regular languages, then L∩M is regular.

Proof: (DFA Construction Proof)

• Let L be the language of DFA AL = (QL, , L, qL, FL) and M be the language of

DFA AM = (QM, , M, qM, FM).

• We will construct an automaton that simulates AL and AM in parallel, and accepts if

and only if both AL and AM accept.

• If AL goes from state p to state s on reading a, and AM goes from state q to state t on

reading a, then ALM will go from state (p,q) to state (s,t) on reading a.

• Formally, ALM = (QLxQM, , LM, (qL,qM), FLxFM) where

LM((p,q),a) = (L(p,a),M(q,a))

Closure Under Intersection

DFA Construction Proof

BBM401 Automata Theory and Formal Languages 35

• By induction |w|, it can be shown that

δLM((qL,qM),w) = (δL(qL,w), δM(qM,w))

• To see why L(ALM) = L(AL)∩L(AM), first we can observe that an induction on |w|

proves that δLM((qL,qM),w) = (δL(qL,w), δM(qM,w)).

• But ALM accepts w if and only if δLM((qL,qM),w) is a pair of accepting states.

• That is, δL(qL,w) must be in FL and δM(qM,w) must be in FM.

• w is accepted by ALM if and only if both AL and AM accept w.

• Thus, ALM accepts the intersection of L(AL) and L(AM).

Closure Under Intersection

DFA Construction Proof (cont.)

BBM401 Automata Theory and Formal Languages 36

Closure Under Intersection

Product Construction -- Example

BBM401 Automata Theory and Formal Languages 37

DFA AL

DFA AM

DFA ALM• DFA ALM is the cross product of AL and AM.

• L(ALM) = L(AL)∩L(AM).

• L(AL) is the set of strings containing at least one 0.

• L(AM) is the set of strings containing at least one 1.

• L(ALM) is the set of strings containing at least one 0 and one 1.

Theorem: (closure under difference)

If L and M are regular languages, then L-M is regular.

Proof:

• We can observe that L - M = L ∩ ഥM.

• By closure under complement, ഥM is regular.

• By closure under intersection, L ∩ ഥM is regular.

• Thus, L-M is regular.

Difference of Two Regular Languages is Regular

BBM401 Automata Theory and Formal Languages 38

• The reversal of a string a1a2 ... an is the string written backwards, that is, anan-1 ... a1.

• We use wR for the reversal of string w.

– Thus, 0010R is 0100, and

– R = .

• The reversal of a language L, written LR is the language consisting of the reversals of

all its strings.

– For instance, if L={001,10,111}, then LR ={100,01,111}.

• Reversal is another operation that preserves regular languages; that is, if L is a regular

language, so is LR.

Reversal of a Regular Language is Regular

BBM401 Automata Theory and Formal Languages 39

Theorem: (closure under reversal)

If L is a regular language, then its reversal LR is regular.

Proof: (proof by automaton creation)

• Let L be recognized by a Finite Automaton A.

• Turn A into a FA for LR, by

1. Reverse all the arcs in the transition diagram for A,

2. Make the start state of A be the only accepting state for the new automaton.

3. Create a new start state p0 with transitions on to all the accepting states of A.

• The result is an automaton that, simulates A "in reverse" and therefore accepts a string

w if and only if A accepts wR.

Reversal of a Regular Language is Regular

BBM401 Automata Theory and Formal Languages 40

Theorem: (closure under reversal)

If L is a regular language, then its reversal LR is regular.

Proof: (induction proof on regular expressions)

• Assume L is defined by regular expression E.

• The proof is a structural induction on the size of E.

• We can show that there is another regular expression ER such that L(ER) = (L(E))R;

that is, the language of ER is the reversal of the language of E.

Closure Under Reversal
Induction Proof on Regular Expressions

BBM401 Automata Theory and Formal Languages 41

BASIS:

• If E is , , or a, for some symbol a, then ER is the same as E.

• We know {}R = {}, R = , and {a}R = {a}.

INDUCTION:

• There are three cases, depending on the form of E.

Case 1. E = F + G ER = FR + GR

• The reversal of the union of two languages is obtained by computing the reversals of

the two languages and taking the union of those languages.

• So, L(FR+GR) = (L(F+G))R

Closure Under Reversal
Induction Proof on Regular Expressions (cont.)

