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Turing Machines



Turing Recognizable Languages

• DFAs recognize regular languages.

• PDAs recognize CFLs.

• There are languages that are NOT CFLs.

Turing Machines
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Context Free Languages

Regular Languages

DFAs

PDAs

Turing Machines



• Identify the following languages as regular language, CFL or non-CFL.

• { 0n1m | n  0 and m  0 }

• { 0n1n | n  0 }

• { 0n1m 0n | n  0 and m  0 }

• { 0n1n 0n | n  0 }

• { 0n12n | n  0 }

• { 0n12m | n  0 and m  0 }

• { 0n1n 2n | n  0 }

• { 0i1j 2k | k  j  i  0 }

• { w#w | w is in {0,1}* }

Turing Machines
Regular Language, CFL, Non-CFL
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• Identify the following languages as regular language, CFL or non-CFL.

• { 0n1m | n  0 and m  0 } regular language 

• { 0n1n | n  0 } CFL

• { 0n1m 0n | n  0 and m  0 } CFL

• { 0n1n 0n | n  0 } non-CFL

• { 0n12n | n  0 } CFL

• { 0n12m | n  0 and m  0 } regular language 

• { 0n1n 2n | n  0 } non-CFL

• { 0i1j 2k | k  j  i  0 } non-CFL

• { w#w | w is in {0,1}* } non-CFL

Turing Machines
Regular Language, CFL, Non-CFL
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• TMs are similar to a finite automaton, but a TM has an unlimited memory.

• A Turing machine is a much more accurate model of a general purpose computer. 

• A Turing machine can do everything that a real computer can do.

• Even a TM can not solve certain problems.

– Such problems are beyond theoretical limits of computation.

Turing Machines
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• There is a much more powerful model of

computation called Turing Machines (TM).
• It is first proposed by Alan Turing in 1936

Alan Turing
1912-1954



Turing Machines
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control

• The Turing machine model uses an 

infinite tape as its unlimited memory. 

• It has a tape head that can read and write 

symbols on the tape.

• Tape head can move to Left or Right.



• Read/write head starts at leftmost position on tape

• Input string written on leftmost squares of tape, rest is blank

• Computation proceeds according to transition function:

– Given current state of machine, and current symbol being read

– the machine 

• transitions to new state

• writes a symbol to its current position (overwriting existing symbol)

• moves the tape head L or R

• Computation ends if and when it enters either the accept or the reject state.

Turing Machine Computation
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• Consider the language L = { w#w | w {0,1}* } 

• We already know that L is not a regular language and it is not a CFL.

• But there is a TM that recognizes L.

Idea for Turing machine

• Zig-zag across tape to corresponding positions on either side of '#' to check whether 

these positions agree. 

– If they do not, or if there is no '#', reject. 

– If they do, cross them off.

• Once all symbols to the left of the '#' are crossed off, check for any symbols to the 

right of '#': 

– if there are any, reject; 

– if there aren't, accept. 

How does a TM Compute?
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• Consider the language L = { w#w | w {0,1}* }

• The TM starts with the input on the tape.

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ ⊔ ⊔ cross the symbol, move to R

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ ⊔ ⊔

 ... move to R until first un-crossed symbol after #, it must be 0

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ ⊔ ⊔

 ... move to L until first crossed symbol after # 

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ ⊔ ⊔ move to R

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ ⊔ ⊔

 ... move to R until first un-crossed symbol after #, it must be 1

⋮ Repeat ziz-zag operations

X X X X X X # X X X X X X ⊔ ⊔ ⊔ move to R

X X X X X X # X X X X X X ⊔ ⊔ ⊔

 ... move to R until first un-crossed symbol, it must be blank

X X X X X X # X X X X X X ⊔ ⊔ ⊔ ACCEPT

How does a TM Compute?
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A Turing Machine is a 7-tuple (Q, , , , q0, qaccept, qreject)  where 

Q, ,  are all finite sets and

1. Q is the set of states,

2.  is the input alphabet not containing the blank symbol ⊔,

3.  is the tape alphabet, where ⊔ and   ,

4. :  Q    Q    {L,R}  is the transition function,

5. q0  Q is the start state, 

6. qaccept  Q is the accept state, and

7. qreject  Q is the reject state, where qreject  qaccept

Formal Definition of a Turing Machine
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Initial Configuration:

• A Turing Machine M receives its input w = w1w2 …  wn on the leftmost n squares on 

the tape. The rest of the tape is blank.

