
BBM401 Automata Theory and Formal Languages 1

Turing Machines

Turing Recognizable Languages

• DFAs recognize regular languages.

• PDAs recognize CFLs.

• There are languages that are NOT CFLs.

Turing Machines

BBM401 Automata Theory and Formal Languages 2

Context Free Languages

Regular Languages

DFAs

PDAs

Turing Machines

• Identify the following languages as regular language, CFL or non-CFL.

• { 0n1m | n 0 and m 0 }

• { 0n1n | n 0 }

• { 0n1m 0n | n 0 and m 0 }

• { 0n1n 0n | n 0 }

• { 0n12n | n 0 }

• { 0n12m | n 0 and m 0 }

• { 0n1n 2n | n 0 }

• { 0i1j 2k | k j i 0 }

• { w#w | w is in {0,1}* }

Turing Machines
Regular Language, CFL, Non-CFL

BBM401 Automata Theory and Formal Languages 3

• Identify the following languages as regular language, CFL or non-CFL.

• { 0n1m | n 0 and m 0 } regular language

• { 0n1n | n 0 } CFL

• { 0n1m 0n | n 0 and m 0 } CFL

• { 0n1n 0n | n 0 } non-CFL

• { 0n12n | n 0 } CFL

• { 0n12m | n 0 and m 0 } regular language

• { 0n1n 2n | n 0 } non-CFL

• { 0i1j 2k | k j i 0 } non-CFL

• { w#w | w is in {0,1}* } non-CFL

Turing Machines
Regular Language, CFL, Non-CFL

BBM401 Automata Theory and Formal Languages 4

• TMs are similar to a finite automaton, but a TM has an unlimited memory.

• A Turing machine is a much more accurate model of a general purpose computer.

• A Turing machine can do everything that a real computer can do.

• Even a TM can not solve certain problems.

– Such problems are beyond theoretical limits of computation.

Turing Machines

BBM401 Automata Theory and Formal Languages 5

• There is a much more powerful model of

computation called Turing Machines (TM).
• It is first proposed by Alan Turing in 1936

Alan Turing
1912-1954

Turing Machines

BBM401 Automata Theory and Formal Languages 6

control

• The Turing machine model uses an

infinite tape as its unlimited memory.

• It has a tape head that can read and write

symbols on the tape.

• Tape head can move to Left or Right.

• Read/write head starts at leftmost position on tape

• Input string written on leftmost squares of tape, rest is blank

• Computation proceeds according to transition function:

– Given current state of machine, and current symbol being read

– the machine

• transitions to new state

• writes a symbol to its current position (overwriting existing symbol)

• moves the tape head L or R

• Computation ends if and when it enters either the accept or the reject state.

Turing Machine Computation

BBM401 Automata Theory and Formal Languages 7

• Consider the language L = { w#w | w {0,1}* }

• We already know that L is not a regular language and it is not a CFL.

• But there is a TM that recognizes L.

Idea for Turing machine

• Zig-zag across tape to corresponding positions on either side of '#' to check whether

these positions agree.

– If they do not, or if there is no '#', reject.

– If they do, cross them off.

• Once all symbols to the left of the '#' are crossed off, check for any symbols to the

right of '#':

– if there are any, reject;

– if there aren't, accept.

How does a TM Compute?

BBM401 Automata Theory and Formal Languages 8

• Consider the language L = { w#w | w {0,1}* }

• The TM starts with the input on the tape.

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ ⊔ ⊔ cross the symbol, move to R

X 1 1 0 0 0 # 0 1 1 0 0 0 ⊔ ⊔ ⊔

 ... move to R until first un-crossed symbol after #, it must be 0

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ ⊔ ⊔

 ... move to L until first crossed symbol after #

X 1 1 0 0 0 # X 1 1 0 0 0 ⊔ ⊔ ⊔ move to R

X X 1 0 0 0 # X 1 1 0 0 0 ⊔ ⊔ ⊔

 ... move to R until first un-crossed symbol after #, it must be 1

⋮ Repeat ziz-zag operations

X X X X X X # X X X X X X ⊔ ⊔ ⊔ move to R

X X X X X X # X X X X X X ⊔ ⊔ ⊔

 ... move to R until first un-crossed symbol, it must be blank

X X X X X X # X X X X X X ⊔ ⊔ ⊔ ACCEPT

How does a TM Compute?

