
BBM401 Automata Theory and Formal Languages 1

Context-Free Grammars

and Context-Free Languages

• Context-Free Grammars

• Derivations

• Parse Trees

• Ambiguity

BBM401 Automata Theory and Formal Languages 2

Context-Free Grammars

• We have seen that many languages cannot be regular.

– We need to consider larger classes of languages.

– Context-Free Languages (CFLs) is a larger class of languages (larger than

regular languages).

– Every regular language is a context-free language.

• Regular expressions are used to define regular languages.

• Context-Free Grammars (CFGs) are used to define Context-Free Languages

(CFLs).

• Pushdown Automatons recognize CFLs.

• Context-Free Grammars (CFGs) played a central role in natural language processing,

and compilers.

– The syntax of a programming language is described by a CFG.

– A parser for a programming language is a pushdown automaton.

Context-Free Grammars

BBM401 Automata Theory and Formal Languages 3

• A context-free grammar is a notation for describing languages.

• CFGs are more powerful than REs, but they cannot still define all possible languages.

– CFGs define Context-Free Languages (CFLs).

– CFGs are useful to describe nested structures.

– Since every regular language is a CFL, it can be defined by a CFG.

– There are also languages that are not CFLs.

Context-Free Grammars and

Context-Free Languages

BBM401 Automata Theory and Formal Languages 4

Regular Languages

Context-Free Languages

Languages

• The language { 0n1n | n ≥ 0} is not a regular language, but it is a CFL.

– It can be defined by a CFG.

• A CFG for { 0n1n | n ≥ 0} is:

S →

S → 0S1

• 0 and 1 are terminals. ={0,1} is the alphabet of the language.

• S is a variable (or nonterminal).

• S is also the start symbol of this CFG.

• S → and S → 0S1 are productions (or rules)

CFG – Example

BBM401 Automata Theory and Formal Languages 5

Basis:

• Production S → says that is in the language.

Induction:

• Production S → 0S1 says that if w is in the language then is 0w1 is in the language.

• is in the language.

• since is in the language, 01 is in the language.

• since 01 is in the language, 0011 is in the language.

• …

• Thus, the language of this CFG is { 0n1n | n ≥ 0}

CFG – Example

BBM401 Automata Theory and Formal Languages 6

• A context-free grammar G is a quadruple

G = (V, T, P, S)

where

• V is a finite set of variables (non-terminals).

– Each variable represents a language.

• T is a finite set of terminals.

– T is the alphabet of the language defined by the CFG.

• P is a finite set of productions of the form A → , where A is a variable and

 (V∪T)*

– The left side of a production is a variable and its right side is a string of variables and

terminals.

• S is a designated variable called the start symbol.

– The start symbol is the variable whose language is defined.

Formal Definition of CFGs

BBM401 Automata Theory and Formal Languages 7

• Consider the language of palindromes

Lpal = {w* : w = wR }

• Some members of Lpal : abba bob ses tat

• Lpal is NOT regular, but Lpal is a context-free language.

• Let ={0,1} be the alphabet for Lpal.

• In this case, ,0,1,00,11,000,010,101,111,0110,… will be in Lpal.

• A CFG Gpal for Lpal is:

Gpal = ({S}, {0,1}, { S → , S → 0, S → 1, S → 0S0, S → 1S1 }, S)

• Sometimes, we use a shorthand for a list of productions with the same left side.

S → | 0 | 1 | 0S0 | 1S1

CFG – Example 2

BBM401 Automata Theory and Formal Languages 8

• Initially, we have a string that only contains the start symbol.

• We expand the start symbol using one of its productions (i.e., using a production

whose left side (head) is the start symbol).

– i.e. we replace the start symbol with a string which appears on the right side of a production

rule belongs to the start symbol.

• If the resulting string contains at least one variable, we further expand the resulting

string by replacing one of its variables with the right side (body) of one of its

productions.

– We can continue these replacements until we derive a string consisting entirely of terminals.

• The language of the grammar is the set of all strings of terminals that we can be

obtained in this way.

• Replacement of a variable (in a string) with the right side of one of its

productions is called as derivation.

