
BBM401 Automata Theory and Formal Languages 1

The Pumping Lemma for CFLs and

Properties of Context-Free Languages

The Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 2

Intuition:

• The pumping lemma of regular languages tell us that

– If there was a string long enough to cause a cycle in the DFA for the language,

then we could “pump” the cycle (a piece of the string) and discover an infinite

sequence of strings that had to be in the language.

• The pumping lemma of context-free languages tell us that

– If there was a string long enough to cause a cycle (same variable appears

more than once in the derivation), then we can always find two pieces of this

sufficiently long string to “pump” in tandem and discover an infinite

sequence of strings that had to be in the language.

– That is: if we repeat each of the two pieces the same number of times, we get

another string in the language.

The Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 3

• The first step in deriving a pumping lemma for CFLs is to examine the shape and size

of parse trees.

• One of the uses of Chomsky Normal Form (CNF) is to turn parse trees into binary

trees.

– Remember that every CFG can be converted to an equivalent grammar in CNF, and

– A context-free grammar is in Chomsky Normal Form if every rule is of the form

A → BC or A → a

THEOREM: The Size of Parse Trees for Grammars in CNF

Suppose we have a parse tree according to a Chomsky-Normal-Form grammar

G = (V, T, P, S), and suppose that the yield of the tree is a terminal string w.

If the length of the longest path is n, then |w| ≤ 2n-l.

The Pumping Lemma for CFLs
The Size of Parse Trees

BBM401 Automata Theory and Formal Languages 4

THEOREM: (The pumping lemma for context-free languages)

Let L be a CFL, then there exists a constant n such that if z is any string in L such

that |z| is at least n, then we can write z = uvwxy, subject to the following conditions:

1. |vwx|  n That is, the middle portion is not too long.

2. vx   Since v and x are the pieces to be "pumped," this condition says

that at least one of the strings we pump must not be empty.

3. For all i ≥ 0, uviwxiy is in L.

That is, the two strings v and x may be "pumped" any number of times,

including 0, and the resulting string will still be a member of L.

The Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 5

• The first step is to find a Chomsky Normal Form grammar G for language L.

• If L is , {} or it contains , this does not cause any problem in the proof.

– If L is  or {} then the statement of the theorem, which talks about a non-empty string z in

L surely cannot be violated, since there is no such z in L in this case.

– Also, if L contains , then it is not also a problem, the selected string z must be non-empty.

• Now, starting with a CNF grammar G=(V,T,P,S) such that L(G)=L-{}.

– Let the grammar have m variables.

– Pick n = 2m.

– Let |z| > n.

– We claim (“ShapeOfParseTree Claim”) that a parse tree with yield z must

have a path of length m+2 or more.

Proof of the Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 6

• If the length of the longest path in the parse tree of a CNF grammar is m+1, then the longest

yield has length 2m-1, and there are m variables on the longest path.

• If the length of the longest path in the parse tree of a CNF grammar is m+2, then the longest

yield has length 2m, and there are m+1 variables on the longest path.

Proof of the Pumping Lemma for CFLs
Shape of Parse Tree for CNF Grammars

BBM401 Automata Theory and Formal Languages 7

2m-1 terminals

⋮ ⋮

m

v
ar

ia
b
le

s

lo
n
g
est

p
ath

len
g
th

is m
+

1

2m terminals

⋮ ⋮m
+

1
v
ar

ia
b
le

s

lo
n
g
est

p
ath

len
g
th

is m
+

2

• We start with a CNF grammar G=(V,T,P,S) such that L(G)=L-{}.

– Let the grammar have m variables.

– Pick n = 2m.

– Let |z| > n.

• Now, we know that the parse tree for z has a path with at least m+1 variables beacuse

the length of the longest path  m+2.

• There are only m different variables, so among the lowest m+1 variables on that

path, we can find two nodes Ai and Aj with the same label, say A.

