
BBM401 Automata Theory and Formal Languages 1

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form if every rule is of

the form

A → BC

A → a

where a is any terminal and A, B, and C are any variables — except

that B and C may not be the start variable.

In addition, we permit the rule S →  where S is the start variable if

the language of the grammar contains  .

Chomsky Normal Form

BBM401 Automata Theory and Formal Languages 2

Theorem: Every (non-empty) context free language can be generated by a context-

free grammar in Chomsky normal form.

• In order to obtain an equivalent grammar in Chomsky normal form for any given

CFG G, we will have the following conversion steps:

1. Add a new start variable S0 and a new production rule S0→S where S is the

original start variable of G.

2. Eliminate -productions (productions of the form A→). After this conversion

step, only one -production (S0→) if the language of G contains .

3. Eliminate unit productions (productions of the form A→B where A and B are

variables).

4. Eliminate useless symbols. Useless symbols do not appear in any derivation of a

terminal string from the start symbol.

5. Convert the remaining rules into Chomsky normal form adding new variables

and rules.

Chomsky Normal Form

BBM401 Automata Theory and Formal Languages 3

• We add a new start variable S0 and the rule S0→S , where S was the original start

variable.

• This change guarantees that the start variable does not occur on the right-hand side of

a rule.

• The new grammar is equivalent to the original grammar (i.e they generate same

language).

Example:

S →  | 0S1 S0 → S

S →  | 0S1

Add A New Start Variable

BBM401 Automata Theory and Formal Languages 4

equivalent grammars

• In order to remove -productions, first we will determine nullable variables.

• A variable A is said to nullable if A ֜
∗
 .

• We can compute nullable(G), the set of all nullable symbols of a CFG G=(V,T,P,S) as

follows:

Basis:

nullable(G) = {A : A→ ∈ P}

Induction:

If {C1,…,Ck} ⊆ nullable(G) and A→ C1,…,Ck ∈ P,

then nullable(G) = nullable(G) ∪ {A}

Eliminate -productions
nullable variables

BBM401 Automata Theory and Formal Languages 5

• A CFG G1

S0 → S

S →  | 0S1  nullable(G1) = {S, S0}

• A CFG G2

S0 → S

S → AB

A → aAA | 

B → bBB |   nullable(G2) = {A, B, S, S0}

Eliminate -productions
nullable variables: Example

BBM401 Automata Theory and Formal Languages 6

Steps for -production elimination for CFG G:

1. Find nullable(G), the set of all nullable symbols of G.

2. Generate new rules from a rule R by eliminating nullable variables from its right-

side, if nullable variables appears on its right-side.

– The number of new rules depends on the number of nullable variables on the

right-side. If there are k nullable variables, we have to generate 2k-1 new rules.

– Generated new rule is added if it is not already among the rules.

• If R→A is a rule and A is the only nullable variable on A, generate and

add the new rule R→.

• If R→AB is a rule and A and B are only nullable variables on AB ,

generate and add the new rules R→B, R→A and R→.

• …

3. Remove all -productions A→ (except S0→) from the rules.

The new grammar that is obtained by eliminating -productions is equivalent to the original

grammar (i.e they generate same language).

Eliminate -productions

BBM401 Automata Theory and Formal Languages 7

S0 → S S →  | 0S1

• nullable(G) = {S, S0}

• Since S is nullable,

– generate S0→ from S0 → S

• Since S is nullable,

– generate S→01 from S→0S1

• After all generations, we have the following rules:

S0 →  | S

S →  | 01 | 0S1

• Remove all -productions except S0→, our final grammar is:

S0 →  | S

S → 01 | 0S1

Eliminate -productions: Example

BBM401 Automata Theory and Formal Languages 8

equivalent grammars

S0 → S S → AB A → aAA |  B → bBB | 

• nullable(G) = {A, B, S, S0}

• Generate new rules:

S0 →  from S0 → S

S → A S → B S →  from S → AB

A → aA A → aA A → a from A → aAA

B → bB B → bB B → b from B → bBB

• Remove -productions

S0 → S | 

S → AB | A | B

A → aAA | aA | a

B → bBB | bB | b

Eliminate -productions: Example

BBM401 Automata Theory and Formal Languages 9

X

X

X

XX

equivalent grammars

• A → B is a unit production, whenever A and B are variables.

• Unit productions can be eliminated from a grammar to obtain a grammar without unit

productions.

– The resulting grammar that is obtained by eliminating unit productions will be

equivalent to the original grammar.

• We will remove unit productions one by one from the grammar.

• Remove a unit production A → B from the grammar.

– Then, whenever a rule B→u appears, we add the rule A→u unless this was a

unit rule previously removed.

• We repeat these steps until we eliminate all unit rules.

Eliminate Unit Productions

BBM401 Automata Theory and Formal Languages 10

S0 →  | S

S → 01 | 0S1

• Unit productions: { S0→S }

• Remove S0→S,

– Add S0→01 and S0→0S1

• The resulting grammar after eliminating unit productions.