Derivation

BBM401 Automata Theory and Formal Languages 9

• Suppose G = (V, T, P, S) is a CFG.

• Let A be a string of terminals and variables where A is a variable.

– i.e. and are strings in (V∪T)*, and A is V.

• Let A→ be a production of G.

• Then, we say that

A֜
𝑮
 is a derivation

• If G is understood, we just say that

A֜ is a derivation

• One derivation step can replace any variable in the string with the right side (body) of

one of its productions.

Derivation

BBM401 Automata Theory and Formal Languages 10

• We can extend the derivation (֜) relationship to represent zero or more derivation

steps.

• We use symbol ֜
∗

to denote zero or more steps of a derivation sequence.

Derivation Sequence:

Basis:

– For any string of terminals and variables, we say ֜
∗
.

– That is, any string derives itself.

Induction:

– If ֜
∗
 and ֜ , then ֜

∗
 .

– That is, if can become by zero or more steps, and one more step takes to ,

then can become by a derivation sequence.

Derivation Sequence ֜
∗

BBM401 Automata Theory and Formal Languages 11

• In other words, ֜
∗
 means that there is a sequence of strings 1, 2, … , n for

some n ≥ 1 such that

1. = 1 ,

2. = n , and

3. for i=1,2,…,n-1, we have i ֜ i+1

Derivation Sequence ֜
∗

BBM401 Automata Theory and Formal Languages 12

• Let CFG G = ({S}, {0,1}, { S→, S→0S1 }, S)

• S ֜ 0S1 ֜ 00S11 ֜ 000S111 ֜ 000111 is a derivation sequence.

– S derives 000111; or 000111 is derived from S.

• That is, S ֜
∗

000111 and also

– S ֜
∗

000S111

– S ֜
∗

00S11

– 0S1 ֜
∗

000S111

– 00S11 ֜
∗

000111

• S ֜ 0S1 ֜ 00S11 ֜ 0011 is a derivation sequence.

Derivation Sequence – Example 1

BBM401 Automata Theory and Formal Languages 13

A CFG:

S → ASB | c

A → | aA

B → | bB

Derivation Sequences of acb from S.

S ֜ ASB ֜ aASB ֜ aSB ֜ acB ֜ acbB ֜ acb

S ֜ ASB ֜ ASbB ֜ ASb ֜ Acb ֜ aAcb ֜ acb

S ֜ ASB ֜ AcB ֜ aAcB ֜ aAcbB ֜ acbB ֜ acb

• We may select any non-terminal (variable) of the string for the replacement in each

derivation step.

Derivation Sequence – Example 2

BBM401 Automata Theory and Formal Languages 14

• Leftmost Derivation always replaces the leftmost variable (in the string) with one of

its rule-bodies. ֜lm

S ֜lm ASB ֜lm aASB ֜lm aSB ֜lm acB ֜lm acbB ֜lm acb

• Rightmost Derivation always replaces the righmost variable (in the string) by one of

its rule-bodies. ֜rm

S ֜rm ASB ֜rm ASbB ֜rm ASb ֜rm Acb ֜rm aAcb ֜rm acb

Leftmost and Rightmost Derivations

BBM401 Automata Theory and Formal Languages 15

S → ASB | c

A → | aA

B → | bB

Derivation Sequences of acb from S.

S ֜ ASB ֜ aASB ֜ aSB ֜ acB ֜ acbB ֜ acb is a leftmost derivation

S ֜ ASB ֜ ASbB ֜ ASb ֜ Acb ֜ aAcb ֜ acb is a rightmost derivation

S ֜ ASB ֜ AcB ֜ aAcB ֜ aAcbB ֜ acbB ֜ acb

is NOT a leftmost or rightmost derivation.

Leftmost and Rightmost Derivations

BBM401 Automata Theory and Formal Languages 16

• Let G = (V, T, P, S) be a CFG, and (V∪T)*

• If S ֜
∗
 , we say that is a sentential form.

• If S ֜
∗

lm , we say that is a left-sentential form.

• If S ֜
∗

rm , we say that is a right-sentential form.

