Chomsky Normal Form

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form if every rule is of the form

$$
\begin{aligned}
& \mathbf{A} \rightarrow \mathbf{B C} \\
& \mathbf{A} \rightarrow \mathbf{a}
\end{aligned}
$$

where a is any terminal and A, B, and C are any variables - except that B and C may not be the start variable.

In addition, we permit the rule $S \rightarrow \varepsilon$ where S is the start variable if the language of the grammar contains ε.

Chomsky Normal Form

Theorem: Every (non-empty) context free language can be generated by a contextfree grammar in Chomsky normal form.

- In order to obtain an equivalent grammar in Chomsky normal form for any given CFG G, we will have the following conversion steps:

1. Add a new start variable S_{0} and a new production rule $S_{0} \rightarrow S$ where S is the original start variable of G .
2. Eliminate ε-productions (productions of the form $\mathrm{A} \rightarrow \varepsilon$). After this conversion step, only one ε-production ($\mathrm{S}_{0} \rightarrow \varepsilon$) if the language of G contains ε.
3. Eliminate unit productions (productions of the form $A \rightarrow B$ where A and B are variables).
4. Eliminate useless symbols. Useless symbols do not appear in any derivation of a terminal string from the start symbol.
5. Convert the remaining rules into Chomsky normal form adding new variables and rules.

Add A New Start Variable

- We add a new start variable $\mathbf{S}_{\mathbf{0}}$ and the rule $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}$, where S was the original start variable.
- This change guarantees that the start variable does not occur on the right-hand side of a rule.
- The new grammar is equivalent to the original grammar (i.e they generate same language).

Example:

equivalent grammars

Eliminate ε-productions

nullable variables

- In order to remove ε-productions, first we will determine nullable variables.
- A variable A is said to nullable if $\mathrm{A} \stackrel{*}{\Rightarrow} \varepsilon$.
- We can compute nullable(G), the set of all nullable symbols of a $\mathrm{CFG} \mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ as follows:

Basis:
nullable $(\mathbf{G})=\{\mathbf{A}: \mathbf{A} \rightarrow \varepsilon \in \mathbf{P}\}$
Induction:
If $\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}\right\} \subseteq$ nullable($\left.\mathbf{G}\right)$ and $\mathrm{A} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}} \in \mathbf{P}$, then nullable $(\mathbf{G})=$ nullable $(\mathbf{G}) \cup\{\mathbf{A}\}$

Eliminate ε-productions

nullable variables: Example

- $\mathrm{A} \mathrm{CFG} \mathrm{G}_{1}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}$
$\mathrm{S} \rightarrow \varepsilon \mid$ 0S1 $\quad \rightarrow$ nullable $\left(\mathrm{G}_{1}\right)=\left\{\mathrm{S}, \mathrm{S}_{0}\right\}$
- A CFG G ${ }_{2}$
$\mathrm{S}_{0} \rightarrow \mathrm{~S}$
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{aAA} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bBB} \mid \varepsilon$
\rightarrow nullable $\left(\mathrm{G}_{2}\right)=\left\{\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{S}_{0}\right\}$

Eliminate ε-productions

Steps for ε-production elimination for CFG G:

1. Find nullable(G), the set of all nullable symbols of G.
2. Generate new rules from a rule R by eliminating nullable variables from its rightside, if nullable variables appears on its right-side.

- The number of new rules depends on the number of nullable variables on the right-side. If there are k nullable variables, we have to generate $2^{\mathrm{k}}-1$ new rules.
- Generated new rule is added if it is not already among the rules.
- If $\mathrm{R} \rightarrow \alpha \mathrm{A} \beta$ is a rule and A is the only nullable variable on $\alpha \mathrm{A} \beta$, generate and add the new rule $R \rightarrow \alpha \beta$.
- If $\mathrm{R} \rightarrow \alpha \mathrm{A} \beta \mathrm{B} \gamma$ is a rule and A and B are only nullable variables on $\alpha \mathrm{A} \beta \mathrm{B} \gamma$, generate and add the new rules $\mathrm{R} \rightarrow \alpha \beta \mathrm{B} \gamma, \mathrm{R} \rightarrow \alpha \mathrm{A} \beta \gamma$ and $\mathrm{R} \rightarrow \alpha \beta \gamma$.