– The head starts on the leftmost square on the tape.

– The first blank symbol on the tape marks the end of the input.

• The initial state is the start state q0.

How does a Turing Machine Compute?
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w1 w2 … wn ⊔ ⊔ ⊔ …

q0



Transition:

• The computation proceeds according to the transition function .

– If the current state is qi, the current tape symbol a, and (qi,a)=(qj,b,D) where a

and b are tape symbols (they can be the same symbol) and D is L or R, then 

• Machine M goes from the state qi to state qj.

• Machine M writes b onto the current tape position (if a and b are same,          

no change occurs on the current tape position).

• Tape head  moves to Left (if D is L) or moves to Right (if D is R)

• The head of Machine M never moves left of the beginning of the tape.

– If Machine M is on the leftmost square, it stays there!

How does a Turing Machine Compute?
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Accepting or Rejecting:

• The computation proceeds until Machine M enters either qaccept or qreject , when it 

halts.

– If Machine M enters qaccept  ACCEPT

– If Machine M enters qreject  REJECT

• The Turing Machine M may go on forever, never halting!

How does a Turing Machine Compute?
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• As a Turing machine computes, changes occur in the current state, the current tape 

contents, and the current head location.

• Each step of a TM computation can be captured by the notion of a configuration.

Configuration:

• For a state q and two strings u and v over the tape alphabet , we write uqv for 

the configuration where the current state is q, the current tape contents is uv, and  

the current head location is the first symbol of v. 

• The tape contains only blanks following the last symbol of v.

Configuration of a Turing Machine
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• The current state is q5, 

• u = 01 is to the left of the head,

• v = 010 is under and to the right of the head. 

• Tape has uv = 01010 on it.

• We represent this configuration by 01q5010

Configuration of a Turing Machine
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0 1 0 1 0 ⊔ ⊔ ⊔ …

q5



• Configuration C1 yields () configuration C2 if TM can legally go from C1 to C2

in a single step.

• ua qi bv  u qj acv if  (qi,b) = (qj,c,L)

• ua qi bv  uac qj v   if  (qi,b) = (qj,c,R)

• qi bv  qj cv   if  (qi,b) = (qj,c,L)

– If head is at the left end and the transition is left-moving, then head stay at the left end. 

• qi bv  c qj v   if  (qi,b) = (qj,c,R)

– If the head is at the left end, and the transition is right-moving.

• ua qi  uac qj if  (qi,⊔) = (qj,c,R)

– If the head is at the right end, configuration ua qi is equivalent to configuration ua qi ⊔
because we assume that blanks follow the part of the tape represented in the configuration.

• qi  c qj if  (qi,⊔) = (qj,c,R)

• qi  qj c   if  (qi,⊔) = (qj,c,L)

– If the head is at both left and right ends, configuration qi is equivalent to configuration qi ⊔.

Configurations 
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• The start configuration of a TM on input w is the configuration q0 w, which 

indicates that the machine is in the start state q0 with its head at the leftmost position 

on the tape.

• In an accepting configuration, the state of the configuration is qaccept. 

• In a rejecting configuration, the state of the configuration is qreject.

• Accepting and rejecting configurations are halting configurations and do not yield 

further configurations.

• Because the machine is defined to halt when in the states qaccept and qreject, we 

equivalently could have defined the transition function to as follows: 

:  Q’    Q    {L,R}

where Q’ is Q without qaccept and qreject

Configurations 
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Accepting (Recognizing) String:

• A Turing machine M accepts an input string w if a sequence of configurations  

C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M on input w,

2. Each Ci yields Ci+1, and

3. Ck is an accepting configuration.

Language of a Turing Machine M (or Language Recognized by M):

• The language of A Turing machine M L(M) is the set of strings w that are 

recognized by M.

