Context-Free Grammars
and Context-Free Languages

e Context-Free Grammars
* Derivations

 Parse Trees

« Ambiguity

BBM401 Automata Theory and Formal Languages

Context-Free Grammars

BBM401 Automata Theory and Formal Languages

Context-Free Grammars

We have seen that many languages cannot be regular.
— We need to consider larger classes of languages.

— Context-Free Languages (CFLs) is a larger class of languages (larger than
regular languages).

— Every regular language is a context-free language.
Regular expressions are used to define regular languages.

Context-Free Grammars (CFGs) are used to define Context-Free Languages
(CFLs).

Pushdown Automatons recognize CFLs.

Context-Free Grammars (CFGs) played a central role in natural language processing,
and compilers.

— The syntax of a programming language is described by a CFG.
— A parser for a programming language Is a pushdown automaton.

BBM401 Automata Theory and Formal Languages

Context-Free Grammars and
Context-Free Languages

« A context-free grammar is a notation for describing languages.

» CFGs are more powerful than REs, but they cannot still define all possible languages.
— CFGs define Context-Free Languages (CFLs).
— CFGs are useful to describe nested structures.
— Since every regular language is a CFL, it can be defined by a CFG.

— There are also languages that are not CFLs.

Languages

Context-Free Languages

BBM401 Automata Theory and Formal Languages

CFG - Example

The language { 0"1" | n = 0} is not a regular language, but it is a CFL.
— It can be defined by a CFG.

A CFG for {0"1" | n >0} is:

S—¢

S — 0S1

0 and 1 are terminals. £ ={0,1} is the alphabet of the language.
S is a variable (or nonterminal).
S is also the start symbol of this CFG.

S — ¢ and S — 0S1 are productions (or rules)

BBM401 Automata Theory and Formal Languages

CFG - Example

Basis:

« Production S — g says that € is in the language.

Induction:

* Production S — 0S1 says that if w is in the language then is Owl is in the language.

« ¢gisinthe language.
 since ¢ Is In the language, 01 is in the language.
« since 01 is in the language, 0011 is in the language.

« Thus, the language of this CFG is { 0"1" | n > 0}

BBM401 Automata Theory and Formal Languages

Formal Definition of CFGs

A context-free grammar G is a quadruple
G=(,T,P,YS)
where

V is a finite set of variables (non-terminals).
— Each variable represents a language.

T is a finite set of terminals.
— T s the alphabet of the language defined by the CFG.

P is a finite set of productions of the form A — a , where A is a variable and
o € (VUT)*
— The left side of a production is a variable and its right side is a string of variables and
terminals.

S is a designated variable called the start symbol.
— The start symbol is the variable whose language is defined.

BBM401 Automata Theory and Formal Languages

CFG — Example 2

Consider the language of palindromes
Loy ={weZ*: w=wR}
Some members of L, : abba bob ses tat
L Is NOT regular, but L, is a context-free language.

Let X ={0,1} be the alphabet for L.

In this case, ¢,0,1,00,11,000,010,101,111,0110,... will be in L

A CFG Gpa, for L, Is:
=({S},{0,1},{S—>¢S—>0,5S—1,5—-050,S—1S1},S)

Sometimes, we use a shorthand for a list of productions with the same left side.
S—¢€|0]1]0S0|1S1

BBM401 Automata Theory and Formal Languages

Derivation

Initially, we have a string that only contains the start symbol.

We expand the start symbol using one of its productions (i.e., using a production
whose left side (head) is the start symbol).

— 1.e. we replace the start symbol with a string which appears on the right side of a production
rule belongs to the start symbol.

If the resulting string contains at least one variable, we further expand the resulting
string by replacing one of its variables with the right side (body) of one of its
productions.

— We can continue these replacements until we derive a string consisting entirely of terminals.

The language of the grammar is the set of all strings of terminals that we can be
obtained in this way.

Replacement of a variable (in a string) with the right side of one of its
productions is called as derivation.

BBM401 Automata Theory and Formal Languages 9

Derivation =

Suppose G=(V, T, P,S) isa CFG.

Let o AP be a string of terminals and variables where A is a variable.
— l.e. aoand B are strings in (VUT)*, and Ais V.

Let A—y Dbe a production of G.

Then, we say that
a AP 2 ayB Isaderivation
If G is understood, we just say that

o AB = ayB Isaderivation

One derivation step can replace any variable in the string with the right side (body) of
one of its productions.

BBM401 Automata Theory and Formal Languages 10

*
Derivation Sequence =

» We can extend the derivation (=) relationship to represent zero or more derivation
steps.

« We use symbol = to denote zero or more steps of a derivation sequence.