3. Remove all ε-productions $\mathrm{A} \rightarrow \varepsilon$ (except $\mathrm{S}_{0} \rightarrow \varepsilon$) from the rules.

The new grammar that is obtained by eliminating ε-productions is equivalent to the original grammar (i.e they generate same language).

Eliminate ε-productions: Example

$$
\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \quad \mathbf{S} \rightarrow \varepsilon \mid \mathbf{0 S} \mathbf{1}
$$

- nullable $(\mathrm{G})=\left\{\mathrm{S}, \mathrm{S}_{0}\right\}$
- Since S is nullable,
- generate $\mathrm{S}_{0} \rightarrow \varepsilon$ from $\mathrm{S}_{0} \rightarrow \mathrm{~S}$
- Since S is nullable,
- generate $\mathrm{S} \rightarrow 01$ from $\mathrm{S} \rightarrow 0 \mathrm{~S} 1$
- After all generations, we have the following rules:

$$
\begin{aligned}
& \mathrm{S}_{0} \rightarrow \varepsilon \mid \mathrm{S} \\
& \mathrm{~S} \rightarrow \varepsilon|01| 0 \mathrm{~S} 1
\end{aligned}
$$

- Remove all ε-productions except $S_{0} \rightarrow \varepsilon$, our final grammar is:

$$
\begin{aligned}
& \mathrm{S}_{\mathbf{0}} \rightarrow \varepsilon \mid \mathrm{S} \\
& \mathrm{~S} \rightarrow \mathbf{0 1} \mid 0 \mathrm{~S} 1
\end{aligned}
$$

Eliminate ε-productions: Example

$$
\left.\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \quad \mathbf{S} \rightarrow \mathbf{A B} \quad \mathbf{A} \rightarrow \mathbf{a A A}\right|_{\mathrm{X}} ^{\varepsilon} \quad \mathbf{B} \rightarrow \mathbf{b B B} \mid{\underset{\mathrm{X}}{\mathrm{X}}}_{\varepsilon}^{\varepsilon}
$$

- nullable $(G)=\left\{A, B, S, S_{0}\right\}$
- Generate new rules:

$\mathrm{S}_{0} \rightarrow \varepsilon$			from $\mathrm{S}_{0} \rightarrow \mathrm{~S}$
$\mathrm{~S} \rightarrow \mathrm{~A}$	$\mathrm{~S} \rightarrow \mathrm{~B}$	$\mathrm{~S} \rightarrow \varepsilon$	from $\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{aA}$	$\mathrm{A} \mathrm{X}_{\mathrm{aA}}$	$\mathrm{A} \rightarrow \mathrm{a}$	from $\mathrm{A} \rightarrow \mathrm{aAA}$
$\mathrm{B} \rightarrow \mathrm{bB}$	$\mathrm{B} \mathrm{X}_{\mathrm{bB}}$	$\mathrm{B} \rightarrow \mathrm{b}$	from $\mathrm{B} \rightarrow \mathrm{bBB}$

- Remove ε-productions

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \mid \varepsilon \\
& \mathbf{S} \rightarrow \mathbf{A B}|\mathbf{A}| \mathbf{B} \\
& \mathbf{A} \rightarrow \mathbf{a A A}|\mathbf{a A}| \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{b B B}|\mathbf{b B}| \mathbf{b}
\end{aligned}
$$

Eliminate Unit Productions

- $\mathbf{A} \rightarrow \mathbf{B}$ is a unit production, whenever A and B are variables.
- Unit productions can be eliminated from a grammar to obtain a grammar without unit productions.
- The resulting grammar that is obtained by eliminating unit productions will be equivalent to the original grammar.
- We will remove unit productions one by one from the grammar.
- Remove a unit production $A \rightarrow B$ from the grammar.
- Then, whenever a rule $B \rightarrow u$ appears, we add the rule $A \rightarrow u$ unless this was a unit rule previously removed.
- We repeat these steps until we eliminate all unit rules.

