Chomsky Normal Form

BBM401 Automata Theory and Formal Languages

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form if every rule is of
the form

A — BC

A —a

where a is any terminal and A, B, and C are any variables — except
that B and C may not be the start variable.

In addition, we permit the rule S — ¢ where S Is the start variable if
the language of the grammar contains ¢ .

BBM401 Automata Theory and Formal Languages 2

Chomsky Normal Form

Theorem: Every (non-empty) context free language can be generated by a context-
free grammar in Chomsky normal form.

 In order to obtain an equivalent grammar in Chomsky normal form for any given
CFG G, we will have the following conversion steps:

1.

Add a new start variable S, and a new production rule S;—S where S is the
original start variable of G.

Eliminate g-productions (productions of the form A—z¢). After this conversion
step, only one e-production (S,—¢) if the language of G contains «.

Eliminate unit productions (productions of the form A—B where A and B are
variables).

Eliminate useless symbols. Useless symbols do not appear in any derivation of a
terminal string from the start symbol.

Convert the remaining rules into Chomsky normal form adding new variables
and rules.

BBM401 Automata Theory and Formal Languages 3

Add A New Start Variable

- We add a new start variable S, and the rule S;—S , where S was the original start
variable.

« This change guarantees that the start variable does not occur on the right-hand side of
arule.

« The new grammar is equivalent to the original grammar (i.e they generate same
language).

Example:
S—e¢ | 0S1 Sg— S

equivalent grammars

BBM401 Automata Theory and Formal Languages

Eliminate e-productions
nullable variables

 In order to remove g-productions, first we will determine nullable variables.

. Avariable A is said to nullable if A= ¢ .
« We can compute nullable(G), the set of all nullable symbols of a CFG G=(V,T,P,S) as
follows:

Basis:
nullable(G) = {A : A—¢ € P}

Induction:
If {C,,...,C,} € nullable(G) and A— C,,...,.C, € P,
then nullable(G) = nullable(G) u {A}

BBM401 Automata Theory and Formal Languages 5

Eliminate e-productions
nullable variables: Example

« ACFGG,
Sop— S
S —¢ | 0S1 =>» nullable(G,) = {S, Sy}

« ACFGG,
Sop— S
S — AB
A —aAA | ¢
B —DbBB | ¢ => nullable(G,) = {A, B, S, Sy}

BBM401 Automata Theory and Formal Languages

Eliminate e-productions

Steps for e-production elimination for CFG G:

1. Find nullable(G), the set of all nullable symbols of G.

2. Generate new rules from a rule R by eliminating nullable variables from its right-
side, if nullable variables appears on its right-side.

— The number of new rules depends on the number of nullable variables on the
right-side. If there are k nullable variables, we have to generate 2-1 new rules.
— Generated new rule is added if it is not already among the rules.

« If R—aAP isaruleand A is the only nullable variable on aAB, generate and
add the new rule R—af.

« If R—»aABBy isaruleand A and B are only nullable variables on aABBy,
generate and add the new rules R—af3By, R—aABy and R—afy.

3. Remove all e-productions A—e (except S,—¢) from the rules.

The new grammar that is obtained by eliminating e-productions is equivalent to the original
grammar (i.e they generate same language).

BBM401 Automata Theory and Formal Languages

Eliminate e-productions: Example

A

S, — S S g | 0S1
. nullable(G) = {S, S,}

« Since S is nullable,
— generate S;—¢ from Sy — S

« Since S is nullable,
— generate S—01 from S—0S1

 After all generations, we have the following rules:
So—¢e | S
S—¢e | 01| 0S1

« Remove all e-productions except S,—¢, our final grammar is:

Sp—¢€ | S
S — 01 | 0S1

A

equivalent grammars

BBM401 Automata Theory and Formal Languages

Eliminate e-productions: Example

A

Sy — S S— AB A—)&AA|)% B—>bBB|§(
« nullable(G) = {A, B, S, Sy}

 Generate new rules:

Sp— ¢ fromS, — S
S— A S—B SXe from S — AB
A—aA AXaA A—>a from A — aAA
B — bB B X bB B—b from B — bBB
* Remove e-productions
So—S|e
S—AB | A|B
A—>aAA|aA|a ° equivalent grammars

B >bBB | bB | b

BBM401 Automata Theory and Formal Languages

Eliminate Unit Productions

A — B is a unit production, whenever A and B are variables.

Unit productions can be eliminated from a grammar to obtain a grammar without unit
productions.

— The resulting grammar that is obtained by eliminating unit productions will be
equivalent to the original grammar.

We will remove unit productions one by one from the grammar.

Remove a unit production A — B from the grammar.

— Then, whenever a rule B—u appears, we add the rule A—u unless this was a
unit rule previously removed.

We repeat these steps until we eliminate all unit rules.

BBM401 Automata Theory and Formal Languages 10

Eliminate Unit Productions: Example

SO_)8|S e
S — 01 | 0S1

 Unit productions: { S,—S}
 Remove S,—S,
— Add S,—01 and S;—0S1

« The resulting grammar after eliminating unit productions.