Proof of the Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 8

• There are only m different variables, so among the lowest m+1 variables on that

path, we can find two nodes Ai and Aj with the same label, say A.

Proof of the Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 9

• Since k≥m, there are at least m+1 occurrences of

variables A0, A1,..., Ak on the path.

• As there are only m different variables in V, at

least two of the last m + 1 variables on the path

(that is, Ak-m through Ak, inclusive) must be the

same variable.

• Suppose Ai=Aj, where k-m ≤ i < j ≤ k.

Proof of the Pumping Lemma for CFLs

BBM401 Automata Theory and Formal Languages 10

u v w x y

Ai=A

Aj=A

• |vwx| < 2m = n because lowest

m+1 variables chosen.

• String w is the yield of the

subtree rooted at Aj (A).

• String vwx is the yield of the

subtree rooted at Ai (A).

• u and y are portions of z that

are to the left and rightof the

subtree rooted at Ai .

z

S

Since there are no unit productions

Both v and x can’t be .

Proof of the Pumping Lemma for CFLs
pump zero times

BBM401 Automata Theory and Formal Languages 11

u v w x y

A

A

S

u y

A

S

w

uwy = uv0wx0y must be

in the language.

Proof of the Pumping Lemma for CFLs
pump tvice

BBM401 Automata Theory and Formal Languages 12

u v w x y

A

A

S

u y

A

S

w

uvvwxxy = uv2wx2y

must be in the language.

A

A
v

v x

x

Proof of the Pumping Lemma for CFLs
pump three times

BBM401 Automata Theory and Formal Languages 13

u v w x y

A

A

S

u y

A

S

w
uvvvwxvxy = uv3wx3y

must be in the language.

A

A
v

v x

x

v x

A

Proof of the Pumping Lemma for CFLs
pump i times

BBM401 Automata Theory and Formal Languages 14

u v w x y

A

A

S

u y

A

S

w

A

A
v

v x

x

v x

A

Thus, uviwxiy where i0

must be in the language.

⋮

• In order to show that a language L is NOT a CFL using the Pumping Lemma:

1. Suppose L were a CFL.

2. Then there is an integer n given us by the pumping lemma, which we do not

know, we must plan for any possible n.

3. Pick a string z which must be in L, it must be defined using n and |z| > n.

• Tricky Part 1: You should find a string z so that you can create a contradiction

in step 5. YOU CANNOT SELECT A SPECIFIC STRING.

4. Break z into uvwxy, subject only to the constraints that |vwx|n and vx.

5. Pick i and show that uviwxiy is NOT L in order to create a contradiction.

• Tricky Part 2: You have to show that uviwxiy is NOT in L using only the

constraints that |vwx|n and vx. You may need to look at more than one cases.

YOU CANNOT GIVE A SPECIFIC EXAMPLE.

6. Conclude that L is NOT a CFL.

Using the Pumping Lemma

BBM401 Automata Theory and Formal Languages 15

Example: Let L be the language {0klk2k | k≥1}. Show that this language is NOT a

CFL using the Pumping Lemma:

1. Suppose L were a CFL.

2. Then there is an integer n given us by the pumping lemma.

3. Let us pick a string z= 0nln2n and 0nln2n is in L.

4. Break z into uvwxy, where |vwx|n and vx.

5. Pick 0 for i and we have show that uwy is NOT L in order to create a contradiction.

– Since |vwx|n, we know that vwx cannot involve both 0's and 2’s, since the last 0 and the

first 2 are separated by n+1 positions. So, there are two cases.

Using the Pumping Lemma – Example

BBM401 Automata Theory and Formal Languages 16

– Case 1: vwx has no 2’s:

• Then vx consists of only 0’s and 1’s.

• Since , v or/and x has at least one of these symbols.

• Then uwy has n 2’s but it has fewer than n 0’s or fewer than n 1’s or both.

• Therefore, uwy does not belong to L and creates a contradiction with our assumption that L were

a CFL.

• We conclude that L is NOT a CFL in case 1.