• More formally,

L(M) = { w | q0 w * C where q0 w is the starting configuration of M on input w

and C is an accepting configuration of M. }

Language of a Turing Machine
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Turing-Recognizable:

• A language L is Turing-recognizable if some Turing machine recognizes it.

– It is also called a recursively enumerable language.

• When we start a Turing machine on an input, three outcomes are possible.

– The machine may accept, reject, or loop. 

– By loop we mean that the machine simply does not halt. 

– Looping may entail any simple or complex behavior that never leads to a halting state.

Language of a Turing Machine
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• A Turing machine M can fail to accept an input by entering qreject state or looping. 

– We prefer Turing machines that halt on all inputs; such machines never loop. 

– These machines are called deciders because they always make a decision to accept or reject.

– A decider that recognizes some language also is said to decide that language.

Turing-Decidable (Decidable):

• A language L is Turing-decidable (or decidable) if some Turing machine (which 

is a decider) decides it.

– It is also called a recursive language.

• Every decidable language is Turing-recognizable.

– But there are languages that are Turing-recognizable but not decidable.

Language of a Turing Machine
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• Consider  L = { w#w | w {0,1}* } 

• A formal description of a TM which decides L is (Q, , , , q1, qaccept, qreject) where

– Q = {q1,…,q8, qaccept, qreject } 

–  = {0,1,#}     

–  = {0,1,#,x,⊔}

– The start, accept, and reject states are q1, qaccept, and qreject, respectively.

– We describe   with a state diagram.

• On the given state diagram, qreject is missing and some transitions are also missing.

• We assume that all missing transitions goes to state qreject without changing the current 

tape symbol and head moves to right.

Example: Turing Machine 
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• qreject is missing and all missing 

transitions goes to state qreject . 

Arc label meanings:

• 0x,R from q1 to q2 means:

(q1,0)=(q2,x,R)

• #R from q1 to q8 means:

(q1,#)=(q8,#,R)

• 0,1R from q3 to q3 means:

(q3,0)=(q3,0,R) and 

(q3,1)=(q3,1,R) 

• 0,1,xL from q6 to q6 means:

(q6,0)=(q6,0,L)

(q6,1)=(q6,1,L) and

(q6,x)=(q6,x,L) 

Missing arcs from q8 means:

(q8,0)=(qreject,0,R)

(q8,1)=(qreject,1,R)

(q8,#)=(qreject,#,R)

Example: Turing Machine
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The computation of  01#01

q1 01#01  x q2 1#01  x1 q2 #01  x1# q4 01 

 x1 q6 #x1  x q7 1#x1  q7 x1#x1  x q1 1#x1 

 xx q3 #x1  xx# q5 x1  xx#x q5 1  xx# q6 xx

 xx q6 #xx  x q7 x#xx  xx q1 #xx  xx# q8 xx 

 xx#x q8 x  xx#xx q8 ⊔ xx#xx⊔ qaccept ⊔

ACCEPT

Example: Turing Machine
An Accepting Computation
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The computation of  01#00

q1 01#00  x q2 1#00  x1 q2 #00  x1# q4 00 

 x1 q6 #x0  x q7 1#x0  q7 x1#x0  x q1 1#x0 

 xx q3 #x0  xx# q5 x0  xx#x q5 0 

 xx#x0 qreject ⊔

REJECT

Example: Turing Machine
A Rejecting Computation
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• A Turing Machine (TM) M that decides L = { 02
𝑛

| n  0 } which is the language 

consisting of all strings of 0s whose length is a power of 2.

• TM M “On input string w:

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept .

3.  If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject .

4. Return the head to the left-hand end of the tape.

5. Go to stage 1.”

• Each iteration of stage 1, M cuts the number of 0s in half. As the machine sweeps across the 

tape in stage 1, it keeps track of whether the number of 0s seen is even or odd. 

– If that number is odd and greater than 1, the original number of 0s in the input could not have been a 

power of 2. Therefore, the machine rejects in this instance. 

– However, if the number of 0s seen is 1, the original number must have been a power of 2. So in this 

case, the machine accepts.

Example 2: Turing Machine 
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• A Turing Machine (TM) M that decides L = { 02
𝑛

| n  0 } which is the language 

consisting of all strings of 0s whose length is a power of 2.