Eliminate Unit Productions: Example

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \rightarrow \varepsilon \mid S \\
& \mathbf{S \rightarrow 0 1} \mid \mathbf{0 S} \mathbf{1}
\end{aligned}
$$

- Unit productions: $\left\{\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}\right\}$
- Remove $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}$,
$-\operatorname{Add} \mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{0 1}$ and $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{0 S 1}$
- The resulting grammar after eliminating unit productions.
$\mathrm{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|01| 0 \mathrm{~S} 1$
equivalent grammars
$\mathrm{S} \rightarrow \mathbf{0 1} \mid \mathbf{0 S 1}$

Eliminate Unit Productions: Example

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \mid \varepsilon \\
& \mathbf{S} \rightarrow \mathbf{A B}|\mathbf{A}| \mathbf{B} \\
& \mathbf{A} \rightarrow \mathbf{a A A}|\mathbf{a A}| \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{b B B}|\mathbf{b B}| \mathbf{b}
\end{aligned}
$$

- Unit productions: $\left\{\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}, \mathbf{S} \rightarrow \mathbf{A}, \mathbf{S} \rightarrow \mathbf{B}\right\}$
- Remove $\mathbf{S} \rightarrow \mathbf{B}$, add $\mathbf{S} \rightarrow \mathbf{b B B}|\mathbf{b B}| \mathbf{b}$
- Remove $\mathbf{S} \rightarrow \mathbf{A}$, add $\mathbf{S} \rightarrow \mathbf{a A A}|\mathbf{a A}| \mathbf{a}$
- Remove $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}$, add $\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{A B}|\mathbf{a A A}| \mathbf{a A}|\mathbf{a}| \mathbf{b B B}|\mathbf{b B}| \mathbf{b}$
- The resulting grammar after eliminating unit productions.
$\mathrm{S}_{0} \rightarrow \varepsilon|\mathrm{AB}| \mathbf{a A A}|\mathbf{a A}| \mathbf{a}|\mathbf{b B B}| \mathbf{b B} \mid \mathbf{b}$ $\mathbf{S} \rightarrow \mathbf{A B}|\mathbf{a A A}| \mathbf{a A}|\mathbf{a}| \mathbf{b B B}|\mathbf{b B}| \mathbf{b}$
$\mathbf{A} \rightarrow \mathbf{a A A}|\mathbf{a A}| \mathbf{a}$
$\mathbf{B} \rightarrow \mathbf{b B B}|\mathbf{b B}| \mathbf{b}$

Eliminate Unit Productions: Example

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E}+\mathbf{T} \mid \mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{T} * \mathbf{F} \\
& \mathbf{F} \rightarrow \mathbf{G}^{\wedge} \mathbf{F} \\
& \mathbf{G} \rightarrow \mathbf{i d} \mid(\mathbf{E})
\end{aligned}
$$

- Unit productions: $\{\mathbf{E} \rightarrow \mathbf{T}, \mathbf{T} \rightarrow \mathbf{F}, \mathbf{F} \rightarrow \mathbf{G}\}$
- Remove $\mathbf{F} \rightarrow \mathbf{G}$, add $\mathbf{F} \rightarrow \mathbf{i d} \mid(\mathbf{E})$
- Remove $\mathbf{T} \rightarrow \mathbf{F}$, add $\mathbf{T} \rightarrow \mathbf{G}^{\wedge} \mathbf{F} \mid$ id $\mid(\mathbf{E})$
- Remove $\mathbf{E} \rightarrow \mathbf{T}$, add $\mathbf{E} \rightarrow \mathbf{T} \mathbf{*}\left|\mathbf{G}^{\wedge} \mathbf{F}\right|$ id $\mid(\mathbf{E})$
- The resulting grammar after eliminating unit productions.