• L(G) is those sentential forms that are in T*.

Sentential Forms

BBM401 Automata Theory and Formal Languages 17

• If G = (V, T, P, S) is a CFG, then the language of G is

L(G) = { w T* : S ֜
∗

w }

• i.e. the set of strings of terminals (strings over T*) that are derivable from S

• If we call L(G) as a context-free language.

– Ex: L(Gpal) is a context-free language.

• For each CFL, there is a CFG, and each CFG generates a CFL.

• Every regular language is a CFL.

– That is, regular languages are a proper subset of context-free languages

The Language of a CFG

BBM401 Automata Theory and Formal Languages 18

• Gpal = ({S}, {0,1}, { S → , S → 0, S → 1, S → 0S0, S → 1S1 }, S)

• Lpal = {w* : w = wR }

Theorem: L(Gpal) = Lpal

Proof:

In order to prove this equality,

(Direction): We have to prove that every member of Lpal is also a member of L(Gpal).

(Direction): We have to prove that every member of L(Gpal) is also a member of Lpal.

The Language of a CFG – A Proof Example

BBM401 Automata Theory and Formal Languages 19

Proof: (Direction) If wLpal then wL(Gpal), i.e. Gpal can generate w

• Suppose w = wR (wLpal)

• We prove by induction on the length of w (|w|) that wL(Gpal)

Basis:

• |w|=0, or |w|=1.

• Then, w is , 0, or 1

• Since S→ , S→0 and S→1 are productions of Gpal,

we can conclude that S ֜
∗

w in all base cases.

– S ֜
∗

– S ֜
∗

0

– S ֜
∗

1

The Language of a CFG – A Proof Example
 Direction

BBM401 Automata Theory and Formal Languages 20

IH: If wLpal and |w|n then wL(Gpal) i.e. S ֜
∗

w

Induction:

• Suppose |w|=n+12

• Since w=wR, we have w=0x0, or w=1x1, and x=xR

Case1:

– If w=0x0, by IH we know that S ֜
∗

x

– Then, by the structure of the grammar S ֜ 0S0 ֜
∗

0x0 where 0x0=w

Case2:

– If w=1x1, by IH we know that S ֜
∗

x

– Then, by the structure of the grammar S ֜ 1S1 ֜
∗

1x1 where 1x1=w

The Language of a CFG – A Proof Example
 Direction

BBM401 Automata Theory and Formal Languages 21

Proof: (Direction)

• We assume that wL(Gpal) and we must show that w=wR.

• Since wL(Gpal), we have S ֜
∗

w

• We prove by induction of the length of ֜
∗

(the length of the derivation sequence)

Basis:

• The derivation S ֜
∗

w is done in one step.

• Then w must be , 0, or 1, they are all palindromes.

The Language of a CFG – A Proof Example
 Direction

BBM401 Automata Theory and Formal Languages 22

IH: If S ֜
∗

w with less than n derivation steps and 1<n then wLpal

Induction:

• Let n2, i.e. S ֜
∗

w derivation takes n steps

• Derivation must be

– S ֜ 0S0 ֜
∗

0x0 = w or

– S ֜ 1S1 ֜
∗

1x1 = w

• Since n2, and the productions S→0S0 and S→1S1 are the only productions that

allows additional steps of a derivation.

• Note that, in either case, S ֜
∗

x takes n-1 steps.

• By the inductive hypothesis, we know that x is a palindrome;

• But if so, then 0x0 and lxl are also palindromes.

• We conclude that w is a palindrome, which completes the proof.

The Language of a CFG – A Proof Example
 Direction

BBM401 Automata Theory and Formal Languages 23

BBM401 Automata Theory and Formal Languages 24

Parse Trees

• Parse trees are an alternative representation to derivations.

• If wL(G), for some CFG, then w has a parse tree, which tells us the (syntactic)

structure of w.

– If G is unambiguous, w can have only one parse tree.

– If G is ambiguous, w may have more than one parse tree.

– Ideally there should be only one parse tree for each string in the language. This means that

the grammar should be unambiguous.