BBM401 Automata Theory and Formal Languages 42

Case 2. E = F G ER = GR FR

• We reverse the order of the two languages, as well as reversing the languages

themselves.

– For instance, if L(F)={01,111} and L(G)={00,10}, then L(FG) =

{0100,0110,11100,111100}.

– Its reversal is {0010,0110,00111,01111}

– If we concatenate the reversals of L(G) and L(F) in that order, we get

{00,01}{10,111} = {0010,00111,0110,01111} which is the same language as

(L(FG))R .

• In general, if a word w in L(E) is the concatenation of x from L(F) and y from L(G),

then wR = yR xR

• So, L(GRFR) = (L(FG))R

Closure Under Reversal
Induction Proof on Regular Expressions (cont.)

BBM401 Automata Theory and Formal Languages 43

Case 3. E = F* ER = (FR)*

• Let w be a string in L(F*) that can be written as w1w2 … wn, where each wi is in L(F).

• Then, wR = wn
R wn-1

R … w1
R

• Since each wi
R is in L(FR), wR is in L((FR)*)

• This means that “if w is in L(F*), then wR is L((FR)*)”

• Conversly, let w be a string in L((FR)*) that can be written as w1w2 ... wn, where each

wi is the reversal of a string L(F).

• Since each wi
R is in L(F), wR is in L(F*)

• This means that “if w is in L((FR)*), then wR is L(F*)”

• Thus, w is in L(F*) if and only if wR is L((FR)*)

• L((FR)*) = (L(F*))R

Closure Under Reversal
Induction Proof on Regular Expressions (cont.)

BBM401 Automata Theory and Formal Languages 44

• Let M be L((0+1)0*)

• Then MR (ie (L((0+1)0*)) R) can be found as follows:

MR = (L((0+1)0*)) R

= L(((0+1)0*)) R)

= L((0*)R(0+1)R)

= L((0R)* (0R+1R))

= L(0*(0+1))

Closure Under Reversal -- Example

BBM401 Automata Theory and Formal Languages 45

• A homomorphism on an alphabet is a function h that gives a string for each symbol

in that alphabet.

– Suppose and are alphabets, the function h: →* is called a

homomorphism.

• Extend to strings by h(a1…an) = h(a1)…h(an).

• Extend to languages h(L) = { h(w) | w∈L }

Example:

• h(0) = ab; h(1) = ε.

• h(01010) = ababab.

• h({010110, 11, 1001}) = {ababab, ε, abab}

Homomorphism of a Regular Language is Regular

BBM401 Automata Theory and Formal Languages 46

Theorem: (closure under homomorphism)

If L is a regular language and h is a homomorphism on its alphabet,

then h(L)={ h(w) | win L } is regular.

Proof:

• Let E be a regular expression for L.

• Apply h to each symbol in E.

• Language of the resulting regular expression is h(L).

• Thus, h(L) is regular.

Homomorphism of a Regular Language is Regular

BBM401 Automata Theory and Formal Languages 47

• Let h(0) = ab; h(1) = ε.

• Let L be the language of regular expression 01* + 10*.

• Then h(L) is the language of regular expression ab(ε)* + ε(ab)*.

ab(ε)* + ε(ab)* = ab + (ab)* = (ab)*

Closure Under Homomorphism -- Example

BBM401 Automata Theory and Formal Languages 48

BBM401 Automata Theory and Formal Languages 49

Decision Properties of Regular Languages

• A decision property for a class of languages is an algorithm that takes a formal

description of a language (e.g., a DFA) and tells whether or not some property holds.

• Some Decision Properties:

– Is language L empty?

– Is language L finite?

Decision Properties of Regular Languages

BBM401 Automata Theory and Formal Languages 50

Theorem: There exist algorithms for determining whether a regular language is

empty or not.

Proof:

• Represent the language with a DFA.

• If there is a path from the start state to some final state, the language is not empty.

Decision Properties of Regular Languages
language is empty or not

BBM401 Automata Theory and Formal Languages 51

Theorem: There exist algorithms for determining whether a regular language is

finite or infinite.

Proof:

• Represent the language with a DFA.

• Find all states that form a cycle.

• If any of these cycle states are on path from the start state to a final state, then the

language is infinite.

Key idea:

• If the DFA has n states, and the language contains any string of length n or more,

then the language is infinite.

