Context-Free Grammars and Context-Free Languages

- Context-Free Grammars
 - Derivations
- Parse Trees
- Ambiguity

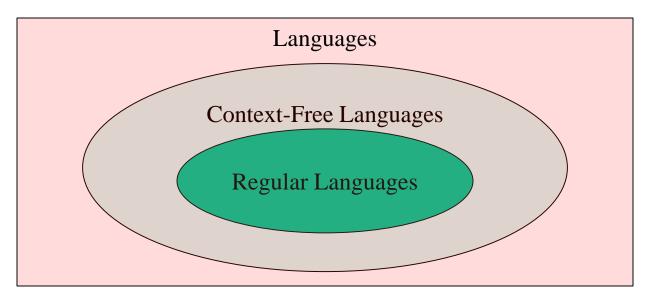
Context-Free Grammars

Context-Free Grammars

- We have seen that many languages cannot be regular.
 - We need to consider larger classes of languages.
 - **Context-Free Languages (CFLs)** is a larger class of languages (larger than regular languages).
 - Every regular language is a context-free language.
- Regular expressions are used to define regular languages.
- Context-Free Grammars (CFGs) are used to define Context-Free Languages (CFLs).
- Pushdown Automatons recognize CFLs.
- Context-Free Grammars (CFGs) played a central role in natural language processing, and compilers.
 - The syntax of a programming language is described by a CFG.
 - A parser for a programming language is a **pushdown automaton**.

Context-Free Grammars and Context-Free Languages

- A context-free grammar is a notation for describing languages.
- CFGs are more powerful than REs, but they cannot still define all possible languages.
 - CFGs define Context-Free Languages (CFLs).
 - CFGs are useful to describe nested structures.
 - Since every regular language is a CFL, it can be defined by a CFG.
 - There are also languages that are not CFLs.



CFG – Example

- The language { 0ⁿ1ⁿ | n ≥ 0} is not a regular language, but it is a CFL.
 It can be defined by a CFG.
- A CFG for $\{ 0^n 1^n | n \ge 0 \}$ is:

 $S \rightarrow \epsilon$

 $S \rightarrow 0S1$

- 0 and 1 are **terminals**. $\Sigma = \{0,1\}$ is the alphabet of the language.
- S is a **variable** (or **nonterminal**).
- S is also the **start symbol** of this CFG.
- $S \rightarrow \epsilon$ and $S \rightarrow 0S1$ are **productions** (or **rules**)

CFG – Example

Basis:

• Production $S \rightarrow \varepsilon$ says that ε is in the language.

Induction:

• Production $S \rightarrow 0S1$ says that if w is in the language then is 0w1 is in the language.

- ε is in the language.
- since ε is in the language, 01 is in the language.
- since 01 is in the language, 0011 is in the language.

• ...

• Thus, the language of this CFG is $\{ 0^n 1^n | n \ge 0 \}$

Formal Definition of CFGs

A context-free grammar G is a quadruple
 G = (V, T, P, S)

where

- V is a finite set of variables (non-terminals).
 - Each variable represents a language.
- **T** is a finite set of **terminals**.
 - T is the alphabet of the language defined by the CFG.
- **P** is a finite set of **productions** of the form $A \to \alpha$, where **A** is a variable and $\alpha \in (V \cup T)^*$
 - The left side of a production is a variable and its right side is a string of variables and terminals.
- **S** is a designated variable called the **start symbol**.
 - The start symbol is the variable whose language is defined.

CFG – Example 2

- Consider the language of palindromes $L_{pal} = \{ w \in \Sigma^* : w = w^R \}$
- Some members of L_{pal}: *abba bob ses tat*
- L_{pal} is NOT regular, but L_{pal} is a context-free language.
- Let $\Sigma = \{0,1\}$ be the alphabet for L_{pal} .
- In this case, ϵ , 0, 1, 00, 11, 000, 010, 101, 111, 0110, ... will be in L_{pal}.
- A CFG G_{pal} for L_{pal} is: $G_{pal} = (\{S\}, \{0,1\}, \{S \rightarrow \epsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\}, S)$
- Sometimes, we use a shorthand for a list of productions with the same left side. $S \rightarrow \epsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1$

Derivation

- Initially, we have a string that only contains the **start symbol**.
- We expand the **start symbol** using one of its productions (i.e., using a production whose left side (head) is the start symbol).
 - i.e. we replace the start symbol with a string which appears on the right side of a production rule belongs to the start symbol.
- If the resulting string contains at least one variable, we further expand the resulting string by replacing one of its variables with the right side (body) of one of its productions.
 - We can continue these replacements until we derive a string consisting entirely of terminals.
- The language of the grammar is the set of all strings of terminals that we can be obtained in this way.
- Replacement of a variable (in a string) with the right side of one of its productions is called as derivation.