– Case 2: vwx has no 0’s:

• Then vx consists of only 1’s and 2’s.

• Since , v or/and x has at least one of these symbols.

• Then uwy has n 0’s but it has fewer than n 1’s or fewer than n 2’s or both.

• Therefore, uwy does not belong to L and creates a contradiction with our assumption that L were

a CFL.

• We also conclude that L is NOT a CFL in case 2.

– Whichever case holds, we conclude that L has a string we know NOT to be in L.

6. This contradiction allows us to conclude that our assumption was wrong; and L is not

a CFL.

Using the Pumping Lemma – Example

BBM401 Automata Theory and Formal Languages 17

Closure Properties of Context-Free Languages

BBM401 Automata Theory and Formal Languages 18

• CFLs are closed under

– Substitution

– Union

– Concatenation

– Kleene Closure

• CFLs are also closed under

– Reversal

– Homomorphisms and Inverse Homomorphisms.

• CFLs are NOT closed under

– Intersection

– Difference

Closure Properties of Context-Free Languages

BBM401 Automata Theory and Formal Languages 19

Substitutions:

•  is an alphabet. For every symbol a in , we choose a language La.

– Chosen languages can be over any alphabets.

• The choice of languages defines a function s (substitution) on  and we refer to La

as s(a) for each symbol a.

• If w=a1…an is a string *, the substitution of w s(w) is the language of all strings

x1…xn such that xi is in the language of s(ai).

• Substitution of a language s(L) is the union of s(w) for all strings w in L.

THEOREM:

If L is a context-free language over alphabet  and s is a substitution on  such

that s(a) is a CFL for each a in  then s(L) is a CFL.

Closure Properties of Context-Free Languages
Substitution

BBM401 Automata Theory and Formal Languages 20

L: S → 0S0 | 1S1 | 

Substition s(0): L0: A → aAb | 

Substition s(1): L1: B → 01B | 01

Substition s(L) is:

S → ASA | BSB | 

A → aAb | 

B → 01B | 01

• Since L, L0, L1 are CFLs then s(L) is also a CFL.

Closure Properties of Context-Free Languages
Substitution

BBM401 Automata Theory and Formal Languages 21

• CFLs are closed under Union.

• Let L and M be CFL’s with grammars G and H, respectively.

• Assume G and H have no variables in common.

– Names of variables do not affect the language.

• Let S1 and S2 be the start symbols of G and H.

• Form a new grammar for L ∪ M by combining all the symbols and productions of G

and H.

• Then, add a new start symbol S.

• Add productions S → S1 | S2.

• In the new grammar, all derivations start with S.

• The first step replaces S by either S1 or S2.

• In the first case, the result must be a string in L(G) = L, and in the second case a string

in L(H) = M.

Closure of CFLs Under Union

BBM401 Automata Theory and Formal Languages 22

• CFLs are closed under Concatenation.

• Let L and M be CFL’s with grammars G and H, respectively.

• Assume G and H have no variables in common.

• Let S1 and S2 be the start symbols of G and H.

• Form a new grammar for LM by starting with all symbols and productions of G and H.

• Add a new start symbol S.

• Add production S → S1S2.

• Every derivation from S results in a string in L followed by one in M.

Closure of CFLs Under Concatenation

BBM401 Automata Theory and Formal Languages 23

• CFLs are closed under Star.

• Let L have grammar G, with start symbol S1.

• Form a new grammar for L* by introducing to G a new start symbol S and the
productions S → S1S | ε.

• A rightmost derivation from S generates a sequence of zero or more S1’s, each of

which generates some string in L.

Closure Under Star

BBM401 Automata Theory and Formal Languages 24

• CFLs are closed under Reversal.

• If L is a CFL with grammar G, form a grammar for LR by reversing the right side of

every production.

Example:

• Let G have S → 0S1 | 01.

• The reversal of L(G) has grammar S → 1S0 | 10.