BBM401 Automata Theory and Formal Languages 9

A Turing Machine is a 7-tuple (Q, , , , q0, qaccept, qreject) where

Q, , are all finite sets and

1. Q is the set of states,

2. is the input alphabet not containing the blank symbol ⊔,

3. is the tape alphabet, where ⊔ and ,

4. : Q Q {L,R} is the transition function,

5. q0 Q is the start state,

6. qaccept Q is the accept state, and

7. qreject Q is the reject state, where qreject qaccept

Formal Definition of a Turing Machine

BBM401 Automata Theory and Formal Languages 10

Initial Configuration:

• A Turing Machine M receives its input w = w1w2 … wn on the leftmost n squares on

the tape. The rest of the tape is blank.

– The head starts on the leftmost square on the tape.

– The first blank symbol on the tape marks the end of the input.

• The initial state is the start state q0.

How does a Turing Machine Compute?

BBM401 Automata Theory and Formal Languages 11

w1 w2 … wn ⊔ ⊔ ⊔ …

q0

Transition:

• The computation proceeds according to the transition function .

– If the current state is qi, the current tape symbol a, and (qi,a)=(qj,b,D) where a

and b are tape symbols (they can be the same symbol) and D is L or R, then

• Machine M goes from the state qi to state qj.

• Machine M writes b onto the current tape position (if a and b are same,

no change occurs on the current tape position).

• Tape head moves to Left (if D is L) or moves to Right (if D is R)

• The head of Machine M never moves left of the beginning of the tape.

– If Machine M is on the leftmost square, it stays there!

How does a Turing Machine Compute?

BBM401 Automata Theory and Formal Languages 12

Accepting or Rejecting:

• The computation proceeds until Machine M enters either qaccept or qreject , when it

halts.

– If Machine M enters qaccept ACCEPT

– If Machine M enters qreject REJECT

• The Turing Machine M may go on forever, never halting!

How does a Turing Machine Compute?

BBM401 Automata Theory and Formal Languages 13

• As a Turing machine computes, changes occur in the current state, the current tape

contents, and the current head location.

• Each step of a TM computation can be captured by the notion of a configuration.

Configuration:

• For a state q and two strings u and v over the tape alphabet , we write uqv for

the configuration where the current state is q, the current tape contents is uv, and

the current head location is the first symbol of v.

• The tape contains only blanks following the last symbol of v.

Configuration of a Turing Machine

BBM401 Automata Theory and Formal Languages 14

• The current state is q5,

• u = 01 is to the left of the head,

• v = 010 is under and to the right of the head.

• Tape has uv = 01010 on it.

• We represent this configuration by 01q5010

Configuration of a Turing Machine

BBM401 Automata Theory and Formal Languages 15

0 1 0 1 0 ⊔ ⊔ ⊔ …

q5

• Configuration C1 yields () configuration C2 if TM can legally go from C1 to C2

in a single step.

• ua qi bv u qj acv if (qi,b) = (qj,c,L)

• ua qi bv uac qj v if (qi,b) = (qj,c,R)

• qi bv qj cv if (qi,b) = (qj,c,L)

– If head is at the left end and the transition is left-moving, then head stay at the left end.

• qi bv c qj v if (qi,b) = (qj,c,R)

– If the head is at the left end, and the transition is right-moving.

• ua qi uac qj if (qi,⊔) = (qj,c,R)

– If the head is at the right end, configuration ua qi is equivalent to configuration ua qi ⊔
because we assume that blanks follow the part of the tape represented in the configuration.

• qi c qj if (qi,⊔) = (qj,c,R)

• qi qj c if (qi,⊔) = (qj,c,L)

– If the head is at both left and right ends, configuration qi is equivalent to configuration qi ⊔.

Configurations

BBM401 Automata Theory and Formal Languages 16

• The start configuration of a TM on input w is the configuration q0 w, which

indicates that the machine is in the start state q0 with its head at the leftmost position

on the tape.

• In an accepting configuration, the state of the configuration is qaccept.

• In a rejecting configuration, the state of the configuration is qreject.

• Accepting and rejecting configurations are halting configurations and do not yield

further configurations.

