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Chomsky Normal Form



A context-free grammar is in Chomsky Normal Form if every rule is of 

the form

A → BC

A → a

where a is any terminal and A, B, and C are any variables — except 

that B and C may not be the start variable. 

In addition, we permit the rule S →  where S is the start variable if 

the language of the grammar contains  .

Chomsky Normal Form

BBM401 Automata Theory and Formal Languages 2



Theorem: Every (non-empty) context free language can be generated by a context-

free grammar in Chomsky normal form.

• In order to obtain an equivalent grammar in Chomsky normal form for any given 

CFG G, we will have the following conversion steps:

1. Add a new start variable S0 and a new production rule S0→S where S is the 

original start variable of G.

2. Eliminate -productions (productions of the form A→).  After this conversion 

step, only one -production (S0→) if the language of G contains .

3. Eliminate unit productions (productions of the form A→B where A and B are 

variables).

4. Eliminate useless symbols. Useless symbols do not appear in any derivation of a 

terminal string from the start symbol. 

5. Convert the remaining rules into Chomsky normal form adding new variables 

and rules.

Chomsky Normal Form
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• We add a new start variable S0 and the rule  S0→S , where S was the original start 

variable. 

• This change guarantees that the start variable does not occur on the right-hand side of 

a rule.

• The new grammar is equivalent to the original grammar (i.e they generate same 

language).

Example: 

S →  |  0S1 S0 → S

S →  |  0S1 

Add A New Start Variable
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• In order to remove -productions, first we will determine nullable variables.

• A variable A is said to nullable if  A ֜
∗
 .

• We can compute nullable(G), the set of all nullable symbols of a CFG G=(V,T,P,S) as 

follows:

Basis:

nullable(G) = {A : A→ ∈ P}

Induction:

If {C1,…,Ck} ⊆ nullable(G)  and  A→ C1,…,Ck ∈ P, 

then  nullable(G) = nullable(G) ∪ {A}

Eliminate -productions
nullable variables
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• A CFG G1

S0 → S

S →  |  0S1  nullable(G1) = {S, S0}

• A CFG G2

S0 → S

S → AB  

A → aAA |  

B → bBB |    nullable(G2) = {A, B, S, S0}

Eliminate -productions
nullable variables: Example
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Steps for -production elimination for CFG G:

1. Find nullable(G), the set of all nullable symbols of G.

2. Generate new rules from a rule R by eliminating nullable variables from its right-

side, if nullable variables appears on its right-side.

– The number of new rules depends on the number of nullable variables on the 

right-side. If there are k nullable variables, we have to generate 2k-1 new rules.

– Generated new rule is added if it is not already among the rules.

• If  R→A is a rule and A is the only nullable variable on A,  generate and 

add the new rule R→.

• If  R→AB is a rule and A and B are only nullable variables on AB , 

generate and add the new rules R→B, R→A and R→.

• …

3. Remove all -productions A→ (except S0→) from the rules. 

The new grammar that is obtained by eliminating -productions is equivalent to the original 

grammar (i.e they generate same language).

Eliminate -productions
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S0 → S S →  |  0S1 

• nullable(G) = {S, S0}

• Since S is nullable, 

– generate S0→ from S0 → S

• Since S is nullable, 

– generate S→01  from S→0S1 

• After all generations, we have the following rules:

S0 →  |  S

S →  |  01  |  0S1

• Remove all -productions except S0→, our final grammar is:

S0 →  |  S

S → 01  |  0S1

Eliminate -productions: Example
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S0 → S        S → AB        A → aAA |   B → bBB |  

• nullable(G) = {A, B, S, S0}

• Generate new rules:

S0 →  from S0 → S 

S → A    S → B     S →  from S → AB 

A → aA A → aA A → a from A → aAA

B → bB B → bB B → b from B → bBB

• Remove -productions

S0 → S | 

S → AB  |  A  |  B           

A → aAA |  aA |  a        

B → bBB |  bB |  b

Eliminate -productions: Example
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• A → B  is a unit production, whenever A and B are variables.

• Unit productions can be eliminated from a grammar to obtain a grammar without unit 

productions.

– The resulting grammar that is obtained by eliminating unit productions will be 

equivalent to the original grammar.

• We will remove unit productions one by one from the grammar.

• Remove a unit production A → B from the grammar.

– Then, whenever a rule B→u appears, we add the rule A→u unless this was a 

unit rule previously removed.

• We repeat these steps until we eliminate all unit rules.

Eliminate Unit Productions
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S0 →  |  S

S → 01  |  0S1

• Unit productions: { S0→S }

• Remove  S0→S, 

– Add S0→01  and S0→0S1 

• The resulting grammar after eliminating unit productions.