Derivation \Rightarrow

- Suppose $\mathbf{G} = (\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ is a CFG.
- Let $\alpha A\beta$ be a string of terminals and variables where A is a variable. - i.e. α and β are strings in (VUT)*, and A is V.
- Let $A \rightarrow \gamma$ be a production of G.
- Then, we say that

 $\alpha A\beta \Rightarrow_{G} \alpha \gamma \beta$ is a **derivation**

• If G is understood, we just say that

 $\alpha A\beta \Rightarrow \alpha \gamma \beta$ is a **derivation**

• One derivation step can replace any variable in the string with the right side (body) of one of its productions.

Derivation Sequence $\stackrel{*}{\Rightarrow}$

- We can extend the derivation (⇒) relationship to represent zero or more derivation steps.
- We use symbol $\stackrel{*}{\Rightarrow}$ to denote zero or more steps of a **derivation sequence**.

Derivation Sequence:

Basis:

- For any string α of terminals and variables, we say $\alpha \stackrel{\circ}{\Rightarrow} \alpha$.
- That is, any string derives itself.

Induction:

- If $\alpha \stackrel{*}{\Rightarrow} \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \stackrel{*}{\Rightarrow} \gamma$.
- That is, if α can become β by zero or more steps, and one more step takes β to γ , then α can become γ by a derivation sequence.

Derivation Sequence $\stackrel{*}{\Rightarrow}$

- In other words, $\alpha \stackrel{*}{\Rightarrow} \beta$ means that there is a sequence of strings $\gamma_1, \gamma_2, \ldots, \gamma_n$ for some $n \ge 1$ such that
 - 1. $\alpha = \gamma_1$,
 - 2. $\beta = \gamma_n$, and
 - 3. for i=1,2,...,n-1, we have $\gamma_i \Rightarrow \gamma_{i+1}$

Derivation Sequence – Example 1

- Let CFG $G = (\{S\}, \{0,1\}, \{S \rightarrow \varepsilon, S \rightarrow 0S1\}, S)$
- $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000S111 \Rightarrow 000111$ is a derivation sequence.

- S derives 000111; or 000111 is derived from S.

- That is, $\mathbf{S} \stackrel{*}{\Rightarrow} \mathbf{000111}$ and also
 - $S \stackrel{*}{\Rightarrow} 000S111$
 - $S \stackrel{*}{\Rightarrow} 00S11$
 - 0S1 $\stackrel{*}{\Rightarrow}$ 000S111
 - $00S11 \xrightarrow{*} 000111$
- $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0011$ is a derivation sequence.

Derivation Sequence – Example 2

A CFG:

- $S \rightarrow ASB \mid c$
- $A \to \epsilon \ | \ aA$
- $B \to \epsilon \ | \ bB$

Derivation Sequences of acb from S.

$$\mathbf{S} \Rightarrow \mathbf{ASB} \Rightarrow \mathbf{aASB} \Rightarrow \mathbf{aSB} \Rightarrow \mathbf{acB} \Rightarrow \mathbf{acb} \Rightarrow \mathbf{acb}$$

$$S \Rightarrow ASB \Rightarrow ASbB \Rightarrow ASb \Rightarrow Acb \Rightarrow aAcb \Rightarrow acb$$

 $S \Rightarrow ASB \Rightarrow AcB \Rightarrow aAcB \Rightarrow aAcbB \Rightarrow acbB \Rightarrow acb$

• We may select any non-terminal (variable) of the string for the replacement in each derivation step.

Leftmost and Rightmost Derivations

Leftmost Derivation always replaces the leftmost variable (in the string) with one of its rule-bodies. ⇒_{lm}

$$\mathbf{S} \Rightarrow_{\mathrm{lm}} \mathrm{ASB} \Rightarrow_{\mathrm{lm}} \mathrm{aASB} \Rightarrow_{\mathrm{lm}} \mathrm{aSB} \Rightarrow_{\mathrm{lm}} \mathrm{acB} \Rightarrow_{\mathrm{lm}} \mathrm{acbB} \Rightarrow_{\mathrm{lm}} \mathrm{acb}$$

Rightmost Derivation always replaces the righmost variable (in the string) by one of its rule-bodies. ⇒_{rm}

$$\mathbf{S} \Rightarrow_{\mathrm{rm}} \mathrm{ASB} \Rightarrow_{\mathrm{rm}} \mathrm{ASbB} \Rightarrow_{\mathrm{rm}} \mathrm{ASb} \Rightarrow_{\mathrm{rm}} \mathrm{Acb} \Rightarrow_{\mathrm{rm}} \mathrm{aAcb} \Rightarrow_{\mathrm{rm}} \mathrm{acb}$$

Leftmost and Rightmost Derivations

 $S \rightarrow ASB \mid c$ $A \rightarrow \epsilon \mid aA$ $B \rightarrow \epsilon \mid bB$

Derivation Sequences of **acb** from **S**.