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E +} \mathbf{T}\left|\mathbf{T}^{*} \mathbf{F}\right| \mathbf{G}^{\wedge} \mathbf{F} \mid \text { id } \mid(\mathbf{E}) \\
& \mathbf{T} \rightarrow \mathbf{T}^{*} \mathbf{F}\left|\mathbf{G}^{\wedge} \mathbf{F}\right| \text { id } \mid(\mathbf{E}) \\
& \mathbf{F} \rightarrow \mathbf{G}^{\wedge} \mathbf{F}|\mathbf{i d}|(\mathbf{E}) \\
& \mathbf{G} \rightarrow \mathbf{i d} \mid(\mathbf{E})
\end{aligned}
$$

Eliminate Unit Productions: Example

Eliminating unit productions in different order do not change the result.

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E}+\mathbf{T} \mid \\
& \mathbf{T} \rightarrow \mathbf{T} \\
& \mathbf{F} \rightarrow \mathbf{F} \\
& \mathbf{G} \wedge \mathbf{F} \\
& \mathbf{G} \rightarrow \mathbf{i d} \mid \mathbf{G} \\
& \text { (E) }
\end{aligned}
$$

- Unit productions: $\{\mathbf{E} \rightarrow \mathbf{T}, \mathbf{T} \rightarrow \mathbf{F}, \mathbf{F} \rightarrow \mathbf{G}\}$
- Remove $\mathbf{E} \rightarrow \mathbf{T}$, add $\mathbf{E} \rightarrow \mathbf{T}{ }^{*} \mathbf{F} \mid \mathbf{F}$
- Remove $\mathbf{T} \rightarrow \mathbf{F}$, add $\mathbf{T} \rightarrow \mathbf{G}^{\wedge} \mathbf{F} \mid \mathbf{G}$
- Remove $\mathbf{F} \rightarrow \mathbf{G}$, add $\mathbf{F} \rightarrow \mathbf{i d} \mid(\mathbf{E})$
- Remove newly introduced unit productions
- Remove $\mathbf{E} \rightarrow \mathbf{F}$, add $\mathbf{E} \rightarrow \mathbf{G}^{\wedge} \mathbf{F} \mid$ id $\mid(\mathbf{E})$
- Remove $\mathbf{T} \rightarrow \mathbf{G}$, add $\mathbf{T} \rightarrow \mathbf{i d} \mid \mathbf{(E)}$
- The resulting grammar after eliminating unit productions.

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}\left|\mathbf{T}^{*} \mathbf{F}\right| \mathbf{G}^{\wedge} \mathbf{F} \mid \text { id } \mid(\mathbf{E}) \\
& \mathbf{T} \rightarrow \mathbf{T}^{*} \mathbf{F}\left|\mathbf{G}^{\wedge} \mathbf{F}\right| \text { id } \mid(\mathbf{E}) \\
& \mathbf{F} \rightarrow \mathbf{G}^{\wedge} \mathbf{F}|\mathbf{i d}|(\mathbf{E}) \\
& \mathbf{G} \rightarrow \mathbf{i d} \mid(\mathbf{E})
\end{aligned}
$$

Eliminate Useless Symbols

- A symbol X is useful for a grammar $\mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$, if there is a derivation

$$
\mathbf{S} \stackrel{*}{\Rightarrow} \alpha \mathbf{X} \boldsymbol{\beta} \stackrel{*}{\Rightarrow} \mathbf{w}
$$

for a terminal string w.

- Symbols that are not useful are called useless.
- A symbol \mathbf{X} is generating if $X \Rightarrow w$ for some string $w \in T^{*}$.
- A symbol X is reachable if $S \stackrel{*}{\Rightarrow} \alpha X \beta$ for some $\{\alpha, \beta\} \subseteq(V \cup T)^{*}$.
- If we eliminate non-generating symbols first, and then non-reachable symbols, we will be left with only useful symbols.
- The grammar that is obtained by eliminating useless symbols will be equivalent to the original grammar.