• Because the machine is defined to halt when in the states qaccept and qreject, we

equivalently could have defined the transition function to as follows:

: Q’ Q {L,R}

where Q’ is Q without qaccept and qreject

Configurations

BBM401 Automata Theory and Formal Languages 17

Accepting (Recognizing) String:

• A Turing machine M accepts an input string w if a sequence of configurations

C1, C2, . . . , Ck exists, where

1. C1 is the start configuration of M on input w,

2. Each Ci yields Ci+1, and

3. Ck is an accepting configuration.

Language of a Turing Machine M (or Language Recognized by M):

• The language of A Turing machine M L(M) is the set of strings w that are

recognized by M.

• More formally,

L(M) = { w | q0 w * C where q0 w is the starting configuration of M on input w

and C is an accepting configuration of M. }

Language of a Turing Machine

BBM401 Automata Theory and Formal Languages 18

Turing-Recognizable:

• A language L is Turing-recognizable if some Turing machine recognizes it.

– It is also called a recursively enumerable language.

• When we start a Turing machine on an input, three outcomes are possible.

– The machine may accept, reject, or loop.

– By loop we mean that the machine simply does not halt.

– Looping may entail any simple or complex behavior that never leads to a halting state.

Language of a Turing Machine

BBM401 Automata Theory and Formal Languages 19

• A Turing machine M can fail to accept an input by entering qreject state or looping.

– We prefer Turing machines that halt on all inputs; such machines never loop.

– These machines are called deciders because they always make a decision to accept or reject.

– A decider that recognizes some language also is said to decide that language.

Turing-Decidable (Decidable):

• A language L is Turing-decidable (or decidable) if some Turing machine (which

is a decider) decides it.

– It is also called a recursive language.

• Every decidable language is Turing-recognizable.

– But there are languages that are Turing-recognizable but not decidable.

Language of a Turing Machine

BBM401 Automata Theory and Formal Languages 20

• Consider L = { w#w | w {0,1}* }

• A formal description of a TM which decides L is (Q, , , , q1, qaccept, qreject) where

– Q = {q1,…,q8, qaccept, qreject }

– = {0,1,#}

– = {0,1,#,x,⊔}

– The start, accept, and reject states are q1, qaccept, and qreject, respectively.

– We describe with a state diagram.

• On the given state diagram, qreject is missing and some transitions are also missing.

• We assume that all missing transitions goes to state qreject without changing the current

tape symbol and head moves to right.

Example: Turing Machine

BBM401 Automata Theory and Formal Languages 21

• qreject is missing and all missing

transitions goes to state qreject .

Arc label meanings:

• 0x,R from q1 to q2 means:

(q1,0)=(q2,x,R)

• #R from q1 to q8 means:

(q1,#)=(q8,#,R)

• 0,1R from q3 to q3 means:

(q3,0)=(q3,0,R) and

(q3,1)=(q3,1,R)

• 0,1,xL from q6 to q6 means:

(q6,0)=(q6,0,L)

(q6,1)=(q6,1,L) and

(q6,x)=(q6,x,L)

Missing arcs from q8 means:

(q8,0)=(qreject,0,R)

(q8,1)=(qreject,1,R)

(q8,#)=(qreject,#,R)

Example: Turing Machine

BBM401 Automata Theory and Formal Languages 22

The computation of 01#01

q1 01#01 x q2 1#01 x1 q2 #01 x1# q4 01

 x1 q6 #x1 x q7 1#x1 q7 x1#x1 x q1 1#x1

 xx q3 #x1 xx# q5 x1 xx#x q5 1 xx# q6 xx

 xx q6 #xx x q7 x#xx xx q1 #xx xx# q8 xx

 xx#x q8 x xx#xx q8 ⊔ xx#xx⊔ qaccept ⊔

ACCEPT

Example: Turing Machine
An Accepting Computation

BBM401 Automata Theory and Formal Languages 23

The computation of 01#00

q1 01#00 x q2 1#00 x1 q2 #00 x1# q4 00

 x1 q6 #x0 x q7 1#x0 q7 x1#x0 x q1 1#x0

 xx q3 #x0 xx# q5 x0 xx#x q5 0

 xx#x0 qreject ⊔

REJECT

Example: Turing Machine
A Rejecting Computation

BBM401 Automata Theory and Formal Languages 24

• A Turing Machine (TM) M that decides L = { 02
𝑛

| n 0 } which is the language

consisting of all strings of 0s whose length is a power of 2.