• We may remove the ambiguity from some of ambiguous grammars in order to obtain

unambiguous grammars by making certain assumptions.

• Unfortunately, some CFLs are inherently ambiguous and they can be only defined by

ambiguous grammars.

Parse Trees

BBM401 Automata Theory and Formal Languages 25

• Let G = (V, T, P, S) be a CFG.

• A tree is a parse tree for G if:

1. Each interior node is labeled by a variable in V.

• The root must be labeled by the start symbol S.

2. Each leaf is labeled by a symbol in T ∪ {}.

• Any -labeled leaf is the only child of its parent.

3. If an interior node is labeled by the variable A, and its children (from left to

right) labeled X1,X2,…,Xk then A → X1X2…Xk P.

Constructing Parse Trees

BBM401 Automata Theory and Formal Languages 26

Grammar: A Derivation Sequence of acb

S → ASB | c S ֜ ASB ֜ aASB ֜ aSB ֜ acB ֜ acbB ֜ acb

A → | aA

B → | bB

Parse tree of acb

Parse Tree - Example

BBM401 Automata Theory and Formal Languages 27

S

A S B

a A c b B

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 28

S

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

S

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 29

S

A S B

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

S ֜ ASB

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 30

S

A S B

a A

S ֜ ASB ֜ aASB

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 31

S

A S B

a A

S ֜ ASB ֜ aASB ֜ aSB

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 32

S

A S B

a A c

S ֜ ASB ֜ aASB ֜ aSB ֜ acB

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 33

S

A S B

a A c b B

S ֜ ASB ֜ aASB ֜ aSB ֜ acB ֜ acbB

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

Grammar:

S → ASB | c

A → | aA

B → | bB

Parse Tree & Derivation

BBM401 Automata Theory and Formal Languages 34

S

A S B

a A c b B

S ֜ ASB ֜ aASB ֜ aSB ֜ acB ֜ acbB ֜ acb

• Each derivation step corresponds to the creation

of an inner node (by creating its children).

• The concatenation of the labels of the leaves in left-to-right order is called the

yield of the parse tree.

• The yield of the parse tree is a string of terminals.

– The set of all yields of all parse trees of a CFG G is the language of G.

• Yield Example:

a c b = acb

The Yield of a Parse Tree

BBM401 Automata Theory and Formal Languages 35

S

A S B

a A c b B

Theorem: For every parse tree, there is a unique leftmost, and a unique rightmost

derivation.

• We will prove theorem for only leftmost derivations.

• We will prove:

Part 1: If there is a parse tree with root labeled A and yield w, then A ֜
∗

lm w.

Part 2: If A ֜
∗

lm w, then there is a parse tree with root A and yield w.

Parse Trees, Leftmost and Rightmost Derivations

BBM401 Automata Theory and Formal Languages 36

Part 1: If there is a parse tree with root labeled A and yield w, then A ֜
∗

lm w.

Proof: Induction on the height of the tree.

– The height of a tree is the length of the longest path from the root to a leaf.

Basis: Height is 1. Tree looks like

– Its yield is a1…an

• A → a1…an must be a production.

• Thus, we have A ֜lm a1…an

• A ֜
∗

lm a1…an

Proof – Part 1

BBM401 Automata Theory and Formal Languages 37

A

a1 … an

Part 1: If there is a parse tree with root labeled A and yield w, then A ֜
∗

lm w.

IH: Part 1 holds for the trees with the height < h.

Induction: Take a tree whose height is h. Tree looks like

– Its yield is w1…wn

– The height of each subtree headed by Xi is less than h.

• A → X1…Xn must be a production.

• A ֜lm X1…Xn since A → X1…Xn is a production.

• Xi ֜
∗

lm wi holds for each Xi by IH.

• Thus, A ֜lm X1…Xn֜
∗

lm w1X2…Xn֜
∗

lm w1w2X3…Xn֜
∗

lm …֜
∗

lm w1w2…wn

Proof – Part 1

BBM401 Automata Theory and Formal Languages 38

A

X1 … Xn

w1 wn

Part 2: If A ֜
∗

lm w, then there is a parse tree with root A and yield w.