• A formal description of a TM which decides L is (Q, , , , q1, qaccept, qreject) where

– Q = {q1,…,q5, qaccept, qreject } 

–  = {0}     

–  = {0,x,⊔}

– The start, accept, and reject states are q1, qaccept, and qreject, respectively.

– We describe   with a state diagram.

Example 2: Turing Machine 
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• A Turing Machine (TM) M that 

decides L = { 02
𝑛

| n  0 }.

• A TM M is

(Q, , , , q1, qaccept, qreject)

– Q = {q1,…,q5, qaccept, qreject } 

–  = {0}     

–  = {0,x,⊔}

Example 2: Turing Machine
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The computation of  0000

q1 0000  ⊔ q2 000  ⊔x q3 00  ⊔x0 q4 0 

 ⊔x0x q3 ⊔ ⊔x0 q5 x⊔ ⊔x q5 0x⊔

 ⊔ q5 x0x⊔ q5 ⊔x0x⊔ ⊔ q2 x0x⊔

 ⊔x q2 0x⊔ ⊔xx q3 x⊔ ⊔xxx q3 ⊔

 ⊔xx q5 x⊔ ⊔x q5 xx⊔ ⊔ q5 xxx⊔

 q5 ⊔xxx⊔ ⊔ q2 xxx⊔ ⊔x q2 xx⊔

 ⊔xx q2 x⊔ ⊔xxx q2 ⊔ ⊔xxx⊔ qaccept

ACCEPT

Example 2: Turing Machine
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The computation of  000

q1 000  ⊔ q2 00  ⊔x q3 0  ⊔x0 q4 ⊔

 ⊔x0⊔ qreject

REJECT

Example 2: Turing Machine
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• A TM to add 1 to a binary number (with a 0 in front)

• M = “On input w

1. Go to the right end of the input string

2. Move left as long as a 1 is seen, changing it to a 0.

3. Change the 0 to a 1, and halt.”

• For example, to add 1 to w = 0110011

– Change all the ending 1’s to 0’s  0110000

– Change the next 0 to a 1  0110100

• Now let’s design a TM for this problem.

Example 3: Turing Machine
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Example 3: Turing Machine
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q0
0,1R

q1

⊔L

10,L

qaccept

01,L

A TM to add 1 to a binary number (with a 0 in front)



• Turing Machines are the most general model of computation.

• Computations of a TM are described by a sequence of configurations.

– Accepting Configuration: contains state qaccept

– Rejecting Configuration: contains state qreject

– Starting Configuration for input w:  q0 w   where q0 is the start state

• Turing-recognizable languages

– TM halts in an accepting configuration if w is in the language.

– TM may halt in a rejecting configuration or go on indefinitely if w is not in the 

language.

• Turing-decidable languages

– TM halts in an accepting configuration if w is in the language.

– TM halts in a rejecting configuration if w is not in the language.

Turing Machines: Story So Far!
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• We talked the standard model of Turing Machines.

• A standard (ordinary) TM 

– has a single tape and a single read/write head which move to Left or Right.

– is deterministic.

• There alternative definitions of Turing Machines, and they are called variants of 

Turing machine model.

• Some variants of TMs are:

– Turing Machines with Stay Option

– Multitape Turing Machines 

– Non-Deterministic Turing Machines 

– Enuramators

– …

Variants of Turing Machines
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• A computational model is robust if the class of languages it accepts does not change 

under variants.

– We have seen that DFA’s are robust for nondeterminism.

• NFAs and DFAs accept the same class of languages.

– But not PDAs!

• Non-deterministic PDAs are more powerful than Deterministic PDAs

• The robustness of Turing Machines is by far greater than the robustness of DFAs and 

PDAs.

• We introduce several variants on Turing machines and show that all these variants 

have equal computational power.

– Each variant has the same power with Ordinary Turing Machine.

– All of them accept the same set of languages (Turing-Recognizable languages).

Variants of Turing Machines
Equivalence of Power
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Same Power of two classes (variants) means:

• For any machine M1 of first class there is a machine  M2 of second class such that:

L(M1) = L(M2) 

and vice-versa.