Closure of CFLs Under Reversal

BBM401 Automata Theory and Formal Languages 25

• CFLs are closed under Homomorphism.

• Let L be a CFL with grammar G.

• Let h be a homomorphism on the terminal symbols of G.

• Construct a grammar for h(L) by replacing each terminal symbol a by h(a).

Example:

• G has productions S → 0S1 | 01.

• h is defined by h(0) = ab, h(1) = ε.

• h(L(G)) has the grammar with productions S → abS | ab.

Closure of CFLs Under Homomorphism

BBM401 Automata Theory and Formal Languages 26

• Unlike the regular languages, CFLs are NOT closed under Intersection.

• We know that L1 = {0n1n2n | n > 1} is not a CFL (use the pumping lemma).

• However, L2 = {0n1n2i | n > 1, i > 1} is a CFL, and its CFG is:

S → AB A → 0A1 | 01 B → 2B | 2

• So is L3 = {0i1n2n | n > 1, i > 1} is a CFL, and its CFG is:

S → AB A → 0A | 0 B → 1B2 | 12

• But L1 = L2  L3 is NOT a CFL.

Nonclosure Under Intersection

BBM401 Automata Theory and Formal Languages 27

• CFLs are NOT closed under Difference.

• We can prove something more general:

– Any class of languages that is closed under difference is closed under intersection.

Proof:

• L  M = L – (L – M).

• Thus, if CFL’s were closed under difference, they would be closed under intersection,

but they are not.

Nonclosure Under Difference

BBM401 Automata Theory and Formal Languages 28

• CFLs are NOT closed under Complement.

• If L is a CFL, its complement ҧ𝐋 is NOT necessarily a CFL.

Proof:

• Suppose that തL is always context free when L is a CFL.

• Then since

• and CFLs are closed under union, it would follow that the CFLs are closed under

intersection. However we know they are not closed under intersection.

Nonclosure Under Complement

BBM401 Automata Theory and Formal Languages 29

• Intersection of two CFL’s need not be context free.

• But the intersection of a CFL with a regular language is always a CFL.

– Proof involves running a DFA in parallel with a PDA, and noting that the

combination is a PDA.

– PDAs accept by final state.

Intersection with a Regular Language

BBM401 Automata Theory and Formal Languages 30

DFA

PDA

Stack

Input Accept if both accept

Looks like the

state of one PDA

• The intersection of a CFL with a regular language is always a CFL

• Let the DFA A have transition function δA.

• Let the PDA P have transition function δP.

• States of combined PDA are [q,p], where q is a state of A and p a state of P.

• δ([q,p], a, X) contains ([δA(q,a),r], ) if δP(p, a, X) contains (r, ).

– Note a could be , in which case δA(q,a) = q.

• Accepting states of combined PDA are those [q,p] such that q is an accepting state of

A and p is an accepting state of P.

• Initial state of combined PDA is [q,p] such that q is the initial state of A and p is the

initial state of P.

Intersection with a Regular Language
Formal Construction

BBM401 Automata Theory and Formal Languages 31

Intersection of a CFL with a Regular Language

BBM401 Automata Theory and Formal Languages 32

a,Z/aZ

a,a/aa

a,b/

b,Z/bZ

b,b/bb

b,a/
,Z/Z

L1: The number of a’s is

equal to the number of b’s

L2: Ends with b.

a,Z/aZ

a,a/aa

a,b/

a,Z/aZ

a,a/aa

a,b/

b,Z/bZ

b,b/bb

b,a/

b,Z/bZ

b,b/bb

b,a/

,Z/Z ,Z/Z

L1  L2: The number of a’s is equal to

the number of b’s and ends with b.

• If L is a CFL and R is a regular language, then L-R is a CFL.

• Note that

• If R is regular, ഥR is also regular.

• Then L-R is a CFL.

(CFL – RegularLanguage) is a CFL

BBM401 Automata Theory and Formal Languages 33