Derivation Sequence:
Basis:

— For any string o of terminals and variables, we say a = a.
— That is, any string derives itself.

Induction:

~Ifa=>pad B>y, thena=>7y.

— That s, if o can become 3 by zero or more steps, and one more step takes 3 to v,
then o can become y by a derivation sequence.

BBM401 Automata Theory and Formal Languages

11

*
Derivation Sequence =

* In other words, o = B means that there is a sequence of strings v4, v,, ... , v, for
some n > 1 such that

1. a =1y,
2. B =vy,,and

3. for i=1,2,...,n-1, we have vy, = 7y,

BBM401 Automata Theory and Formal Languages

12

Derivation Sequence — Example 1

Let CFG G = ({S}, {0,1}, { S—>¢, S—0S1}, S)

S = 0S1 = 00S11 = 000S111 = 000111 is a derivation sequence.
— Sderives 000111; or 000111 is derived from S.

Thatis, S — 000111 and also
S = 0005111
_ S = 00S11
_ 0S1 = 000S111
_ 00S11 = 000111

S = 0S1 = 00S11 = 0011 is a derivation sequence.

BBM401 Automata Theory and Formal Languages

13

Derivation Sequence — Example 2

A CFG:
S—ASB | ¢
A—eg | aA
B—¢| bB

Derivation Sequences of acb from S.
S = ASB = aASB = aSB = acB = achB = acb
S = ASB = ASbB = ASb = Acb = aAcb = acb
S = ASB = AcB = aAcB = aAcbhB = acbhB = acb

« We may select any non-terminal (variable) of the string for the replacement in each
derivation step.

BBM401 Automata Theory and Formal Languages

14

Leftmost and Rightmost Derivations

Leftmost Derivation always replaces the leftmost variable (in the string) with one of
its rule-bodies. =,

S =,,ASB =, aASB =,,aSB =, acB =, achB =, acb

Rightmost Derivation always replaces the righmost variable (in the string) by one of
its rule-bodies. =,

S=.,ASB=_ASbB =, ASb = __ Acb =, aAcb =, acb

BBM401 Automata Theory and Formal Languages 15

Leftmost and Rightmost Derivations

S—ASB | ¢
A—eg | aA
B—¢| bB

Derivation Sequences of acb from S.
S = ASB = aASB = aSB = acB = achB = acb

S = ASB = AShbB = ASb = Acb = aAcb = acb

S = ASB = AcB = aAcB = aAcbB = acbhB = acb
IS NOT a leftmost or rightmost derivation.

BBM401 Automata Theory and Formal Languages

Is a leftmost derivation

IS a rightmost derivation

16

Sentential Forms

LetG=(V,T,P,S)beaCFG, and ae(VUT)*

If S=a , we say that o Is a sentential form.

If S=,, a,wesaythata isa left-sentential form.

If S =*>rm a , we say that a iIs a right-sentential form.

L(G) is those sentential forms that are in T*.

BBM401 Automata Theory and Formal Languages

17

The Language of a CFG

IfG=(V,T,P,S)isaCFG, then the language of G is
L(G)={weT*: S=>w}

I.e. the set of strings of terminals (strings over T*) that are derivable from S

If we call L(G) as a context-free language.
— Ex:L(G,,) Is a context-free language.

For each CFL, there is a CFG, and each CFG generates a CFL.

Every regular language is a CFL.
— That is, regular languages are a proper subset of context-free languages

BBM401 Automata Theory and Formal Languages

18

The Language of a CFG — A Proof Example

+ Gpa=({S}{0,1},{S—¢5—0,S—1,5—-0S0,S—1S1},S)

* Ly ={weZ*: w=wR}
Theorem: L(G,,) = Ly,

Proof:
In order to prove this equality,

(= Direction): We have to prove that every member of L, is also a member of L(G,)).

pal
(c Direction): We have to prove that every member of L(G,,) is also a member of L.

BBM401 Automata Theory and Formal Languages 19

The Language of a CFG — A Proof Example

> Direction

Proof: (2 Direction) If wel ,, then wel(G,,), I.e. G, can generate w

pal
* Suppose w =wR (wel,)

- We prove by induction on the length of w (|w|) that welL(G,,)

Basis:
« |w|=0, or |w|=1.
e Then,wiseg, 0,0rl

« Since S—¢, S—0and S—1 are productions of G,

we can conclude that S = w in all base cases.
— S =*> €
_ S50
_s=1

BBM401 Automata Theory and Formal Languages

20

The Language of a CFG — A Proof Example

> Direction

IH: Ifwel,, and|w|<n then wel(G,) ie.S>w

Induction:
* Suppose |w|=n+1>2
« Since w=wR, we have w=0x0, or w=1x1, and x=xR
Casel:
— 1f w=0x0, by IH we know that S N X
— Then, by the structure of the grammar S = 0S0 = 0x0 where 0x0=w
Case2:
— Ifw=1x1, by IH we know that S = X