 $S \Rightarrow ASB \Rightarrow aASB \Rightarrow aSB \Rightarrow acB \Rightarrow acbB \Rightarrow acb$ is a **leftmost derivation**

 $S \Rightarrow ASB \Rightarrow ASbB \Rightarrow ASb \Rightarrow Acb \Rightarrow aAcb \Rightarrow acb$

is a **rightmost derivation**

 $S \Rightarrow ASB \Rightarrow AcB \Rightarrow aAcB \Rightarrow aAcbB \Rightarrow acbB \Rightarrow acb$ is **NOT** a leftmost or rightmost derivation.

Sentential Forms

- Let G = (V, T, P, S) be a CFG, and $\alpha \in (V \cup T)^*$
- If $S \stackrel{*}{\Rightarrow} \alpha$, we say that α is a sentential form.
- If $S \stackrel{*}{\Rightarrow}_{\operatorname{Im}} \alpha$, we say that α is a **left-sentential form**.
- If $S \stackrel{*}{\Rightarrow}_{rm} \alpha$, we say that α is a **right-sentential form**.
- L(G) is those sentential forms that are in T*.

The Language of a CFG

• If G = (V, T, P, S) is a CFG, then **the language of G** is

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}$$

- i.e. the set of strings of terminals (strings over T^*) that are derivable from S
- If we call L(G) as a **context-free language**.
 - Ex: $L(G_{pal})$ is a context-free language.
- For each CFL, there is a CFG, and each CFG generates a CFL.
- Every regular language is a CFL.
 - That is, regular languages are a proper subset of context-free languages

The Language of a CFG – A Proof Example

- $G_{pal} = (\{S\}, \{0,1\}, \{S \rightarrow \epsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\}, S)$
- $L_{pal} = \{ w \in \Sigma^* : w = w^R \}$

Theorem: $L(G_{pal}) = L_{pal}$

Proof:

In order to prove this equality,

(\supseteq Direction): We have to prove that every member of L_{pal} is also a member of $L(G_{pal})$.

(\subseteq Direction): We have to prove that every member of $L(G_{pal})$ is also a member of L_{pal} .

The Language of a CFG – A Proof Example ⊇ Direction

Proof: (\supseteq Direction) If $w \in L_{pal}$ then $w \in L(G_{pal})$, i.e. G_{pal} can generate w

- Suppose $w = w^R$ ($w \in L_{pal}$)
- We prove by induction on the *length of w* (|w|) that $w \in L(G_{pal})$

Basis:

- |w|=0, or |w|=1.
- Then, w is $\boldsymbol{\varepsilon}$, $\boldsymbol{0}$, or $\boldsymbol{1}$
- Since $S \rightarrow \varepsilon$, $S \rightarrow 0$ and $S \rightarrow 1$ are productions of G_{pal} , we can conclude that $S \stackrel{*}{\Rightarrow} w$ in all base cases.
 - $S \stackrel{*}{\Rightarrow} \varepsilon$
 - $S \stackrel{*}{\Rightarrow} 0$
 - $S \stackrel{*}{\Rightarrow} 1$

The Language of a CFG – A Proof Example ⊇ Direction

IH: If $w \in L_{pal}$ and $|w| \le n$ then $w \in L(G_{pal})$ i.e. $S \stackrel{*}{\Rightarrow} w$

Induction:

- Suppose $|w|=n+1\geq 2$
- Since $w=w^R$, we have w=0x0, or w=1x1, and $x=x^R$

Case1:

- If w=0x0, by IH we know that $\mathbf{S} \Rightarrow \mathbf{x}$
- Then, by the structure of the grammar $\mathbf{S} \Rightarrow \mathbf{0S0} \stackrel{\circ}{\Rightarrow} \mathbf{0x0}$ v

where 0x0=w

Case2:

- If w=1x1, by IH we know that $\mathbf{S} \stackrel{*}{\Rightarrow} \mathbf{x}$
- Then, by the structure of the grammar $S \Rightarrow 1S1 \Rightarrow 1x1$ where 1x1=w

The Language of a CFG – A Proof Example ⊆ Direction

Proof: (\subseteq Direction)

- We assume that $w \in L(G_{pal})$ and we must show that $w=w^R$.
- Since $w \in L(G_{pal})$, we have $S \stackrel{*}{\Rightarrow} w$
- We prove by induction of **the length of** $\stackrel{*}{\Rightarrow}$ (the length of the derivation sequence)

Basis:

- The derivation $S \stackrel{*}{\Rightarrow} w$ is done in one step.
- Then w must be ε , 0, or 1, they are all palindromes.