Proof:

• Given a leftmost derivation of a terminal string w, we need to prove the existence of a

parse tree with yield w.

• The proof is an induction on the length of the derivation.

Basis: The length of the derivation sequence A ֜
∗

lm a1…an is 1.

– That is, the derivation sequence is A ֜lm a1…an

• A → a1…an must be a production.

• Thus, there must be a parse tree looks like

– Its yield is a1…an

Proof – Part 2

BBM401 Automata Theory and Formal Languages 39

A

a1 … an

Part 2: If A ֜
∗

lm w, then there is a parse tree with root A and yield w.

IH: Part 2 holds for the leftmost derivations with fewer steps than k.

Induction: Take a derivation sequence A ֜
∗

lm w with k steps.

– The first step of the derivation sequence is A ֜lm X1…Xn

• w can be divided so the first portion w1 is derived from X1, the next w2 is derived from

X2, and so on. If Xi is a terminal, then wi = Xi.

• That is, each variable Xi has a derivation sequence Xi ֜
∗

lm wi .

– And the each derivation takes fewer steps than k steps.

• By the IH, if Xi is a variable, then there is

a parse tree with root Xi and yield wi.

• Thus, there is a parse tree.

– Its yield is w1w2…wn = w

Proof – Part 2

BBM401 Automata Theory and Formal Languages 40

A

X1 … Xn

w1 wn

BBM401 Automata Theory and Formal Languages 41

Ambiguity

• A CFG is ambiguous if it produces more than one parse tree for a string in the

language.

– i.e. there is a string in the language that is the yield of two or more parse trees.

Example:

S → SaS | b is an ambiguous grammar.

There are two parse trees for the string babab

Ambiguous Grammars

BBM401 Automata Theory and Formal Languages 42

S

S a S

S a S b

b b

S

S a S

b S a S

b b

• If there are two different parse trees for a string in the language, they must produce

two different leftmost derivations for that string.

– Conversely, two different leftmost derivations of a string produce two different parse trees

for that string.

• Likewise for rightmost derivations.

• Thus, equivalent definitions of ambiguous grammar are:

1. A CFG is ambiguous if there is a string in the language that has two different

leftmost derivations.

2. A CFG is ambiguous if there is a string in the language that has two different

rightmost derivations.

Ambiguity, Leftmost and Rightmost Derivations

BBM401 Automata Theory and Formal Languages 43

S → SaS | b

• There are two leftmost derivation sequences for the string babab

1. S ֜lm SaS ֜lm SaSaS ֜lm baSaS ֜lm babaS ֜lm babab

2. S ֜lm SaS ֜lm baS ֜lm baSaS ֜lm babaS ֜lm babab

• There are two rightmost derivation sequences for the string babab

1. S ֜rm SaS ֜rm Sab ֜rm SaSab ֜rm Sabab ֜rm babab

2. S ֜rm SaS ֜rm SaSaS ֜rm SaSab ֜rm Sabab ֜rm babab

Ambiguity, Leftmost and Rightmost Derivations

BBM401 Automata Theory and Formal Languages 44

• We can create an equivalent CFG (which produces the same language) by eliminating

the ambiguity from the following ambiguous CFG.

S → SaS | b

• In the following unambiguous CFG, we prefer left groupings.

S → Sab | b

• Now, there is only one parse tree for the string babab

Ambiguity

BBM401 Automata Theory and Formal Languages 45

S

S a b

S a b

b

• An ambiguous grammar for expressions: E → E+E | E*E | E^E | id | (E)

• 2 parse trees, 2 leftmost and 2 rightmost derivations for the expression id+id*id

E ֜lm E*E ֜lm E+E*E ֜lm id+E*E E ֜lm E+E ֜lm id+E ֜lm id+E*E

֜lm id+id*E ֜lm id+id*id ֜lm id+id*E ֜lm id+id*id

E ֜rm E*E ֜rm E*id ֜rm E+E*id E ֜rm E+E ֜rm E+E*E ֜rm E+E*id

֜rm E+id*id ֜rm id+id*id ֜rm E+id*id ֜rm id+id*id

Ambiguity

BBM401 Automata Theory and Formal Languages 46

E

E * E

E + E id

id id

E

E + E

id E * E

id id

• Ambiguous grammars (because of ambiguous operators) can be disambiguated

according to the precedence and associativity rules.