Eliminate Useless Symbols

computing generating symbols

- For a grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$, the generating symbols generating (G) are computed by the following closure algorithm:

Basis: $\operatorname{generating}(\mathbf{G})=\mathbf{T}$

Induction:

If $X \rightarrow \varepsilon \in \mathbf{P}$ or $\mathbf{X} \rightarrow \mathbf{A}_{1} \ldots \mathbf{A}_{\mathbf{n}} \in \mathbf{P}$ where $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{\mathbf{n}}\right\} \subseteq$ generating (\mathbf{G}) then $\operatorname{generating}(\mathbf{G})=\operatorname{generating}(\mathbf{G}) \cup\{\mathbf{X}\}$

Example:

- Let G be $\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{a}, \mathrm{A} \rightarrow \mathrm{b}$
- Initially, generating $(G)=\{a, b\}$
- A will be in generating(G) because of $A \rightarrow b$
- S will be in generating(G) because of $S \rightarrow a$
- Thus, generating $(G)=\{a, b, A, S\}$ and non-generating symbols are $\{B\}$

Eliminate Useless Symbols

computing reachable symbols

- For a grammar $G=(V, T, P, S)$, the reachable symbols reachable(\mathbf{G}) are computed by the following closure algorithm:

Basis: reachable $(\mathbf{G})=\{\mathbf{S}\}$

Induction:

If $X \in \operatorname{reachable}(G)$ and $X \rightarrow \alpha \in P$ then
add all symbols in α to reachable(\mathbf{G}).

Example:

- Let G be $S \rightarrow A B \mid a, A \rightarrow b, C \rightarrow a$
- Initially, reachable $(G)=\{S\}$
- A and B will be in reachable(G) because of $S \rightarrow A B$
- a will be in reachable(G) because of $S \rightarrow a$
- b will be in reachable(G) because of $\mathrm{A} \rightarrow \mathrm{b}$
- Thus, reachable $(G)=\{S, A, B, a, b\}$ and non-reachable symbols are $\{C\}$

Eliminate Useless Symbols

Steps to eliminate useless symbols from $\mathbf{G}=(\mathbf{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$:

1. Compute generating (G).
2. Remove all productions containing at least one non-generating symbol in order to create a new grammar G_{1} (a grammar without non-generating symbols).

- Remove a production if a non-generating symbol appears in that production (on its rightside or its left-side)

3. Compute reachable $\left(\mathrm{G}_{1}\right)$.
4. Remove all productions containing at least one non-reachable symbol in order to create a new grammar G_{2} without useless symbols (a grammar without non-reachable symbols and non-generating symbols).

The new grammar G_{2} (a grammar without useless symbols) will be equivalent to the original grammar G.

Eliminate Useless Symbols: Example

$\mathbf{G}: \mathbf{S} \rightarrow \mathbf{A B} \mid \mathbf{a}, \mathbf{A} \rightarrow \mathbf{b}$

- Compute generating(G):
- generating $(G)=\{a, b, A, S\}$ and non-generating symbols are $\{B\}$.
- Remove productions containing non-generating symbols:
- Remove $\mathbf{S} \rightarrow \mathbf{A B}$ because it contains B.
- Thus, following G_{1} is a grammar without non-generating symbols.
- G_{1} is $\mathbf{S} \rightarrow \mathbf{a}, \mathbf{A} \rightarrow \mathbf{b}$
- Compute reachable(G_{1}):
- reachable $\left(\mathrm{G}_{1}\right)=\{\mathrm{S}, \mathrm{a}\}$ and non-reachable symbols are $\{\mathbf{A}, \mathrm{b}\}$.
- Remove productions containing non-reachable symbols:
- Remove A $\rightarrow \mathbf{b}$ because it contains A (and/or b).
- Grammar $\mathbf{G}_{\mathbf{2}}$ without useless symbols (non-generating and non-reachable symbols):
$\mathrm{G}_{2}: \mathbf{S} \rightarrow \mathbf{a}$

Chomsky Normal Form (CNF)

Convert the remaining rules into CNF

- Steps to obtain an equivalent grammar in Chomsky Normal Form:

1. Add a new start variable S_{0}.
2. Eliminate ε-productions.
3. Eliminate unit productions.
cleanup steps
4. Eliminate useless symbols.
i. Eliminate non-generating symbols.
ii. Eliminate non-reachable symbols.
5. Convert the remaining rules into CNF:

Now, to obtain a grammar in CNF, we want every rule to be the form

$$
\mathbf{A} \rightarrow \mathbf{B C} \quad \mathbf{A} \rightarrow \mathbf{a}
$$

i. Arrange that all bodies of length 2 or more consists of only variables.
ii. Break bodies of length 3 or more into a cascade of two-variable-bodied productions.