S0 →  | 01 | 0S1

S → 01 | 0S1

Eliminate Unit Productions: Example

BBM401 Automata Theory and Formal Languages 11

equivalent grammars

S0 → S | 

S → AB | A | B

A → aAA | aA | a

B → bBB | bB | b

– Unit productions: { S0→S, S→A, S→B }

– Remove S→B, add S → bBB | bB | b

– Remove S→A, add S → aAA | aA | a

– Remove S0→S, add S0→ AB | aAA | aA | a | bBB | bB | b

• The resulting grammar after eliminating unit productions.

S0 →  | AB | aAA | aA | a | bBB | bB | b
S → AB | aAA | aA | a | bBB | bB | b

A → aAA | aA | a

B → bBB | bB | b

Eliminate Unit Productions: Example

BBM401 Automata Theory and Formal Languages 12

equivalent grammars

E → E+T | T

T → T*F | F

F → G^F | G

G → id | (E)

– Unit productions: { E→T, T→F, F→G }

– Remove F→G, add F → id | (E)

– Remove T→F, add T → G^F | id | (E)

– Remove E→T, add E→ T*F | G^F | id | (E)

• The resulting grammar after eliminating unit productions.

E → E+T | T*F | G^F | id | (E)

T → T*F | G^F | id | (E)

F → G^F | id | (E)

G → id | (E)

Eliminate Unit Productions: Example

BBM401 Automata Theory and Formal Languages 13

equivalent grammars

E → E+T | T

T → T*F | F

F → G^F | G

G → id | (E)

– Unit productions: { E→T, T→F, F→G }

– Remove E→T, add E → T*F | F

– Remove T→F, add T → G^F | G

– Remove F→G, add F → id | (E)

– Remove newly introduced unit productions

– Remove E→F, add E → G^F | id | (E)

– Remove T→G, add T → id | (E)

• The resulting grammar after eliminating unit productions.

E → E+T | T*F | G^F | id | (E)

T → T*F | G^F | id | (E)

F → G^F | id | (E)

G → id | (E)

Eliminate Unit Productions: Example

BBM401 Automata Theory and Formal Languages 14

equivalent grammars

Eliminating unit productions in different order do not change the result.

• A symbol X is useful for a grammar G=(V,T,P,S), if there is a derivation

S ֜
∗
X֜

∗
w

for a terminal string w.

• Symbols that are not useful are called useless.

• A symbol X is generating if X֜
∗

w for some string w∈T*.

• A symbol X is reachable if S֜
∗
X for some {,}⊆(V∪T)*.

• If we eliminate non-generating symbols first, and then non-reachable symbols,

we will be left with only useful symbols.

– The grammar that is obtained by eliminating useless symbols will be equivalent to the

original grammar.

Eliminate Useless Symbols

BBM401 Automata Theory and Formal Languages 15

• For a grammar G = (V,T,P,S), the generating symbols generating(G) are computed by

the following closure algorithm:

Basis: generating(G) = T

Induction:

If X→ ∈ P or X→A1…An ∈ P where {A1,…,An}⊆generating(G) then

generating(G) = generating(G) ∪ {𝐗}

Example:

– Let G be S→AB|a, A→b

– Initially, generating(G) = {a,b}

– A will be in generating(G) because of A→b

– S will be in generating(G) because of S→a

• Thus, generating(G)={a,b,A,S} and non-generating symbols are {B}

Eliminate Useless Symbols
computing generating symbols

BBM401 Automata Theory and Formal Languages 16

• For a grammar G = (V,T,P,S), the reachable symbols reachable(G) are computed by

the following closure algorithm:

Basis: reachable(G) = {S}

Induction:

If X∈reachable(G) and X→  ∈ P then

add all symbols in  to reachable(G).

Example:

– Let G be S→AB|a, A→b, C→a

– Initially, reachable(G) = {S}

– A and B will be in reachable(G) because of S→AB

– a will be in reachable(G) because of S→a

– b will be in reachable(G) because of A→b

• Thus, reachable(G)={S,A,B,a,b} and non-reachable symbols are {C}

Eliminate Useless Symbols
computing reachable symbols

BBM401 Automata Theory and Formal Languages 17

Steps to eliminate useless symbols from G = (V,T,P,S) :

1. Compute generating(G).

2. Remove all productions containing at least one non-generating symbol in order to

create a new grammar G1 (a grammar without non-generating symbols).

– Remove a production if a non-generating symbol appears in that production (on its right-

side or its left-side)

3. Compute reachable(G1).

4. Remove all productions containing at least one non-reachable symbol in order to

create a new grammar G2 without useless symbols (a grammar without non-reachable

symbols and non-generating symbols).

The new grammar G2 (a grammar without useless symbols) will be equivalent to the

original grammar G.

Eliminate Useless Symbols

BBM401 Automata Theory and Formal Languages 18

G: S → AB | a , A→b

• Compute generating(G):

– generating(G)={a,b,A,S} and non-generating symbols are {B}.