The Language of a CFG – A Proof Example ⊆ Direction

IH: If $S \stackrel{*}{\Rightarrow} w$ with less than n derivation steps and 1<n then $w \in L_{pal}$

Induction:

- Let $n \ge 2$, i.e. $S \stackrel{*}{\Rightarrow} w$ derivation takes n steps
- Derivation must be

$$- S \Rightarrow 0S0 \stackrel{*}{\Rightarrow} 0x0 = w \text{ or}$$

$$- S \Rightarrow 1S1 \stackrel{*}{\Rightarrow} 1x1 = w$$

- Since $n \ge 2$, and the productions $S \rightarrow 0S0$ and $S \rightarrow 1S1$ are the only productions that allows additional steps of a derivation.
- Note that, in either case, $\mathbf{S} \stackrel{*}{\Rightarrow} \mathbf{x}$ takes n-1 steps.
- By the inductive hypothesis, we know that x is a palindrome;
- But if so, then **0x0** and **lxl** are also palindromes.
- We conclude that **w** is a palindrome, which completes the proof.

Parse Trees

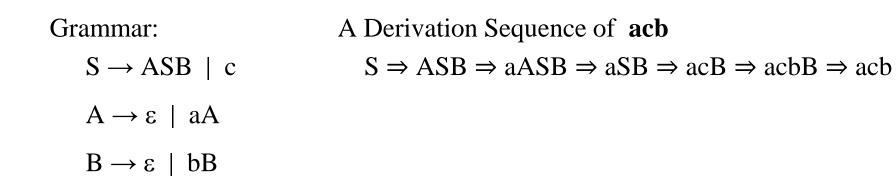
Parse Trees

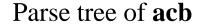
- **Parse trees** are an alternative representation to derivations.
- If w∈L(G), for some CFG, then w has a parse tree, which tells us the (syntactic) structure of w.
 - If G is unambiguous, w can have only one parse tree.
 - If G is ambiguous, w may have more than one parse tree.
 - Ideally there should be only one parse tree for each string in the language. This means that the grammar should be unambiguous.
 - We may remove the ambiguity from some of ambiguous grammars in order to obtain unambiguous grammars by making certain assumptions.
 - Unfortunately, some CFLs are inherently ambiguous and they can be only defined by ambiguous grammars.

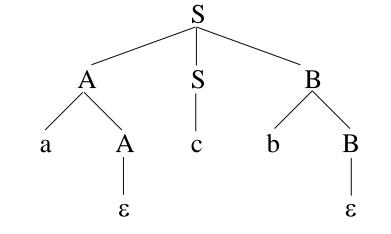
Constructing Parse Trees

- Let G = (V, T, P, S) be a CFG.
- A tree is a parse tree for G if:
 - 1. Each interior node is labeled by a variable in V.
 - The root must be labeled by the start symbol S.
 - 2. Each leaf is labeled by a symbol in $T \cup \{\epsilon\}$.
 - Any ε-labeled leaf is the only child of its parent.
 - 3. If an interior node is labeled by the variable A, and its children (from left to right) labeled $X_1, X_2, ..., X_k$ then $A \to X_1 X_2 ... X_k \in P$.

Parse Tree - Example







S

Grammar:

- $S \rightarrow ASB \mid c$ $A \rightarrow \varepsilon \mid aA$
- $B \to \epsilon \ | \ bB$

• Each derivation step corresponds to the creation of an inner node (by creating its children).

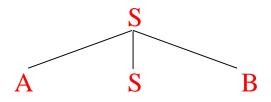
S

Grammar:

- $S \rightarrow ASB \mid c$
- $A \rightarrow \varepsilon \mid aA$
- $B \to \epsilon \ | \ bB$

• Each derivation step corresponds to the creation of an inner node (by creating its children).

 $S \Rightarrow ASB$



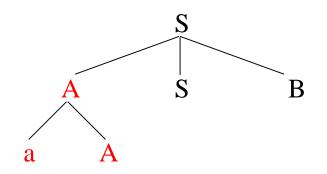
Grammar:

- $S \rightarrow ASB \mid c$
- $A \rightarrow \varepsilon \mid aA$

 $B \to \epsilon \ | \ bB$

• Each derivation step corresponds to the creation of an inner node (by creating its children).

 $S \Rightarrow ASB \Rightarrow aASB$



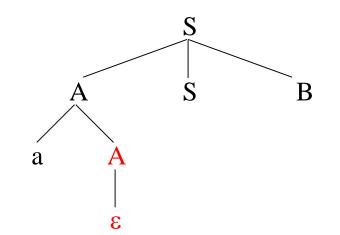
Grammar:

 $S \rightarrow ASB \mid c$ $A \rightarrow \varepsilon \mid aA$

 $B \to \epsilon \ | \ bB$

• Each derivation step corresponds to the creation of an inner node (by creating its children).