E → E+E | E*E | E^E | id | (E)

• Disambiguate this grammar using the following precedence and associativity rules.

Precedence: ^ (right to left)

* (left to right)

+ (left to right)

• Disambiguated grammar:

E → E+T | T

T → T*F | F

F → G^F | G

G → id | (E)

Ambiguity – Operator Precedence

BBM401 Automata Theory and Formal Languages 47

E → E+T | T

T → T*F | F

F → G^F | G

G → id | (E)

parse tree for id+id*id

Ambiguity – Operator Precedence

BBM401 Automata Theory and Formal Languages 48

E

E + T

T T * F

F F G

G G id

id id

• Some CFLs may have both ambiguous grammars and unambiguous grammar.

– In this case, we may disambiguate their ambiguous grammars.

• Unfortunately, there are some CFLs that do not have any unambiguous grammar.

• A context free language L is said to be inherently ambiguous if all its grammars

are ambiguous.

• If even one grammar for L is unambiguous, then L is an unambiguous language.

– Our expression language is an unambiguous language.

– Even though the first grammar for expressions is ambiguous, there is another language for

the expressions language is unambiguous.

Inherent Ambiguity

BBM401 Automata Theory and Formal Languages 49

• A context free language L is said to be inherently ambiguous if all its grammars

are ambiguous.

Example: Consider L = {anbncmdm : n≥1, m≥1} ∪ {anbmcmdn : n≥1, m≥1}

A grammar for L is

S → AB | C

A → aAb | ab

B → cBd | cd

C → aCd | aDd

D → bDc | bc

Inherent Ambiguity

BBM401 Automata Theory and Formal Languages 50

• The parse trees for the string aabbccdd.

S ֜lm AB ֜lm aAbB ֜lm aabbB

֜lm aabbcBd ֜lm aabbccdd S ֜lm C ֜lm aCd֜lm aaCdd

֜lm aabDcdd ֜lm aabbccdd

• It can be shown that every grammar for L behaves like the one above. The language L

is inherently ambiguous.

Inherent Ambiguity

BBM401 Automata Theory and Formal Languages 51

• Design context-free grammars for the following languages:

• {0n1m : n>m≥0}

S → 0S1 | 0A

A → | 0A

• The strings of 0’s and 1’s that contain equal number of 0’s and 1’s.

S → 0S1S | 1S0S |

CFG – Questions

BBM401 Automata Theory and Formal Languages 52

• Design context-free grammars for the following language:

• {0n1n : n≥0} ∪ {1n 0n : n≥0}

S → A | B

A → 0A1 |

B → 1B0 |

• Is this grammar ambiguous?

YES: Two leftmost derivations for

S ֜lm A ֜lm S ֜lm B ֜lm

• Disambiguate this grammar.

S → A | B |

A → 0A1 | 01

B → 1B0 | 10

CFG – Questions

BBM401 Automata Theory and Formal Languages 53

• Every regular language is a CFL.

Create a CFG for a given regular language whose DFA is given:

• A DFA M = (Q,Σ,δ,q0,F) is given, define the CFG G = (V,T,P,S) as follows:

V = { Si | qi is in Q }

T = Σ

P = { Si → aSj | δ(qi,a) = qj } ∪ { Si → ε | qi is in F}

S = S0

Then prove the correctness.

Is Every Regular Language a CFL?

BBM401 Automata Theory and Formal Languages 54

• Create a CFG for the following DFA:

S0 → 0S2 | 1S1 | ε

S1 → 0S3 | 1S0

S2 → 0S0 | 1S3

S3 → 0S1 | 1S2

• Every regular language can be defined by a right linear grammar.

• A right linear grammar rule must be in one of the following forms:

A → ε

A → a

A → aB where A,B are variables and a is a terminal

Is Every Regular Language a CFL?

BBM401 Automata Theory and Formal Languages 55