• Remove productions containing non-generating symbols:

– Remove S→AB because it contains B.

– Thus, following G1 is a grammar without non-generating symbols.

– G1 is S→a, A→b

• Compute reachable(G1):

– reachable(G1)={S,a} and non-reachable symbols are {A,b}.

• Remove productions containing non-reachable symbols:

– Remove A→b because it contains A (and/or b).

• Grammar G2 without useless symbols (non-generating and non-reachable symbols):

G2: S→a

Eliminate Useless Symbols: Example

BBM401 Automata Theory and Formal Languages 19

• Steps to obtain an equivalent grammar in Chomsky Normal Form:

1. Add a new start variable S0
.

2. Eliminate -productions.

3. Eliminate unit productions.

4. Eliminate useless symbols.

i. Eliminate non-generating symbols.

ii. Eliminate non-reachable symbols.

5. Convert the remaining rules into CNF:

Now, to obtain a grammar in CNF, we want every rule to be the form

A → BC A → a

i. Arrange that all bodies of length 2 or more consists of only variables.

ii. Break bodies of length 3 or more into a cascade of two-variable-bodied

productions.

Chomsky Normal Form (CNF)
Convert the remaining rules into CNF

BBM401 Automata Theory and Formal Languages 20

cleanup steps

i. Arrange that all bodies of length 2 or more consists of only variables.

– For every terminal a that appears in a body of length2, create a new

variable, say Xa, and replace a by Xa in all bodies.

– Then add a new rule Xa→a.

ii. Break bodies of length 3 or more into a cascade of two-variable-bodied

productions.

– For each rule of the form

A→B1,…,Bk

k≥3, introduce new variables Y1,…,Yk-2 and replace the rule with

A → B1Y1

Y1 → B2 Y2

…

Yk-3 → Bk-2 Yk-2

Yk-2 → Bk-1 Bk

Chomsky Normal Form (CNF)
Convert the remaining rules into CNF

BBM401 Automata Theory and Formal Languages 21

S0 →  | 01 | 0S1

S → 01 | 0S1

Arrange that all bodies of length 2 or more consists of only variables.

S0 →  | X0 X1 | X0 S X1

S → X0 X1 | X0 S X1

X0 → 0

X1 → 1

Break bodies of length 3 or more into two-variable-bodied productions.

S0 → X0 S X1  S0 → X0 Y1 Y1 → S X1

S → X0 S X1  S → X0 Y2 Y2 → S X1

Grammar in CNF:

S0 →  | X0 X1 | X0 Y1 Y1 → S X1

S → X0 X1 | X0 Y2 Y2 → S X1

X0 → 0

X1 → 1

Chomsky Normal Form (CNF)
Convert the remaining rules into CNF: Example

BBM401 Automata Theory and Formal Languages 22

already cleaned grammar

S → ABA

A → aA | 

B → bBc | 

Step 1. Add a new start variable S0

Step 2. Eliminate -productions.

nullable(G) = {A, B, S, S0}

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

BBM401 Automata Theory and Formal Languages 23

S → ABA

A → aA | 

B → bBc | 

S0 → S

S → ABA

A → aA | 

B → bBc | 

S0 → S

S → ABA

A → aA | 

B → bBc | 

S0 → S | 

S → ABA | BA | AA | AB | A | B | A | 

A → aA | a | 

B → bBc |  | bc

S0 → S | 

S → ABA | BA | AA | AB | A | B

A → aA | a

B → bBc | bc

Step 3. Eliminate unit productions.

Step 4. Eliminate useless symbols.

i. Eliminate non-generating symbols. none

ii. Eliminate non-reachable symbols. S

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

BBM401 Automata Theory and Formal Languages 24

S0 → S | 

S → ABA | BA | AA | AB | A | B

A → aA | a

B → bBc | bc

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

S → ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a

B → bBc | bc

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

S → ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a

B → bBc | bc

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a

B → bBc | bc

Step 5. Convert the remaining rules into CNF:

Arrange that all bodies of length 2 or more consists of only variables.

Break bodies of length 3 or more into two-variable-bodied productions.

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

BBM401 Automata Theory and Formal Languages 25

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a

B → bBc | bc

S0 →  | ABA | BA | AA | AB | XA | a | YBZ | YZ

A → XA | a

B → YBZ | YZ

X → a

Y → b

Z → c

S0 →  | ABA | BA | AA | AB | XA | a | YBZ | YZ

A → XA | a

B → YBZ | YZ

X → a

Y → b

Z → c

S0 →  | AC | BA | AA | AB | XA | a | YD | YZ

C → BA D → BZ

A → XA | a

B → YE | YZ

E→ BZ

X → a

Y → b

Z → c

Grammar in CNF:

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

BBM401 Automata Theory and Formal Languages 26

S0 →  | AC | BA | AA | AB | XA | a | YD | YZ

C → BA

D → BZ

A → XA | a

B → YE | YZ

E→ BZ

X → a

Y → b

Z → c