S0 →  |  01  |  0S1

S → 01  |  0S1

Eliminate Unit Productions: Example
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S0 → S | 

S → AB  |  A  |  B           

A → aAA |  aA |  a        

B → bBB |  bB |  b

– Unit productions: { S0→S, S→A, S→B }

– Remove  S→B,  add S → bBB |  bB |  b

– Remove  S→A,  add S → aAA |  aA |  a 

– Remove  S0→S,  add S0→ AB  | aAA |  aA |  a | bBB |  bB |  b

• The resulting grammar after eliminating unit productions.

S0 →  |  AB  | aAA |  aA |  a | bBB |  bB |  b
S → AB  | aAA |  aA |  a  |  bBB |  bB |  b

A → aAA |  aA |  a        

B → bBB |  bB |  b

Eliminate Unit Productions: Example
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E →  E+T  |  T

T →  T*F   |  F

F →  G^F  |  G

G → id  |  (E)

– Unit productions: { E→T, T→F, F→G }

– Remove  F→G,  add F → id  |  (E)

– Remove  T→F,  add T → G^F  |  id  |  (E)

– Remove  E→T,  add E→ T*F | G^F  |  id  |  (E)

• The resulting grammar after eliminating unit productions.

E →  E+T  |  T*F | G^F  |  id  |  (E)

T →  T*F   |  G^F  |  id  |  (E)

F →  G^F  | id  |  (E)

G → id  |  (E)

Eliminate Unit Productions: Example
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equivalent grammars



E →  E+T  |  T

T →  T*F   |  F

F →  G^F  |  G

G → id  |  (E)

– Unit productions: { E→T, T→F, F→G } 

– Remove  E→T,  add E → T*F |  F

– Remove  T→F,  add T → G^F  |  G

– Remove  F→G,  add F → id  |  (E)

– Remove newly introduced unit productions

– Remove  E→F,  add E → G^F  |  id  |  (E)

– Remove  T→G,  add T → id  |  (E)

• The resulting grammar after eliminating unit productions.

E →  E+T  |  T*F | G^F  |  id  |  (E)

T →  T*F   |  G^F  |  id  |  (E)

F →  G^F  | id  |  (E)

G → id  |  (E)

Eliminate Unit Productions: Example
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equivalent grammars

Eliminating unit productions in different order do not change the result.



• A symbol X is useful for a grammar G=(V,T,P,S), if there is a derivation

S ֜
∗
X֜

∗
w

for a terminal string w. 

• Symbols that are not useful are called useless.

• A symbol X is generating if  X֜
∗

w for some string w∈T*.

• A symbol X is reachable if  S֜
∗
X for some {,}⊆(V∪T)*.

• If we eliminate non-generating symbols first, and then non-reachable symbols,     

we will be left with only useful symbols.

– The grammar that is obtained by eliminating useless symbols will be equivalent to the 

original grammar.

Eliminate Useless Symbols
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• For a grammar G = (V,T,P,S), the generating symbols generating(G) are computed by 

the following closure algorithm:

Basis:  generating(G) = T

Induction: 

If   X→ ∈ P  or  X→A1…An ∈ P where {A1,…,An}⊆generating(G) then

generating(G) = generating(G) ∪ {𝐗}

Example: 

– Let G be  S→AB|a, A→b

– Initially, generating(G) = {a,b}

– A will be in generating(G) because of A→b

– S will be in generating(G) because of S→a

• Thus, generating(G)={a,b,A,S}  and  non-generating symbols are {B}

Eliminate Useless Symbols
computing generating symbols
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• For a grammar G = (V,T,P,S), the reachable symbols reachable(G) are computed by 

the following closure algorithm:

Basis:  reachable(G) = {S}

Induction: 

If  X∈reachable(G)  and  X→  ∈ P  then

add all symbols in  to reachable(G).

Example: 

– Let G be  S→AB|a, A→b, C→a

– Initially, reachable(G) = {S}

– A and B will be in reachable(G) because of S→AB

– a will be in reachable(G) because of S→a

– b will be in reachable(G) because of A→b

• Thus, reachable(G)={S,A,B,a,b}  and  non-reachable symbols are {C}

Eliminate Useless Symbols
computing reachable symbols
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Steps to eliminate useless symbols from G = (V,T,P,S) :

1. Compute generating(G).

2. Remove all productions containing at least one non-generating symbol in order to 

create a new grammar G1 (a grammar without non-generating symbols).

– Remove a production if a non-generating symbol appears in that production (on its right-

side or its left-side) 

3. Compute reachable(G1).

4. Remove all productions containing at least one non-reachable symbol in order to 

create a new grammar G2 without useless symbols (a grammar without non-reachable 

symbols and non-generating symbols).

The new grammar G2 (a grammar without useless symbols) will be equivalent to the 

original grammar G.

Eliminate Useless Symbols
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G:    S → AB | a ,   A→b

• Compute generating(G):  

– generating(G)={a,b,A,S}  and  non-generating symbols are {B}.