Chomsky Normal Form (CNF)

Convert the remaining rules into CNF

i. Arrange that all bodies of length 2 or more consists of only variables.

- For every terminal a that appears in a body of length ≥ 2, create a new variable, say X_{a}, and replace a by X_{a} in all bodies.
$-\quad$ Then add a new rule $X_{a} \rightarrow$ a.
ii. Break bodies of length 3 or more into a cascade of two-variable-bodied productions.
- For each rule of the form

$$
\mathbf{A} \rightarrow \mathbf{B}_{1}, \ldots, \mathbf{B}_{\mathrm{k}}
$$

$\mathrm{k} \geq 3$, introduce new variables $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{k}-2}$ and replace the rule with

$$
\begin{aligned}
& \mathbf{A} \rightarrow \mathbf{B}_{1} \mathbf{Y}_{1} \\
& \mathbf{Y}_{1} \rightarrow \mathbf{B}_{2} \mathbf{Y}_{2} \\
& \ldots \\
& \mathbf{Y}_{\mathrm{k}-3} \rightarrow \mathbf{B}_{\mathrm{k}-2} \mathbf{Y}_{\mathrm{k}-2} \\
& \mathbf{Y}_{\mathrm{k}-2} \rightarrow \mathbf{B}_{\mathrm{k}-1} \mathbf{B}_{\mathrm{k}}
\end{aligned}
$$

Chomsky Normal Form (CNF)

Convert the remaining rules into CNF: Example

Arrange that all bodies of length 2 or more consists of only variables.

$$
\begin{aligned}
& \mathbf{S}_{0} \rightarrow \varepsilon\left|\mathbf{X}_{0} \mathbf{X}_{1}\right| \mathbf{X}_{0} \mathbf{S} \mathbf{X}_{1} \\
& \mathbf{S \rightarrow X _ { 0 }} \mathbf{X}_{1} \mid \mathbf{X}_{0} S \mathbf{X}_{1} \\
& \mathbf{X}_{\mathbf{0}} \rightarrow \mathbf{0} \\
& \mathbf{X}_{1} \rightarrow \mathbf{1}
\end{aligned}
$$

Break bodies of length 3 or more into two-variable-bodied productions.

$$
\begin{array}{llll}
\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{X}_{\mathbf{0}} \mathbf{S} \mathbf{X}_{\mathbf{1}} & \boldsymbol{\rightarrow} & \mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{X}_{\mathbf{0}} \mathbf{Y}_{1} & \mathbf{Y}_{1} \rightarrow \mathbf{S} \mathbf{X}_{1} \\
\mathbf{S} \rightarrow \mathbf{X}_{\mathbf{0}} \mathbf{S} \mathbf{X}_{\mathbf{1}} & \boldsymbol{T} & \mathbf{S} \rightarrow \mathbf{X}_{\mathbf{0}} \mathbf{Y}_{2} & \mathbf{Y}_{2} \rightarrow \mathbf{S} \mathbf{X}_{1}
\end{array}
$$

Grammar in CNF:

$$
\begin{array}{ll}
\mathbf{S}_{0} \rightarrow \varepsilon\left|\mathbf{X}_{0} \mathbf{X}_{1}\right| \mathbf{X}_{0} \mathbf{Y}_{1} & \mathbf{Y}_{1} \rightarrow \mathbf{S} \mathbf{X}_{1} \\
\mathbf{S} \rightarrow \mathbf{X}_{0} \mathbf{X}_{1} \mid \mathbf{X}_{0} \mathbf{Y}_{2} & \mathbf{Y}_{2} \rightarrow \mathbf{S} \mathbf{X}_{1} \\
\mathbf{X}_{0} \rightarrow \mathbf{0} & \\
\mathbf{X}_{1} \rightarrow \mathbf{1} &
\end{array}
$$