— Then, by the structure of the grammar S = 1S1 = 1x1 where 1x1=w

BBM401 Automata Theory and Formal Languages

The Language of a CFG — A Proof Example

c Direction

Proof: (< Direction)

We assume that we L (G,) and we must show that w=w~,
Since wel(G,,), we have S = W

We prove by induction of the length of N (the length of the derivation sequence)

Basis:

The derivation S = w is done in one step.

Then w must be g, 0, or 1, they are all palindromes.

BBM401 Automata Theory and Formal Languages

22

The Language of a CFG — A Proof Example

c Direction

IH: If S= w with less than n derivation steps and 1<n then wel
Induction:

 Letn>2,i.e.S = w derivation takes n steps
« Derivation must be

_ S=0S0=>0x0=w or

_ S=1S1=1xl=w
« Since n>2, and the productions S—0S0 and S—1S1 are the only productions that
allows additional steps of a derivation.
« Note that, in either case, S = x takes n-1 steps.
« By the inductive hypothesis, we know that x is a palindrome;
« But if so, then 0x0 and IxI are also palindromes.
« We conclude that w is a palindrome, which completes the proof.

BBM401 Automata Theory and Formal Languages

23

Parse Trees

BBM401 Automata Theory and Formal Languages

24

Parse Trees

Parse trees are an alternative representation to derivations.

If welL(G), for some CFG, then w has a parse tree, which tells us the (syntactic)
structure of w.

— If G is unambiguous, w can have only one parse tree.
— If G is ambiguous, w may have more than one parse tree.

— ldeally there should be only one parse tree for each string in the language. This means that
the grammar should be unambiguous.

* We may remove the ambiguity from some of ambiguous grammars in order to obtain
unambiguous grammars by making certain assumptions.

» Unfortunately, some CFLs are inherently ambiguous and they can be only defined by
ambiguous grammars.

BBM401 Automata Theory and Formal Languages 25

Constructing Parse Trees

LetG=(V, T,P,S) beaCFG.

A tree is a parse tree for G if:

1. Each interior node is labeled by a variable in V.
« The root must be labeled by the start symbol S.

2. Each leaf is labeled by a symbol in T U {e}.
 Any g-labeled leaf is the only child of its parent.

3. Ifaninterior node is labeled by the variable A, and its children (from left to
right) labeled X, X,,....X, then A — X, X,...X, € P.

BBM401 Automata Theory and Formal Languages 26

Grammar:
S—ASB | c

A—c¢ | aA
B—e¢ | bB

Parse tree of acb

Parse Tree - Example

A Derivation Sequence of acb
S = ASB = aASB = aSB = acB = acbhB = acb

A/z\ B

BBM401 Automata Theory and Formal Languages 27

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S

BBM401 Automata Theory and Formal Languages

28

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S = ASB

BBM401 Automata Theory and Formal Languages

29

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S = ASB = aASB

A/z’\ B

BBM401 Automata Theory and Formal Languages

30

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S = ASB = aASB = aSB

A/z’\ B

BBM401 Automata Theory and Formal Languages

31

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S = ASB = aASB = aSB = acB

A/z\ B

BBM401 Automata Theory and Formal Languages

32

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S = ASB = aASB = aSB = acB = achB

A/z\ B

BBM401 Automata Theory and Formal Languages

33

Grammar:
S—ASB | c

A—e | aA
B—e¢ | bB

Parse Tree & Derivation

« Each derivation step corresponds to the creation
of an inner node (by creating its children).

S = ASB = aASB = aSB = acB = achB = acb

A/z\ B

BBM401 Automata Theory and Formal Languages 34

The Yield of a Parse Tree

The concatenation of the labels of the leaves in left-to-right order is called the
yield of the parse tree.

The yield of the parse tree is a string of terminals.
— The set of all yields of all parse trees of a CFG G is the language of G.

Yield Example:

agecheg=ach

BBM401 Automata Theory and Formal Languages

35

Parse Trees, Leftmost and Rightmost Derivations

Theorem: For every parse tree, there is a unique leftmost, and a unique rightmost
derivation.

« We will prove theorem for only leftmost derivations.

« We will prove:

Part 1: If there is a parse tree with root labeled A and yield w, then A :*>,m W.

Part 2: If A :*>,m w, then there is a parse tree with root A and yield w.