 $S \Rightarrow ASB \Rightarrow aASB \Rightarrow aSB$



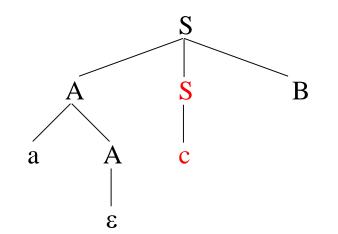
Grammar:

 $S \rightarrow ASB \mid c$ $A \rightarrow \varepsilon \mid aA$

 $B \rightarrow \epsilon \ | \ bB$

• Each derivation step corresponds to the creation of an inner node (by creating its children).

 $S \Rightarrow ASB \Rightarrow aASB \Rightarrow aSB \Rightarrow aCB$



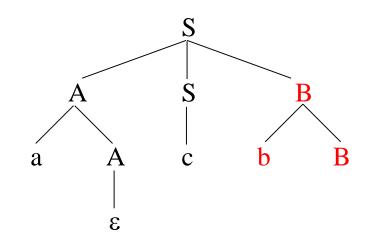
Grammar:

- $S \rightarrow ASB \mid c$
- $A \rightarrow \epsilon \mid aA$

 $B \to \epsilon \ | \ bB$

• Each derivation step corresponds to the creation of an inner node (by creating its children).

 $S \Rightarrow ASB \Rightarrow aASB \Rightarrow aSB \Rightarrow acB \Rightarrow acbB$



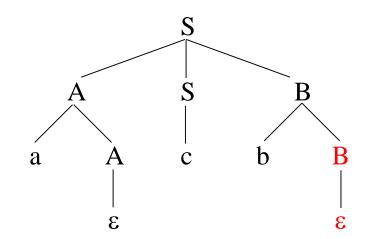
Grammar:

- $S \rightarrow ASB \mid c$
- $A \rightarrow \epsilon \mid aA$

 $B \to \epsilon \ | \ bB$

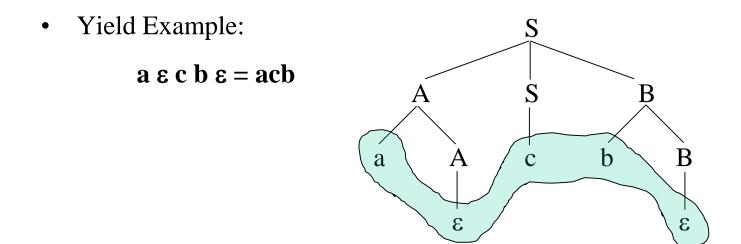
• Each derivation step corresponds to the creation of an inner node (by creating its children).

 $S \Rightarrow ASB \Rightarrow aASB \Rightarrow aSB \Rightarrow acB \Rightarrow acbB \Rightarrow acb$



The Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order is called the yield of the parse tree.
- The yield of the parse tree is a string of terminals.
 - The set of all yields of all parse trees of a CFG G is the language of G.



Parse Trees, Leftmost and Rightmost Derivations

Theorem: For every parse tree, there is a unique leftmost, and a unique rightmost derivation.

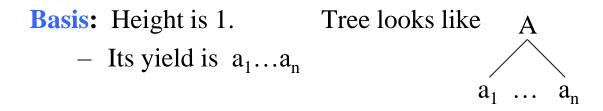
- We will prove theorem for only leftmost derivations.
- We will prove:

Part 1: If there is a parse tree with root labeled A and yield w, then $\mathbf{A} \Rightarrow_{\mathbf{lm}} \mathbf{w}$. **Part 2:** If $\mathbf{A} \Rightarrow_{\mathbf{lm}}^{*} \mathbf{w}$, then there is a parse tree with root A and yield w.

Part 1: If there is a parse tree with root labeled A and yield w, then $\mathbf{A} \Rightarrow_{\mathbf{lm}} \mathbf{w}$.

Proof: Induction on the height of the tree.

- The height of a tree is the length of the longest path from the root to a leaf.



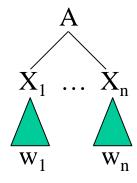
- $\mathbf{A} \rightarrow \mathbf{a_1} \dots \mathbf{a_n}$ must be a production.
- Thus, we have $\mathbf{A} \Rightarrow_{\mathrm{lm}} \mathbf{a}_{1} \dots \mathbf{a}_{\mathbf{n}}$
- $\mathbf{A} \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \mathbf{a}_1 \dots \mathbf{a}_n$

Part 1: If there is a parse tree with root labeled A and yield w, then $\mathbf{A} \Rightarrow_{\mathbf{Im}} \mathbf{w}$.

IH: Part 1 holds for the trees with the height < h.

Induction: Take a tree whose height is h. Tree looks like

- Its yield is $w_1 \dots w_n$
- The height of each subtree headed by X_i is less than h.
- $A \rightarrow X_1...X_n$ must be a production.
- $A \Rightarrow_{\operatorname{Im}} X_1 \dots X_n$ since $A \to X_1 \dots X_n$ is a production.
- $X_i \stackrel{*}{\Rightarrow}_{lm} w_i$ holds for each X_i by IH.
- Thus, $\mathbf{A} \Rightarrow_{\mathbf{lm}} \mathbf{X}_1 \dots \mathbf{X}_n \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \mathbf{w}_1 \mathbf{X}_2 \dots \mathbf{X}_n \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \mathbf{w}_1 \mathbf{w}_2 \mathbf{X}_3 \dots \mathbf{X}_n \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \bullet \bullet \bullet \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_n$



Part 2: If $\mathbf{A} \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \mathbf{w}$, then there is a parse tree with root A and yield w.