Chomsky Normal Form (CNF)

Converting into CNF: A Full Example
$\mathbf{S} \rightarrow \mathbf{A B A}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bBc} \mid \varepsilon$
Step 1. Add a new start variable S_{0}

$$
\begin{array}{ll}
\mathbf{S} \rightarrow \mathbf{A B A} & \mathrm{S}_{0} \rightarrow \mathbf{S} \\
\mathbf{A} \rightarrow \mathbf{a A} \mid \varepsilon & \mathbf{S} \rightarrow \mathbf{A B A} \\
\mathbf{B} \rightarrow \mathbf{b B c} \mid \varepsilon & \mathbf{A} \rightarrow \mathbf{a A} \mid \varepsilon \\
& \mathbf{B} \rightarrow \mathbf{b B c} \mid \varepsilon
\end{array}
$$

Step 2. Eliminate ε-productions.

$$
\text { nullable }(\mathrm{G})=\left\{\mathrm{A}, \mathrm{~B}, \mathrm{~S}, \mathrm{~S}_{0}\right\}
$$

$\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S}$	$\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \mid \varepsilon$	$\mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \mid \varepsilon$
$\mathbf{S} \rightarrow \mathbf{A B A}$	$\mathbf{S} \rightarrow \mathbf{A B A}\|\mathrm{BA}\| \mathbf{A A}\|\mathrm{AB}\| \mathbf{A}\|\mathrm{B}\| \mathrm{A} \mid \varepsilon$	$\mathbf{S} \rightarrow \mathbf{A B A}\|\mathrm{BA}\| \mathbf{A A}\|\mathbf{A B}\| \mathbf{A} \mid \mathrm{B}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \varepsilon$	$\mathbf{A} \rightarrow \mathbf{a A}\|\mathrm{a}\| \varepsilon$	$\mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a}$
$\mathbf{B} \rightarrow \mathbf{b B c} \mid \varepsilon$	$\mathbf{B} \rightarrow \mathbf{b B c}\|\varepsilon\| \mathrm{bc}$	$\mathbf{B} \rightarrow \mathbf{b B c} \mid \mathrm{bc}$

Chomsky Normal Form (CNF)

Converting into CNF: A Full Example

Step 3. Eliminate unit productions.

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \rightarrow \mathbf{S} \mid \varepsilon \\
& \mathbf{S} \rightarrow \mathbf{A B A}|\mathbf{B A}| \mathbf{A A}|\mathbf{A B}| \mathbf{A} \mid \mathbf{B} \\
& \mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{b B c} \mid \mathbf{b c}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|\mathrm{ABA}| \mathrm{BA}|\mathbf{A A}| \mathrm{AB}|\mathrm{aA}| \mathrm{a}|\mathrm{bBc}| \mathrm{bc} \\
& \mathbf{S} \rightarrow \mathbf{A B A}|\mathbf{B A}| \mathbf{A A}|\mathbf{A B}| \mathrm{aA}|\mathrm{a}| \mathrm{bBc} \mid \mathrm{bc} \\
& \mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{b B} \mid \mathbf{b c}
\end{aligned}
$$

Step 4. Eliminate useless symbols.
i. Eliminate non-generating symbols. none
ii. Eliminate non-reachable symbols. S
$\mathrm{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|\mathrm{ABA}| \mathrm{BA}|\mathrm{AA}| \mathrm{AB}|\mathrm{aA}| \mathrm{a}|\mathrm{bBc}| \mathrm{bc} \quad \mathrm{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|\mathrm{ABA}| \mathrm{BA}|\mathrm{AA}| \mathrm{AB}|\mathrm{aA}| \mathrm{a}|\mathrm{bBc}| \mathrm{bc}$
$\mathrm{S} \rightarrow \mathrm{ABA}|\mathrm{BA}| \mathrm{AA}|\mathrm{AB}| \mathrm{aA}|\mathrm{a}| \mathrm{bBc} \mid \mathrm{bc}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a}$
B \rightarrow bBc \mid bc
B \rightarrow bBc \mid bc