Simulation: 

• In order to prove that two classes of TMs have same power, we can simulate the 

machine of the first class with a machine of the other class.

Variants of Turing Machines
Equivalence of Power
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• Suppose in addition moving Left or Right, we give the option to the TM to stay (S) on 

the current cell, that is:

:  Q    Q    {L,R,S} 

• A TM with stay option can easily simulate an ordinary TM:

– It does not use the S option in any move.

• An ordinary TM can easily simulate a TM with stay option.

– For each transition with the S option, introduce a new state, and two transitions

• One transition moves the head right, and transits to the new state.

• The next transition moves the head back to left for every possible tape symbol, and 

transits to the previous state.

• Ordinary TMs and TMs with stay option have same power, and both of them 

accept Turing-recognizable languages.

Turing Machines with Stay Option
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• A multitape Turing machine is like an ordinary Turing machine with several tapes. 

– Each tape has its own head for reading and writing.

– There are k tapes

– Each tape has its own independent read/write head.

– Initially the input appears on tape 1, and the others start out blank. 

• The only fundamental difference from the ordinary TM is the state transition function.

:  Q  k  Q  k  {L,R}k

• The  entry (qi,a1,…,ak ) = (qj,b1,…,bk ,D1,…, Dk) reads as :

– If the TM is in state qi and the heads are reading symbols a1 through ak ,

– Then 

• The machine goes to state qj , 

• The heads write symbols b1 through bk , and

• The heads move in the specified directions D1 through Dk.

Multitape Turing Machines
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• Multitape Turing machines appear to be more powerful than ordinary Turing 

machines, but we can show that they are equivalent in power.

THEOREM:

• Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF:

• We show how to convert a multitape TM M to an equivalent single-tape TM S. 

• The key idea is to show how to simulate M with S.

Multitape Turing Machines
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Simulating Multitape TM with Ordinary TM
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• We use # as a delimiter to separate out the different tape contents.

• To keep track of the location of heads, we use additional symbols

– Each symbol in tape alphabet  has a “dotted” version.

– A dotted symbol indicates that the head is on that symbol.

– Between any two #’s there is only one symbol that is dotted.

• Thus, we have one real tape with k “virtual’ tapes, and one real read/write head with   

k “virtual” heads.

Simulating Multitape TM with Ordinary TM
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For a given input w=w1,…,wn

• First S puts its tape into the format that represents all k tapes of M.

• To simulate a single move of M, S starts at the leftmost # and scans the tape to the 

rightmost #.

– It determines the symbols under the “virtual” heads.

– This is remembered in the finite state control of S. 

• S makes a second pass to update the tapes according to M.

• If one of the virtual heads moves right to a #, 

– the rest of tape to the right is shifted to “open up” space for that “virtual tape”. 

• If one of the virtual heads moves left to a #, it just moves right again.

Simulating Multitape TM with Ordinary TM
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THEOREM: A language is Turing-recognizable if and only if some multitape Turing 

machine recognizes it.

PROOF:

• A Turing-recognizable language is recognized by an ordinary (single tape)Turing 

machine. 

• Every single tape TM is a special case of a multitape Turing machine.

• We showed that every multitape TM can be simulated by a single tape machine.

• Thus, whenever needed or convenient, we can use multiple tape TMs.

• We can assume that these multitape TMS can always be converted to a single tape 

standard TM.

Simulating Multitape TM With Ordinary TM
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• An ordinary TM is a deterministic machine.

• The transition function of an ordinary TM is:

:  Q    Q    {L,R}

• A nondeterministic TM will proceed computation with multiple next configurations.

• The transition function for a nondeterministic Turing Machine has the form:

:  Q    PowerSet(Q    {L,R})

Nondeterministic Turing Machines
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• A computation of a nondeterministic TM is a tree, where each branch of the tree is 

looks like a computation of an ordinary TM. 

• If a single branch reaches the accepting state, the nondeterministic TM accepts, even if 

other branches reach the rejecting state.

Nondeterministic Turing Machines
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• What is the power of Nondeterministic TMs?

– Is there a language that a nondeterministic TM can accept but no deterministic TM can 

accept?  NO

THEOREM: Every nondeterministic Turing machine has an equivalent

deterministic Turing Machine.