• Remove productions containing non-generating symbols: 

– Remove S→AB because it contains B.

– Thus, following G1 is a grammar without non-generating symbols.

– G1 is  S→a,  A→b

• Compute reachable(G1):  

– reachable(G1)={S,a} and non-reachable symbols are {A,b}.

• Remove productions containing non-reachable symbols: 

– Remove A→b because it contains A (and/or b).

• Grammar G2 without useless symbols (non-generating and non-reachable symbols):

G2:   S→a

Eliminate Useless Symbols: Example
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• Steps to obtain an equivalent grammar in Chomsky Normal Form:

1. Add a new start variable S0
.

2. Eliminate -productions.

3. Eliminate unit productions.

4. Eliminate useless symbols.

i. Eliminate non-generating symbols.

ii. Eliminate non-reachable symbols.

5. Convert the remaining rules into CNF:

Now, to obtain a grammar in CNF, we want every rule to be the form

A → BC A → a

i. Arrange that all bodies of length 2 or more consists of only variables.

ii. Break bodies of length 3 or more into a cascade of two-variable-bodied 

productions.

Chomsky Normal Form (CNF)
Convert the remaining rules into CNF
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i. Arrange that all bodies of length 2 or more consists of only variables.

– For every terminal a that appears in a body of length2, create a new 

variable, say Xa, and replace a by Xa in all bodies.

– Then add a new rule Xa→a.

ii. Break bodies of length 3 or more into a cascade of two-variable-bodied 

productions.

– For each rule of the form

A→B1,…,Bk

k≥3, introduce new variables Y1,…,Yk-2  and replace the rule with

A → B1Y1 

Y1  → B2 Y2 

…

Yk-3  → Bk-2 Yk-2 

Yk-2  → Bk-1 Bk 

Chomsky Normal Form (CNF)
Convert the remaining rules into CNF
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S0 →  |  01  |  0S1

S → 01  |  0S1

Arrange that all bodies of length 2 or more consists of only variables.

S0 →  |  X0 X1 |  X0 S X1

S → X0 X1 |  X0 S X1

X0 → 0

X1 → 1

Break bodies of length 3 or more into two-variable-bodied productions.

S0 → X0 S X1  S0 → X0 Y1 Y1 → S X1

S → X0 S X1  S → X0 Y2 Y2 → S X1

Grammar in CNF:

S0 →  |  X0 X1 | X0 Y1 Y1 → S X1

S → X0 X1 | X0 Y2 Y2 → S X1

X0 → 0

X1 → 1

Chomsky Normal Form (CNF)
Convert the remaining rules into CNF: Example
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S → ABA 

A → aA | 

B → bBc | 

Step 1. Add a new start variable S0

Step 2. Eliminate -productions.

nullable(G) = {A, B, S, S0}

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example
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S → ABA 

A → aA | 

B → bBc | 

S0 → S

S → ABA 

A → aA | 

B → bBc | 

S0 → S

S → ABA 

A → aA | 

B → bBc | 

S0 → S | 

S → ABA | BA | AA | AB | A | B | A | 

A → aA | a | 

B → bBc |  | bc

S0 → S | 

S → ABA | BA | AA | AB | A | B 

A → aA | a 

B → bBc | bc



Step 3. Eliminate unit productions.

Step 4. Eliminate useless symbols.

i. Eliminate non-generating symbols.  none

ii. Eliminate non-reachable symbols.   S

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example
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S0 → S | 

S → ABA | BA | AA | AB | A | B 

A → aA | a 

B → bBc | bc

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

S → ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a 

B → bBc | bc

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

S → ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a 

B → bBc | bc

S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a 

B → bBc | bc



Step 5. Convert the remaining rules into CNF:

Arrange that all bodies of length 2 or more consists of only variables.

Break bodies of length 3 or more into two-variable-bodied productions.

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example
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S0 →  | ABA | BA | AA | AB | aA | a | bBc | bc

A → aA | a 

B → bBc | bc

S0 →  | ABA | BA | AA | AB | XA | a | YBZ | YZ 

A → XA | a 

B → YBZ | YZ

X → a 

Y → b 

Z → c 

S0 →  | ABA | BA | AA | AB | XA | a | YBZ | YZ 

A → XA | a 

B → YBZ | YZ

X → a 

Y → b 

Z → c 

S0 →  | AC | BA | AA | AB | XA | a | YD | YZ

C → BA D → BZ

A → XA | a 

B → YE | YZ

E→ BZ

X → a 

Y → b 

Z → c 



Grammar in CNF:

Chomsky Normal Form (CNF)
Converting into CNF: A Full Example
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S0 →  | AC | BA | AA | AB | XA | a | YD | YZ

C → BA

D → BZ

A → XA | a 

B → YE | YZ

E→ BZ

X → a 

Y → b 

Z → c 