Proof:

- Given a leftmost derivation of a terminal string w, we need to prove the existence of a parse tree with yield w.
- The proof is an induction on the length of the derivation.

Basis: The length of the derivation sequence $\mathbf{A} \Rightarrow_{\mathbf{lm}} \mathbf{a}_{1} \dots \mathbf{a}_{\mathbf{n}}$ is 1.

- That is, the derivation sequence is $\mathbf{A} \Rightarrow_{\text{lm}} \mathbf{a}_1 \dots \mathbf{a}_n$
- $\mathbf{A} \rightarrow \mathbf{a}_1 \dots \mathbf{a}_n$ must be a production.
- Thus, there must be a parse tree looks like A_{n} - Its yield is $a_1 \dots a_n$ $a_1 \dots a_n$

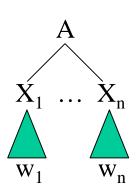
Part 2: If $\mathbf{A} \Rightarrow_{\mathbf{lm}} \mathbf{w}$, then there is a parse tree with root A and yield w.

IH: Part 2 holds for the leftmost derivations with fewer steps than k.

Induction: Take a derivation sequence $\mathbf{A} \stackrel{*}{\Rightarrow}_{\mathbf{lm}} \mathbf{w}$ with k steps.

- The first step of the derivation sequence is $\mathbf{A} \Rightarrow_{\text{lm}} \mathbf{X}_1 \dots \mathbf{X}_n$

- w can be divided so the first portion w_1 is derived from X_1 , the next w_2 is derived from X_2 , and so on. If X_i is a terminal, then $w_i = X_i$.
- That is, each variable X_i has a derivation sequence X_i ⇒_{lm} w_i.
 And the each derivation takes fewer steps than k steps.
- By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield w_i.
- Thus, there is a parse tree.
 - Its yield is $\mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_n = \mathbf{w}$



Ambiguity

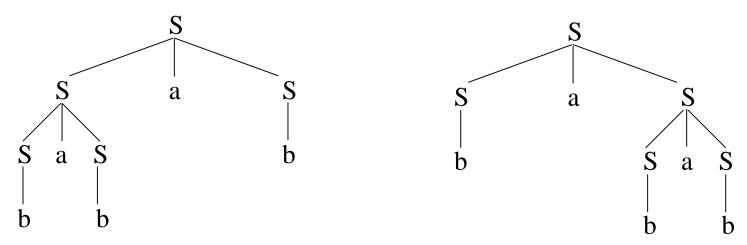
Ambiguous Grammars

- A CFG is ambiguous if it produces more than one parse tree for a string in the language.
 - i.e. there is a string in the language that is the yield of two or more parse trees.

Example:

 $S \rightarrow SaS \mid b$ is an ambiguous grammar.

There are two parse trees for the string **babab**



Ambiguity, Leftmost and Rightmost Derivations

- If there are two different parse trees for a string in the language, they must produce two different **leftmost derivations** for that string.
 - Conversely, two different leftmost derivations of a string produce two different parse trees for that string.
- Likewise for rightmost derivations.
- Thus, equivalent definitions of **ambiguous grammar** are:
- 1. A CFG is ambiguous if there is a string in the language that has two different leftmost derivations.
- 2. A CFG is ambiguous if there is a string in the language that has two different rightmost derivations.

Ambiguity, Leftmost and Rightmost Derivations

 $S \rightarrow SaS \mid b$

- There are two **leftmost** derivation sequences for the string **babab**
- 1. $S \Rightarrow_{lm} SaS \Rightarrow_{lm} SaSaS \Rightarrow_{lm} baSaS \Rightarrow_{lm} babaS \Rightarrow_{lm} babab$
- 2. $S \Rightarrow_{lm} SaS \Rightarrow_{lm} baS \Rightarrow_{lm} baSaS \Rightarrow_{lm} babaS \Rightarrow_{lm} babab$

- There are two **rightmost** derivation sequences for the string **babab**
- 1. $S \Rightarrow_{rm} SaS \Rightarrow_{rm} Sab \Rightarrow_{rm} SaSab \Rightarrow_{rm} Sabab \Rightarrow_{rm} babab$
- 2. $S \Rightarrow_{rm} SaS \Rightarrow_{rm} SaSaS \Rightarrow_{rm} SaSab \Rightarrow_{rm} Sabab \Rightarrow_{rm} babab$

Ambiguity

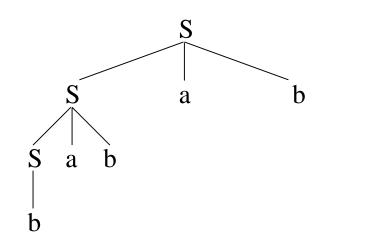
• We can create an equivalent CFG (which produces the same language) by eliminating the ambiguity from the following ambiguous CFG.