• TM M “On input string w:

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept .

3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject .

4. Return the head to the left-hand end of the tape.

5. Go to stage 1.”

• Each iteration of stage 1, M cuts the number of 0s in half. As the machine sweeps across the

tape in stage 1, it keeps track of whether the number of 0s seen is even or odd.

– If that number is odd and greater than 1, the original number of 0s in the input could not have been a

power of 2. Therefore, the machine rejects in this instance.

– However, if the number of 0s seen is 1, the original number must have been a power of 2. So in this

case, the machine accepts.

Example 2: Turing Machine

BBM401 Automata Theory and Formal Languages 25

• A Turing Machine (TM) M that decides L = { 02
𝑛

| n 0 } which is the language

consisting of all strings of 0s whose length is a power of 2.

• A formal description of a TM which decides L is (Q, , , , q1, qaccept, qreject) where

– Q = {q1,…,q5, qaccept, qreject }

– = {0}

– = {0,x,⊔}

– The start, accept, and reject states are q1, qaccept, and qreject, respectively.

– We describe with a state diagram.

Example 2: Turing Machine

BBM401 Automata Theory and Formal Languages 26

• A Turing Machine (TM) M that

decides L = { 02
𝑛

| n 0 }.

• A TM M is

(Q, , , , q1, qaccept, qreject)

– Q = {q1,…,q5, qaccept, qreject }

– = {0}

– = {0,x,⊔}

Example 2: Turing Machine

BBM401 Automata Theory and Formal Languages 27

The computation of 0000

q1 0000 ⊔ q2 000 ⊔x q3 00 ⊔x0 q4 0

 ⊔x0x q3 ⊔ ⊔x0 q5 x⊔ ⊔x q5 0x⊔

 ⊔ q5 x0x⊔ q5 ⊔x0x⊔ ⊔ q2 x0x⊔

 ⊔x q2 0x⊔ ⊔xx q3 x⊔ ⊔xxx q3 ⊔

 ⊔xx q5 x⊔ ⊔x q5 xx⊔ ⊔ q5 xxx⊔

 q5 ⊔xxx⊔ ⊔ q2 xxx⊔ ⊔x q2 xx⊔

 ⊔xx q2 x⊔ ⊔xxx q2 ⊔ ⊔xxx⊔ qaccept

ACCEPT

Example 2: Turing Machine

BBM401 Automata Theory and Formal Languages 28

The computation of 000

q1 000 ⊔ q2 00 ⊔x q3 0 ⊔x0 q4 ⊔

 ⊔x0⊔ qreject

REJECT

Example 2: Turing Machine

BBM401 Automata Theory and Formal Languages 29

• A TM to add 1 to a binary number (with a 0 in front)

• M = “On input w

1. Go to the right end of the input string

2. Move left as long as a 1 is seen, changing it to a 0.

3. Change the 0 to a 1, and halt.”

• For example, to add 1 to w = 0110011

– Change all the ending 1’s to 0’s 0110000

– Change the next 0 to a 1 0110100

• Now let’s design a TM for this problem.

Example 3: Turing Machine

BBM401 Automata Theory and Formal Languages 30

Example 3: Turing Machine

BBM401 Automata Theory and Formal Languages 31

q0
0,1R

q1

⊔L

10,L

qaccept

01,L

A TM to add 1 to a binary number (with a 0 in front)

• Turing Machines are the most general model of computation.

• Computations of a TM are described by a sequence of configurations.

– Accepting Configuration: contains state qaccept

– Rejecting Configuration: contains state qreject

– Starting Configuration for input w: q0 w where q0 is the start state

• Turing-recognizable languages

– TM halts in an accepting configuration if w is in the language.

– TM may halt in a rejecting configuration or go on indefinitely if w is not in the

language.

• Turing-decidable languages

– TM halts in an accepting configuration if w is in the language.

– TM halts in a rejecting configuration if w is not in the language.

Turing Machines: Story So Far!