• Otherwise, the language is surely finite. Limited to strings of length n or less.

Decision Properties of Regular Languages
language is finite or infinite

BBM401 Automata Theory and Formal Languages 52

• To decide if L1 L2, check if L1 - L2 = ϕ

• To decide if ∊ L, check if q0 ∊ F

• To decide if L contains a string w such that w = wR

– Let M be the DFA for L.

– Construct MR.

– Construct M ∩ MR using the cross-product construction

– Check if L(M ∩ MR) ≠ ϕ.

More Decision Problems

BBM401 Automata Theory and Formal Languages 53

BBM401 Automata Theory and Formal Languages 54

The Pumping Lemma for Regular Languages

• There are languages which are NOT regular.

• Every regular language satisfies the pumping lemma.

• A non-regular language can be shown that it is NOT regular using the pumping

lemma.

• L01 = {0n1n | n ≥ 1 } is not regular.

– We can use the pumping lemma to show that this language is not regular.

The Pumping Lemma
for Regular Languages

BBM401 Automata Theory and Formal Languages 55

• Let L be a regular language.

• Then there exists a constant n such that for every string w in L such

that |w| > n, we can break w into three strings, w = xyz, such that:

1. y , ie. |y|>0

2. |xy| ≤ n

3. For all k ≥ 0, the string xykz is also in L.

• That is, we can always find a nonempty string y not too far from the

beginning of w that can be "pumped"; that is, repeating y any

number of times, or deleting it (the case k= 0), keeps the resulting

string in the language L.

The Pumping Lemma
for Regular Languages

BBM401 Automata Theory and Formal Languages 56

Number of states of

DFA for L

Proof:

• Suppose L is regular

• Then L is recognized by some DFA A with n states, and L= L(A).

• Let a string w=a1a2...am L, where m>n

• Let pi = δ(q0, a1a2...ai)

• Then, there exists j such that i<j and pi = pj

• Now we have w=xyz where

1. x = a1a2...ai

2. y = ai+1ai+2...aj

3. z = aj+1aj+2...am

The Pumping Lemma - Proof

BBM401 Automata Theory and Formal Languages 57

• That is, x takes us to pi, once; y takes us from pi back to pi. (since pi is also pj),

and z is the balance of w.

• So we have the following figure, and every string longer than the number of states

must cause a state to repeat.

• Since y can repeat 0 or more times

 xykz L for any k0. Q.E.D.

The Pumping Lemma – Proof (cont.)

BBM401 Automata Theory and Formal Languages 58

• Every regular language satisfies the pumping lemma.

• A non-regular language can be shown that it is NOT regular using the pumping

lemma.

• L01 = {0n1n | n ≥ 1 } is not regular.

– We can use the pumping lemma to show that this language is not regular.

Applications of The Pumping Lemma

BBM401 Automata Theory and Formal Languages 59

• In order to show that a language L is NOT a regular language using the Pumping

Lemma (Proof by Contradiction):

1. Suppose L were a regular language.

2. Then there is an integer n given us by the pumping lemma, which we do not

know, we must plan for any possible n.

3. Pick a string w which must be in L, it must be defined using n and |w|>n.

• Tricky Part 1: You should find a string w so that you can create a contradiction

in step 5. YOU CANNOT SELECT A SPECIFIC STRING.

4. Break w into xyz, subject only to the constraints that |xy|n and y.

5. Pick i and show that xyiz is NOT in L in order to create a contradiction.

• Tricky Part 2: You have to show that xyiz is NOT in L using only the constraints

that |xy|n and y. You may need to look at more than one cases. YOU

CANNOT GIVE A SPECIFIC EXAMPLE.

6. Conclude that L is NOT a regular language (proof by contradiction).

Using the Pumping Lemma

BBM401 Automata Theory and Formal Languages 60

Example 1: Let us show that the language L01 = {0n1n | n ≥ 1 } is NOT regular.

Proof: (proof by contradiction)

• Suppose L01 were a regular language (our assumption)

• Then, w = 0n1n L01 for any n

• By the pumping lemma, w=xyz, |xy|≤n, y and xykz L01.

• Since y and |xy| ≤n, y must contain only one or more 0s.

• If y repeats 0 times, xy0z=xz must be in L01 by the pumping lemma.