 $S \rightarrow SaS \mid b$

• In the following unambiguous CFG, we prefer left groupings.

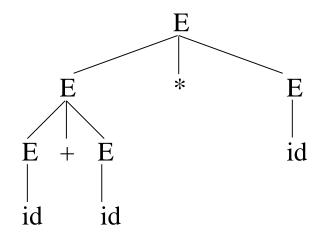
 $S \rightarrow Sab \mid b$

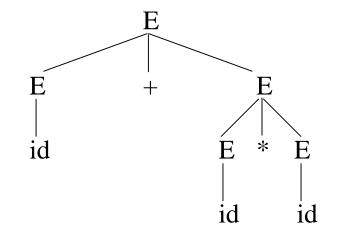
• Now, there is only one parse tree for the string **babab**



Ambiguity

- An ambiguous grammar for expressions: $E \rightarrow E+E \mid E^*E \mid E^*E \mid id \mid (E)$
- 2 parse trees, 2 leftmost and 2 rightmost derivations for the expression id+id*id





 $E \Rightarrow_{lm} E^*E \Rightarrow_{lm} E + E^*E \Rightarrow_{lm} id + E^*E$ $\Rightarrow_{lm} id + id^*E \Rightarrow_{lm} id + id^*id$

 $\begin{array}{l} E \Rightarrow_{rm} E^*E \Rightarrow_{rm} E^*id \Rightarrow_{rm} E + E^*id \\ \Rightarrow_{rm} E + id^*id \Rightarrow_{rm} id + id^*id \end{array}$

 $E \Rightarrow_{lm} E + E \Rightarrow_{lm} id + E \Rightarrow_{lm} id + E^*E$ $\Rightarrow_{lm} id + id^*E \Rightarrow_{lm} id + id^*id$

 $E \Rightarrow_{rm} E + E \Rightarrow_{rm} E + E^*E \Rightarrow_{rm} E + E^*id$ $\Rightarrow_{rm} E + id^*id \Rightarrow_{rm} id + id^*id$

Ambiguity – Operator Precedence

• Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the precedence and associativity rules.

 $E \rightarrow E+E \mid E^*E \mid E^*E \mid id \mid (E)$

• Disambiguate this grammar using the following precedence and associativity rules.

Precedence:	^ (right to left)
	* (left to right)
	+ (left to right)

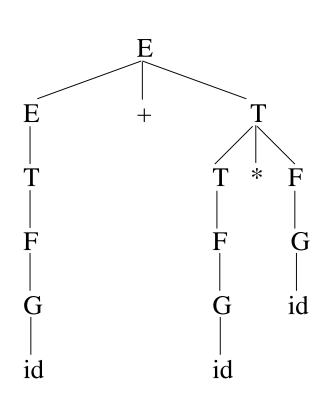
• Disambiguated grammar:

$$\begin{array}{ccccc} E \rightarrow & E + T & \mid T \\ T \rightarrow & T^*F & \mid F \\ F \rightarrow & G^{\wedge}F & \mid G \\ G \rightarrow & id & \mid (E) \end{array}$$

Ambiguity – Operator Precedence

 $\begin{array}{l} E \rightarrow \ E+T \ \mid \ T \\ T \rightarrow \ T^*F \ \mid \ F \\ F \rightarrow \ G^*F \ \mid \ G \\ G \rightarrow id \ \mid \ (E) \end{array}$

parse tree for id+id*id



Inherent Ambiguity

- Some CFLs may have both ambiguous grammars and unambiguous grammar.
 In this case, we may disambiguate their ambiguous grammars.
- Unfortunately, there are some CFLs that do not have any unambiguous grammar.
- A context free language L is said to be inherently ambiguous if all its grammars are ambiguous.

- If even one grammar for L is unambiguous, then L is an unambiguous language.
 - Our expression language is an unambiguous language.
 - Even though the first grammar for expressions is ambiguous, there is another language for the expressions language is unambiguous.