Chomsky Normal Form (CNF)

Converting into CNF: A Full Example

Step 5. Convert the remaining rules into CNF:
Arrange that all bodies of length 2 or more consists of only variables.
$\mathrm{S}_{\mathbf{0}} \rightarrow \varepsilon|\mathrm{ABA}| \mathrm{BA}|\mathrm{AA}| \mathrm{AB}|\mathrm{aA}| \mathrm{a}|\mathrm{bBc}| \mathrm{bc} \quad \mathrm{S}_{\mathbf{0}} \rightarrow \varepsilon|\mathrm{ABA}| \mathrm{BA}|\mathrm{AA}| \mathrm{AB}|\mathrm{XA}| \mathrm{a}|\mathrm{YBZ}| \mathrm{YZ}$
$\mathbf{A} \rightarrow \mathbf{a A} \mid \mathbf{a}$
$\mathrm{B} \rightarrow \mathrm{bBc} \mid \mathrm{bc}$
$\mathrm{A} \rightarrow \mathrm{XA} \mid \mathbf{a}$
$\mathrm{B} \rightarrow \mathrm{YBZ} \mid \mathrm{YZ}$
$\mathrm{X} \rightarrow \mathrm{a}$
$\mathbf{Y} \rightarrow \mathbf{b}$
$\mathbf{Z} \rightarrow \mathbf{c}$

Break bodies of length 3 or more into two-variable-bodied productions.

$$
\begin{array}{ll}
\mathbf{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|\mathbf{A B A}| \mathbf{B A}|\mathbf{A A}| \mathbf{A B}|\mathbf{X A}| \mathbf{a}|\mathbf{Y B Z}| \mathbf{Y Z} & \mathbf{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|\mathbf{A C}| \mathbf{B A}|\mathbf{A A}| \mathbf{A B}|\mathbf{X A}| \mathbf{a}|\mathbf{Y D}| \mathbf{Y Z} \\
\mathbf{A} \rightarrow \mathbf{X A} \mid \mathbf{a} & \mathbf{C} \rightarrow \mathbf{B A} \quad \mathbb{D} \rightarrow \mathbf{B Z} \\
\mathbf{B} \rightarrow \mathbf{Y B Z} \mid \mathbf{Y Z} & \mathbf{A} \rightarrow \mathbf{X A} \mid \mathbf{a} \\
\mathbf{X} \rightarrow \mathbf{a} & \mathbf{B} \rightarrow \mathbf{Y E} \mid \mathbf{Y Z} \\
\mathbf{Y} \rightarrow \mathbf{b} & \mathbf{E} \rightarrow \mathbf{B Z} \\
\mathbf{Z} \rightarrow \mathbf{c} & \mathbf{X} \rightarrow \mathbf{a} \\
& \mathbf{Y} \rightarrow \mathbf{b} \\
& \mathbf{Z} \rightarrow \mathbf{c}
\end{array}
$$

Chomsky Normal Form (CNF)

Converting into CNF: A Full Example
Grammar in CNF:

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \rightarrow \boldsymbol{\varepsilon}|\mathbf{A C}| \mathbf{B A}|\mathbf{A A}| \mathbf{A B}|\mathbf{X A}| \mathbf{a}|\mathbf{Y D}| \mathbf{Y Z} \\
& \mathbf{C} \rightarrow \mathbf{B A} \\
& \mathbf{D} \rightarrow \mathbf{B Z} \\
& \mathbf{A} \rightarrow \mathbf{X A} \mid \mathbf{a} \\
& \mathbf{B} \rightarrow \mathbf{Y E} \mid \mathbf{Y Z} \\
& \mathbf{E} \rightarrow \mathbf{B Z} \\
& \mathbf{X} \rightarrow \mathbf{a} \\
& \mathbf{Y} \rightarrow \mathbf{b} \\
& \mathbf{Z} \rightarrow \mathbf{c}
\end{aligned}
$$