BBM401 Automata Theory and Formal Languages

36

Proof — Part 1

Part 1: If there is a parse tree with root labeled A and yield w, then A :*>,m W.

Proof: Induction on the height of the tree.
— The height of a tree is the length of the longest path from the root to a leaf.

Basis: Heightis 1. Tree looks like A

~ Itsyield is a,...a, N

a, ... a

« A — a,...a, must be a production.

e Thus, we have A =, a,...a,

*
i A ilm aloooan

BBM401 Automata Theory and Formal Languages

37

Proof — Part 1

Part 1: If there is a parse tree with root labeled A and yield w, then A :*>,m W.
IH: Part 1 holds for the trees with the height < h.

Induction: Take a tree whose height is h. Tree looks like A

~ ltsyield is w,...w, N

— The height of each subtree headed by X; is less than h. Xy oo

n

A

X
« A — X,...X, must be a production. Wi Wh
« A= X....X, since A — X;...X, IS a production.

« X :*>,m w; holds for each X; by IH.

o Thus, A=, X..X, =, WX X = WWo X5 o X = 000 = Wi Wouo W,

BBM401 Automata Theory and Formal Languages 38

Proof — Part 2

Part 2: If A :*>,m w, then there is a parse tree with root A and yield w.

Proof:

« Given a leftmost derivation of a terminal string w, we need to prove the existence of a
parse tree with yield w.

« The proof is an induction on the length of the derivation.

Basis: The length of the derivation sequence A =, a;...a, Is 1.
— That is, the derivation sequence is A =, a,...a,

A — a,...a, must be a production.

A
« Thus, there must be a parse tree looks like /\

— Itsyieldis a;...a, a; ... a,

BBM401 Automata Theory and Formal Languages 39

Proof — Part 2

Part 2: If A :*>,m w, then there is a parse tree with root A and yield w.

IH: Part 2 holds for the leftmost derivations with fewer steps than k.

Induction: Take a derivation sequence A :*>|m w with k steps.
— The first step of the derivation sequence is A =, X;...X,
W can be divided so the first portion w, is derived from X, the next w, is derived from
X,, and so on. If X; is a terminal, then w; = X.
« Thatis, each variable X has a derivation sequence X; :*>,m W; .
— And the each derivation takes fewer steps than k steps.
« Bythe IH, if X is a variable, then there is

a parse tree with root X; and yield w;. A
« Thus, there Is a parse tree. X, N
D
— ltsyield is w,w,...w, =w /\
Wl Wn

BBM401 Automata Theory and Formal Languages 40

Ambiguity

BBM401 Automata Theory and Formal Languages

4

Ambiguous Grammars

« A CFG isambiguous if it produces more than one parse tree for a string in the
language.
— i.e. thereis a string in the language that is the yield of two or more parse trees.

Example:

S—SaS | b IS an ambiguous grammar.

There are two parse trees for the string babab

S/j’\ S S/aS’\ S
¢ L | <IN
.]
b b b b

BBM401 Automata Theory and Formal Languages

42

1.

Ambiguity, Leftmost and Rightmost Derivations

If there are two different parse trees for a string in the language, they must produce
two different leftmost derivations for that string.

— Conversely, two different leftmost derivations of a string produce two different parse trees
for that string.

Likewise for rightmost derivations.

Thus, equivalent definitions of ambiguous grammar are:

A CFG is ambiguous if there is a string in the language that has two different
leftmost derivations.

A CFG is ambiguous if there is a string in the language that has two different
rightmost derivations.

BBM401 Automata Theory and Formal Languages 43

Ambiguity, Leftmost and Rightmost Derivations

S—SaS | b

There are two leftmost derivation sequences for the string babab
S =, SaS =, SaSaS =, baSaS =, babaS =, babab

S =,,SaS =, baS =, baSaS =, babaS =, babab

There are two rightmost derivation sequences for the string babab
S=,,SaS =,,Sab =, SaSab =, Sabab =, babab

S=,,SaS =, SaSaS =, SaSab =, Sabab =, babab

BBM401 Automata Theory and Formal Languages

44

Ambiguity

We can create an equivalent CFG (which produces the same language) by eliminating
the ambiguity from the following ambiguous CFG.