• xz has fewer 0’s than 1’s because y can only contain one or more 0s

• So, there is a contradiction with our assumption (L01 is regular)

• Proof by contradiction, we prove that L01 is NOT regular

Applications of The Pumping Lemma – Example 1

BBM401 Automata Theory and Formal Languages 61

Example 2: Let us show that the language Leq is the set of all strings with an equal

number of 0's and l's is NOT a regular language.

Proof: (proof by contradiction)

• The proof is exactly same as the proof of L01.

Applications of The Pumping Lemma – Example 2

BBM401 Automata Theory and Formal Languages 62

Example 3: Let us show that the language Lpr is the set of all strings of l's whose length

is a prime is NOT a regular language.

Proof: (proof by contradiction)

• Suppose Lpr were a regular language (our assumption)

• Choose a prime p≥n+2 (this is possible since there are infinite number of primes.)

• Now, xyp-mz Lpr by the pumping lemma.

• |xyp-mz| = |xz| + (p-m)|y| = (p-m)+(p-m)m = (1+m)(p-m)

• But, (1+m)(p-m) is not prime unless one of the factors is 1.

– y (1+m) > 1

– m=|y| ≤ |xy| ≤ n and p≥n+2 (p-m) ≥ (n+2)-n ≥ 2

• So, there is a contradiction with our assumption

 Proof by contradiction, Lpr is NOT regular.

Applications of The Pumping Lemma – Example 3

BBM401 Automata Theory and Formal Languages 63

Example 4: Let us show that the language L is the set of all strings with the number of 0's

is more the number of l's is NOT a regular language.

Proof: (proof by contradiction)

• Suppose L were a regular language (our assumption)

• Then, w=0n+11n L for any n since n+1>n

• By the pumping lemma, w=xyz, |xy|≤n, y and xykz L.

w = 000 … 00111…11

• Since 0≤|xy|≤n, y must contain only 0’s.

• By the pumping lemma, xy0z L. But the number of 0’s cannot be more than the

number 1’s because 0<|y|≤n and y must contain only 0’s.

• So, there is a contradiction with our assumption (L is regular)

• Proof by contradiction, we prove that L is NOT regular

Applications of The Pumping Lemma – Example 4

BBM401 Automata Theory and Formal Languages 64

x y z

Example 5: Show that the language L is the set of all strings of 0’s and 1’s that have an

unequal number of 0’s and 1’s is NOT regular.

Proof: (proof by contradiction)

• It would be hard to use the pumping lemma directly to show that L is not regular. We

can use closure properties of regular languages in addition to the pumping lemma in

order to prove.

• Suppose that L were regular (our assumption)

• The complement of this language തL is the set of all strings of 0’s and 1’s that have

equal number of 0’s and 1’s.

• By the closure under complement theorem, തL must be regular.

• But, we showed that തL is NOT regular previously using the pumping lemma.

• So, there is a contradiction with our assumption (L is regular)

• Proof by contradiction, we prove that L is NOT regular

Applications of The Pumping Lemma – Example 5

BBM401 Automata Theory and Formal Languages 65

Minimizing Deterministic Finite Automata:

• We can partition states of any DFA into groups of mutually indistinguishable states.

• Members of two different groups are always distinguishable.

• If we replace each group by a single state we get an equivalent DFA that has as few

states as any DFA for the same language.

Testing Distinguishability of States:

• Two states of a DFA are distinguishable if there is an input string that takes exactly

one of the two states to an accepting state.

• By starting with only the fact that pairs consisting of one accepting and one non-

accepting state are distinguishable and trying to discover additional pairs of

distinguishable states by finding pairs whose successors on one input symbol are

distinguishable we can discover all pairs of distinguishable states.

Properties of Regular Languages – Summary

BBM401 Automata Theory and Formal Languages 66

Closure Properties of Regular Languages:

• There are many operations that preserve the property of being a regular language.

• Among these are union, concatenation, closure, intersection, complement, difference,

reversal, homomorphism.

Decision Properties of Regular Languages:

• Testing emptiness of regular languages

• Testing whether a regular language is finite or not.

The Pumping Lemma for Regular Languages:

• If a language is regular then every sufficiently long string in the language has a

nonempty substring that can be pumped that is repeated any number of times while

the resulting strings are also in the language.

• This fact can be used to prove that many different languages are not regular.

Properties of Regular Languages – Summary

BBM401 Automata Theory and Formal Languages 67