S,—¢ | 01 | 0S1
S — 01 | 0S1

< equivalent grammars

BBM401 Automata Theory and Formal Languages

11

Eliminate Unit Productions: Example

So—S|e

S—>AB | A |B
A—aAA | aA | a
B—bBB | bB | b

— Unit productions: { S,—S, S—A, S—B }
— Remove S—B, addS—bBB | bB | b
— Remove S—A, addS—aAA | aA | a
— Remove S,—S, add S,— AB |aAA | aA | a|bBB | bB | b

« The resulting grammar after eliminating unit productions.

S,—¢| AB |aAA | aA | a|bBB | bB | b
S—AB |aAA |aA |a | bBB | bB | b < equivalent grammars
A—aAA | aA | a
B—-bBB | bB | b

BBM401 Automata Theory and Formal Languages 12

Eliminate Unit Productions: Example

E— E+T | T
T— T*F | F)
F— G"F | G)
G—id | (E)

— Unit productions: { E—»T, T—-F, F—»G}

— Remove F—G, add F —id | (E)

— Remove T—F, add T— G~F | id | (E)

— Remove E—T, add E— T*F |G"F | id | (E)

« The resulting grammar after eliminating unit productions.

E — E+T | T*F |G/F | id | (E)
T — T*F | GAF | id | (E)

A

F — GAF |id | (E)
G —id | (E)

BBM401 Automata Theory and Formal Languages

equivalent grammars

13

Eliminate Unit Productions: Example

Eliminating unit productions in different order do not change the result.

E— E+T | T
T— T*F | F)
F— G"F | G)
G—id | (E)

— Unit productions: { E—»T, T—»F, F—G }
— Remove E—T, addE - T*F | F
— Remove T—F, add T— G~F | G
— Remove F—G, add F —id | (E)
— Remove newly introduced unit productions
— Remove E—F, add E — G*F | id | (E)
— Remove T—G, add T —id | (E)
« The resulting grammar after eliminating unit productions.

E— E+T | T*F |G/F | id | (E)

T— T*F | G*F | id | (E) «— equivalent grammars
F— GAF |id | (E)
G —id | (E)

BBM401 Automata Theory and Formal Languages 14

Eliminate Useless Symbols

A symbol X is useful for a grammar G=(V,T,P,S), if there is a derivation
S = aXp S w

for a terminal string w.

Symbols that are not useful are called useless.

A symbol X is generating if X=w for some string weT".

A symbol X is reachable if S=*>ocX[3 for some {a,,B}=(VUT)".

If we eliminate non-generating symbols first, and then non-reachable symbols,
we will be left with only useful symbols.

— The grammar that is obtained by eliminating useless symbols will be equivalent to the
original grammar.

BBM401 Automata Theory and Formal Languages 15

Eliminate Useless Symbols
computing generating symbols

« Foragrammar G = (V,T,P,S), the generating symbols generating(G) are computed by
the following closure algorithm:

Basis: generating(G) =T

Induction:
If X—e €P or X—A,...A, € Pwhere {A,,...,A }=generating(G) then
generating(G) = generating(G) U {X}

Example:
— LetG be S—AB|a, A—Db
— Initially, generating(G) = {a,b}
— A will be in generating(G) because of A—b
— S will be in generating(G) because of S—a

» Thus, generating(G)={a,b,A,S} and non-generating symbols are {B}

BBM401 Automata Theory and Formal Languages 16

Eliminate Useless Symbols
computing reachable symbols

For a grammar G = (V,T,P,S), the reachable symbols reachable(G) are computed by
the following closure algorithm:

Basis: reachable(G) = {S}

Induction:

If X€reachable(G) and X— a € P then
add all symbols in o to reachable(G).

Example:

— LetG be S—AB|a, A—Db, C—a

— Initially, reachable(G) = {S}

— A and B will be in reachable(G) because of S—AB
— awill be in reachable(G) because of S—a

— b will be in reachable(G) because of A—b

Thus, reachable(G)={S,A,B,a,b} and non-reachable symbols are {C}

BBM401 Automata Theory and Formal Languages

17

Eliminate Useless Symbols

Steps to eliminate useless symbols from G = (V,T,P,S) :
1. Compute generating(G).

2. Remove all productions containing at least one non-generating symbol in order to
create a new grammar G, (a grammar without non-generating symbols).

— Remove a production if a non-generating symbol appears in that production (on its right-
side or its left-side)

3. Compute reachable(G,).

4. Remove all productions containing at least one non-reachable symbol in order to
create a new grammar G, without useless symbols (a grammar without non-reachable
symbols and non-generating symbols).

The new grammar G, (a grammar without useless symbols) will be equivalent to the
original grammar G.