S—SaS | b
In the following unambiguous CFG, we prefer left groupings.
S—Sab | b

Now, there is only one parse tree for the string babab

BBM401 Automata Theory and Formal Languages 45

Ambiguity

« An ambiguous grammar for expressions: E— E+E | E*E | E*E | id | (E)

« 2 parse trees, 2 leftmost and 2 rightmost derivations for the expression id+id*id

E/f/\ E
VAN |
E + E id
i‘d ‘Id

E =, E*E =, E+E*E =, id+E*E

=, id+Hd*E =, id+id*id

E= _E*E=_E*d=, E+E*id
= E+id*id = id+id*id

e

E
_\ /TN
'd T
id id
E= E+tE = Id+tE = Id+E*E

=, id+d*E =, id+id*id

E= E+E =, E+E*E =, E+E*id
= E+id*id = id+id*id

BBM401 Automata Theory and Formal Languages

46

Ambiguity — Operator Precedence

Ambiguous grammars (because of ambiguous operators) can be disambiguated
according to the precedence and associativity rules.

E— E+E | E*E | E~E | id | (E)
Disambiguate this grammar using the following precedence and associativity rules.

Precedence: A (right to left)
* (left to right)
+ (left to right)

Disambiguated grammar:

E— E+T | T
T—> T*F | F
F— G | G

G—id | (E)

BBM401 Automata Theory and Formal Languages

Ambiguity — Operator Precedence

E— E+T | T

T— T*F | F

F— G"F | G .

G —id | (E)

| E/+N T
/TN

T T * F

parse tree for id+id*id ‘ ‘
F F c‘s
G G id

id id

BBM401 Automata Theory and Formal Languages

48

Inherent Ambiguity

Some CFLs may have both ambiguous grammars and unambiguous grammar.
— In this case, we may disambiguate their ambiguous grammars.

Unfortunately, there are some CFLs that do not have any unambiguous grammar.

A context free language L is said to be inherently ambiguous if all its grammars
are ambiguous.

If even one grammar for L is unambiguous, then L is an unambiguous language.
— Our expression language is an unambiguous language.

— Even though the first grammar for expressions is ambiguous, there is another language for
the expressions language is unambiguous.

BBM401 Automata Theory and Formal Languages 49

Inherent Ambiguity

« A context free language L is said to be inherently ambiguous if all its grammars
are ambiguous.

Example: Consider L ={a""c™d™:n=>1, m=1} u {a"bmc™d": n>1, m>1}

A grammar for L is

S— AB | C
A — aAb | ab
B— cBd | cd
C — aCd | abd

D — bDc | bc

BBM401 Automata Theory and Formal Languages

S =,,AB =, aAbB =, aabbB
=, adbbcBd =, aabbccdd

Inherent Ambiguity

The parse trees for the string aabbccdd.

a

\ \

/\

3

B

P
e ‘\
-

C

B

/ N\

c

Is inherently ambiguous.

d

('f a

!

) D
/N
b C

BBM401 Automata Theory and Formal Languages

)/

d

d

C

S— AB | C
A — aAb| ab
B— cBd | cd
C — aCd | aDd
A — bDc | bc

S =,,C=,,aCd=,, aaCdd
=, abDcdd = aabbccdd

It can be shown that every grammar for L behaves like the one above. The language L

51

CFG — Questions

Design context-free grammars for the following languages:

{0"1™ : n>m=>0}

S— 0S1 | OA
A— ¢ | OA

The strings of 0’s and 1’s that contain equal number of 0’s and 1’s.

S — 0S1S | 1S0S | ¢

BBM401 Automata Theory and Formal Languages

52

CFG — Questions

Design context-free grammars for the following language:
{0"1": n>0} U {1"0": n>0}

S— A | B
A—0Al | ¢
B—1B0 | ¢

Is this grammar ambiguous?
YES: Two leftmost derivations for g
S=, A=, ¢ S=,,B=>,¢

Disambiguate this grammar.
S— A|B |¢
A — 0Al1 | 01
B — 1B0 | 10

BBM401 Automata Theory and Formal Languages

53

Is Every Regular Language a CFL?

« Every regular language is a CFL.

Create a CFG for a given regular language whose DFA is given:
« ADFA M=(Q.,%,5,qyF) is given, define the CFG G = (V,T,P,S) as follows:
V={S[giisinQ}
T=X
P={S —aS;|d@0,a)=0g}u{S—e¢l|qisinF}
S=S,

Then prove the correctness.

BBM401 Automata Theory and Formal Languages

54

Is Every Regular Language a CFL?

Create a CFG for the following DFA:

Start () S, — 0S,
(4 \\Jl/

S, — 0S,
\ \) S, — 0S,
@_}/@ S, — 0S,

1

1S, | ¢
1S,
1S,
1S,

Every regular language can be defined by a right linear grammar.

A right linear grammar rule must be in one of the following forms:

A—c¢g
A—a

A — aB where A,B are variables and a is a terminal

BBM401 Automata Theory and Formal Languages

55