PROOF IDEA:

• We can simulate any nondeterministic TM N with a deterministic TM D. 

• The idea behind the simulation is to have D try all possible branches of N’s 

nondeterministic computation. 

• If D ever finds the accept state on one of these branches, D accepts. 

• Otherwise, D’s simulation will not terminate.

Nondeterministic Turing Machines
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Nondeterministic Computation

BBM401 Automata Theory and Formal Languages 46

C1

⋮⋮
⋮

reject

reject reject

accept
infinite

q0 w1…wn initial configuration

u qaccept v



Simulating Nondeterministic Computation
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Simulating Nondeterministic Computation
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• During simulation, D processes the 

configurations of N in a breadth-first fashion.

• Thus, D needs to maintain a queue of N’s 

configurations

• D gets the next configuration from the head 

of the queue.

• D creates copies of this configuration (as 

many as needed)

• On each copy, D simulates one of the 

nondeterministic moves of N.

• D places the resulting configurations to the 

back of the queue.



• Nondeterministic TM N is simulated with 2-tape Deterministic TM D

Structure Of Simulating Deterministic TM
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• Built into the finite control of D is the knowledge of what choices of moves N has for 

each state and input.

How D Simulates N
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1. D examines the state and the 

input symbol of the current 

configuration (right after the 

dotted separator)

2. If the state of the current 

configuration is the accept state 

of N, then D accepts the input 

and stops simulating N.

3. D copies k copies of the current 

configuration to the scratch 

tape.

4. D then applies one 

nondeterministic move of N to 

each copy.

How D Simulates N

BBM401 Automata Theory and Formal Languages 51



5. D then copies the new 

configurations from the scratch 

tape, back to the end of tape 1 

(so they go to the back of the 

queue), and then clears the 

scratch tape.

6. D then returns to the marked 

current configuration, and 

“erases” the mark, and “marks” 

the next configuration.

7. D returns to step 1, if there is a 

next configuration. Otherwise 

rejects.

How D Simulates N
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COROLLARY: 

• A language is Turing-recognizable if and only if some nondeterministic TM 

recognizes it.

COROLLARY: 

• A language is decidable if and only of some nondeterministic TM decides it.

Nondeterministic Turing Machines
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• As we mentioned earlier, we can use the term recursively enumerable language for 

Turing-recognizable language. 

• That term originates from a type of Turing machine variant called an enumerator. 

• Loosely defined, an enumerator is a Turing machine with an attached printer. 

– The Turing machine can use that printer as an output device to print strings. 

– Every time Turing machine wants to add a string to the list, it sends the string to printer.

Enumerators
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• The enumerator E starts with a blank input tape.

• If it does not halt, it may print an infinite list of strings.

• The strings can be enumerated in any order; repetitions are possible.

• The language of the enumerator is the collection of strings it eventually prints out.

Enumerators
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THEOREM: A language is Turing-recognizable if and only if some enumerator 

enumerates it.

PROOF:

If-part: If an enumerator E enumerates the language A then a TM M recognizes A.

M = “On input w

1. Run E. Every time E outputs a string, compare it with w.

2. If w ever appears in the output of E, accept.”

• Clearly M accepts only those strings that appear on E’s list. 

Enumerators
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THEOREM: A language is Turing-recognizable if and only if some enumerator 

enumerates it.

PROOF:

Only-If-part: If a TM M recognizes a language A, we can construct the following 

enumerator for A. Assume s1, s2, … is a list of possible strings in *.

E = “Ignore the input

1. Repeat the following for i = 1, 2, … 

2. Run M for i steps on each input s1, s2, … si.

3. If any computations accept, print out corresponding sk .”

If M accepts a particular string, it will appear on the list generated by E (in fact infinitely 

many times)

Enumerators
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• An algorithm is a finite sequence of precise instructions for performing a computation 

or for solving a problem.“

• In early 20th century, there was no formal definition of an algorithm.

• In 1936, Alonzo Church and Alan Turing came up with formalisms to define 

algorithms. These were shown to be equivalent, leading to the

Church-Turing Thesis
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Church-Turing thesis

Each algorithm can 

be implemented by 

some Turing machine.