BBM401 Automata Theory and Formal Languages 18

Eliminate Useless Symbols: Example

G: S—AB|a, A—b

« Compute generating(G):
— generating(G)={a,b,A,S} and non-generating symbols are {B}.
« Remove productions containing non-generating symbols:
— Remove S—AB because it contains B.
— Thus, following G, is a grammar without non-generating symbols.
— G,is S—a, A—b
« Compute reachable(G,):
— reachable(G,)={S,a} and non-reachable symbols are {A,b}.
« Remove productions containing non-reachable symbols:
— Remove A—b because it contains A (and/or b).
« Grammar G, without useless symbols (non-generating and non-reachable symbols):
G,: S—a

BBM401 Automata Theory and Formal Languages 19

> W=

Chomsky Normal Form (CNF)

Convert the remaining rules into CNF

Steps to obtain an equivalent grammar in Chomsky Normal Form:
Add a new start variable S,
Eliminate e-productions.
Eliminate unit productions. cleanup steps

Eliminate useless symbols.
I. Eliminate non-generating symbols.
il. Eliminate non-reachable symbols.

Convert the remaining rules into CNF:
Now, to obtain a grammar in CNF, we want every rule to be the form
A — BC A—a
I. Arrange that all bodies of length 2 or more consists of only variables.

Il. Break bodies of length 3 or more into a cascade of two-variable-bodied
productions.

BBM401 Automata Theory and Formal Languages 20

Chomsky Normal Form (CNF)

Convert the remaining rules into CNF

Arrange that all bodies of length 2 or more consists of only variables.

— For every terminal a that appears in a body of length>2, create a new
variable, say X, and replace a by X, in all bodies.

— Then add a new rule X, —a.

Break bodies of length 3 or more into a cascade of two-variable-bodied
productions.

— For each rule of the form
A—)Bl,...,Bk

k>3, introduce new variables Y ,...,Y, , and replace the rule with
A— B,Y,
Y, —=B,Y,

Y3 — Bio Yo
Y2 — By By

BBM401 Automata Theory and Formal Languages

21

Chomsky Normal Form (CNF)

Convert the remaining rules into CNF: Example

S,—¢ | 01] 0S1

S — 01 | 0S1

Arrange that all bodies of length 2 or more consists of only variables.
So—& | XoX; | XS X

already cleaned grammar

Xo— 0

X;—1
Break bodies of length 3 or more into two-variable-bodied productions.

SO—>XOSX1 9 SO_)XOY]. Yl_)SX]_

S — X,S X; > S—X,Y, Y,— S X,
Grammar in CNF:

S— XX, | XY, Y, — S X;

Xo— 0

X —1

BBM401 Automata Theory and Formal Languages 22

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

S —» ABA
A—aAle
B — bBc|e

Step 1. Add a new start variable S,

S — ABA Sp—S

A—aAle S — ABA

B — bBc|e A—aAle
B — bBc| ¢

Step 2. Eliminate e-productions.
nullable(G) = {A, B, S, Sy}

Sy — S So—S|e
S — ABA S—ABA|BA|AA|AB|A|B|A e
A—aAle A—aAlale

B — bBc| = B — bBc & be

BBM401 Automata Theory and Formal Languages

Sp—S|e
S—ABA|BA|AA|AB|A|B
A—aA|a

B — bBc | bc

23

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

Step 3. Eliminate unit productions.

S,—S|e S,— ¢ |ABA|BA|AA|AB|aA]|a|bBc|bc
S—ABA|BA|AA|AB|A|B S—ABA|BA|AA|AB |aA|a|bBc|bc
A—aAla A—aAla

B — bBc | bc B — bBc | bc

Step 4. Eliminate useless symbols.
I. Eliminate non-generating symbols. none
il. Eliminate non-reachable symbols. S

S,—¢|ABA|BA|AA|AB|aA|a|bBc|bc S,—¢|ABA|BA|AA|AB|aA|a]|bBc|bc
S—>ABA|BA|AA|AB|aA|a|bBc|bc A—aAla

A—aAla B — bBc | bc

B — bBc | bc

BBM401 Automata Theory and Formal Languages 24

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

Step 5. Convert the remaining rules into CNF:
Arrange that all bodies of length 2 or more consists of only variables.

S, — &|ABA|BA|AA|AB|aA|a|bBc|bc So—¢&|ABA[BA|AA|AB|XAlalYBZ|YZ

A—aAla A— XAla

B — bBc | bc B—YBZ|YZ
X —a
Y—Db
Z—C

Break bodies of length 3 or more into two-variable-bodied productions.

S, — ¢ |ABA|BA|AA|AB|XA|a|YBZ|YZ So—el|AC|IBAJAA|AB|XAla|YD|YZ

A— XAla C — BA D —-BZ
B—YBZ|YZ A— XAla
X s 3 B—-YE|YZ
Y —-b E— BZ
Z—C X—a
Y—b

Z—C

BBM401 Automata Theory and Formal Languages 25

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example

Grammar in CNF:

S,—€¢|AC|BA|AA|AB| XA|a|YD|YZz
C - BA

D—BZ

A— XAla

B—->YE|YZ

E— BZ

X —a

Y —b

Z—C

BBM401 Automata Theory and Formal Languages

26