Inherent Ambiguity

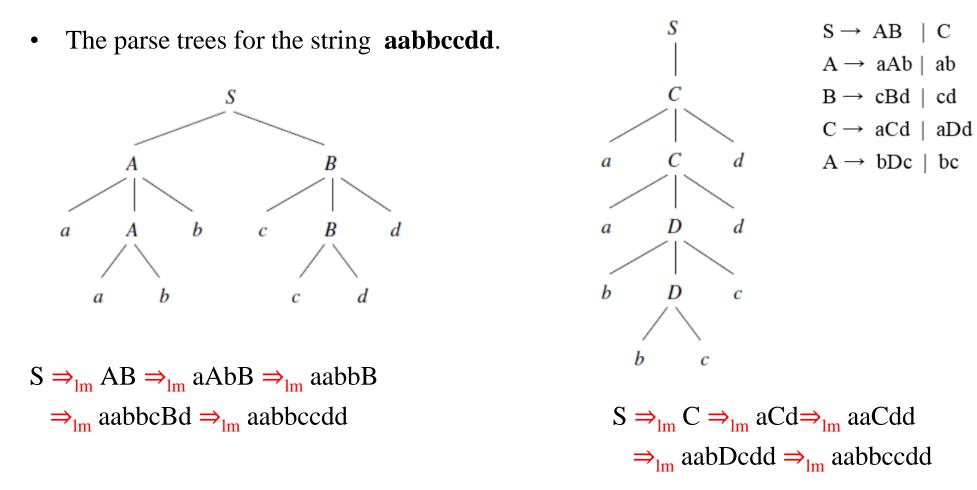
• A context free language L is said to be inherently ambiguous if all its grammars are ambiguous.

Example: Consider $L = \{a^n b^n c^m d^m : n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n : n \ge 1, m \ge 1\}$

A grammar for L is

 $S \rightarrow AB | C$ $A \rightarrow aAb | ab$ $B \rightarrow cBd | cd$ $C \rightarrow aCd | aDd$ $D \rightarrow bDc | bc$

Inherent Ambiguity



• It can be shown that every grammar for L behaves like the one above. The language L is inherently ambiguous.

CFG – Questions

- Design context-free grammars for the following languages:
- $\{0^n 1^m : n > m \ge 0\}$

 $\begin{array}{l} S \rightarrow \ 0S1 \ | \ 0A \\ A \rightarrow \ \epsilon \ | \ 0A \end{array}$

• The strings of 0's and 1's that contain equal number of 0's and 1's.

 $S \rightarrow 0S1S \mid 1S0S \mid \epsilon$

CFG – Questions

- Design context-free grammars for the following language:
- $\{0^n1^n : n \ge 0\} \cup \{1^n0^n : n \ge 0\}$
 - $S \rightarrow A \mid B$ $A \rightarrow 0A1 \mid \varepsilon$ $B \rightarrow 1B0 \mid \varepsilon$
- Is this grammar ambiguous?

YES: Two leftmost derivations for $\boldsymbol{\varepsilon}$

 $S \Rightarrow_{\operatorname{Im}} A \Rightarrow_{\operatorname{Im}} \varepsilon$ $S \Rightarrow_{\operatorname{Im}} B \Rightarrow_{\operatorname{Im}} \varepsilon$

• Disambiguate this grammar.

$$\begin{split} \mathbf{S} &\rightarrow \mathbf{A} \mid \mathbf{B} \mid \mathbf{\epsilon} \\ \mathbf{A} &\rightarrow \mathbf{0} \mathbf{A} \mathbf{1} \mid \mathbf{0} \mathbf{1} \\ \mathbf{B} &\rightarrow \mathbf{1} \mathbf{B} \mathbf{0} \mid \mathbf{1} \mathbf{0} \end{split}$$

Is Every Regular Language a CFL?

• Every regular language is a CFL.

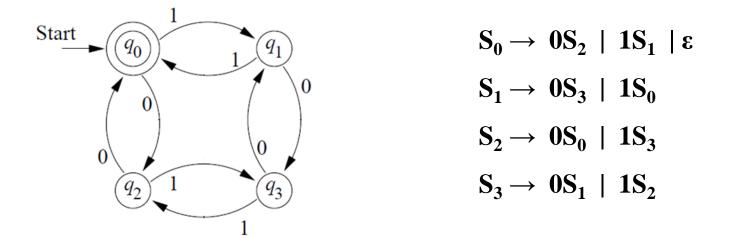
Create a CFG for a given regular language whose DFA is given:

• A DFA $M = (Q, \Sigma, \delta, q_0, F)$ is given, define the CFG G = (V, T, P, S) as follows: $V = \{ S_i | q_i \text{ is in } Q \}$ $T = \Sigma$ $P = \{ S_i \rightarrow aS_j | \delta(q_i, a) = q_j \} \cup \{ S_i \rightarrow \varepsilon | q_i \text{ is in } F \}$ $S = S_0$

Then prove the correctness.

Is Every Regular Language a CFL?

• Create a CFG for the following DFA:



- Every regular language can be defined by a right linear grammar.
- A right linear grammar rule must be in one of the following forms:
 - $\mathbf{A} \to \boldsymbol{\epsilon}$
 - $\mathbf{A} \rightarrow \mathbf{a}$
 - $A \rightarrow aB$ where A, B are variables and a is a terminal