BBM401 Automata Theory and Formal Languages 32

• We talked the standard model of Turing Machines.

• A standard (ordinary) TM

– has a single tape and a single read/write head which move to Left or Right.

– is deterministic.

• There alternative definitions of Turing Machines, and they are called variants of

Turing machine model.

• Some variants of TMs are:

– Turing Machines with Stay Option

– Multitape Turing Machines

– Non-Deterministic Turing Machines

– Enuramators

– …

Variants of Turing Machines

BBM401 Automata Theory and Formal Languages 33

• A computational model is robust if the class of languages it accepts does not change

under variants.

– We have seen that DFA’s are robust for nondeterminism.

• NFAs and DFAs accept the same class of languages.

– But not PDAs!

• Non-deterministic PDAs are more powerful than Deterministic PDAs

• The robustness of Turing Machines is by far greater than the robustness of DFAs and

PDAs.

• We introduce several variants on Turing machines and show that all these variants

have equal computational power.

– Each variant has the same power with Ordinary Turing Machine.

– All of them accept the same set of languages (Turing-Recognizable languages).

Variants of Turing Machines
Equivalence of Power

BBM401 Automata Theory and Formal Languages 34

Same Power of two classes (variants) means:

• For any machine M1 of first class there is a machine M2 of second class such that:

L(M1) = L(M2)

and vice-versa.

Simulation:

• In order to prove that two classes of TMs have same power, we can simulate the

machine of the first class with a machine of the other class.

Variants of Turing Machines
Equivalence of Power

BBM401 Automata Theory and Formal Languages 35

• Suppose in addition moving Left or Right, we give the option to the TM to stay (S) on

the current cell, that is:

: Q Q {L,R,S}

• A TM with stay option can easily simulate an ordinary TM:

– It does not use the S option in any move.

• An ordinary TM can easily simulate a TM with stay option.

– For each transition with the S option, introduce a new state, and two transitions

• One transition moves the head right, and transits to the new state.

• The next transition moves the head back to left for every possible tape symbol, and

transits to the previous state.

• Ordinary TMs and TMs with stay option have same power, and both of them

accept Turing-recognizable languages.

Turing Machines with Stay Option

BBM401 Automata Theory and Formal Languages 36

• A multitape Turing machine is like an ordinary Turing machine with several tapes.

– Each tape has its own head for reading and writing.

– There are k tapes

– Each tape has its own independent read/write head.

– Initially the input appears on tape 1, and the others start out blank.

• The only fundamental difference from the ordinary TM is the state transition function.

: Q k Q k {L,R}k

• The entry (qi,a1,…,ak) = (qj,b1,…,bk ,D1,…, Dk) reads as :

– If the TM is in state qi and the heads are reading symbols a1 through ak ,

– Then

• The machine goes to state qj ,

• The heads write symbols b1 through bk , and

• The heads move in the specified directions D1 through Dk.

Multitape Turing Machines

BBM401 Automata Theory and Formal Languages 37

• Multitape Turing machines appear to be more powerful than ordinary Turing

machines, but we can show that they are equivalent in power.

THEOREM:

• Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF:

• We show how to convert a multitape TM M to an equivalent single-tape TM S.

• The key idea is to show how to simulate M with S.

Multitape Turing Machines

BBM401 Automata Theory and Formal Languages 38

Simulating Multitape TM with Ordinary TM

BBM401 Automata Theory and Formal Languages 39

• We use # as a delimiter to separate out the different tape contents.

• To keep track of the location of heads, we use additional symbols

– Each symbol in tape alphabet has a “dotted” version.

– A dotted symbol indicates that the head is on that symbol.

– Between any two #’s there is only one symbol that is dotted.

• Thus, we have one real tape with k “virtual’ tapes, and one real read/write head with

k “virtual” heads.

Simulating Multitape TM with Ordinary TM

BBM401 Automata Theory and Formal Languages 40

For a given input w=w1,…,wn

• First S puts its tape into the format that represents all k tapes of M.

• To simulate a single move of M, S starts at the leftmost # and scans the tape to the

rightmost #.

– It determines the symbols under the “virtual” heads.

– This is remembered in the finite state control of S.

• S makes a second pass to update the tapes according to M.

• If one of the virtual heads moves right to a #,

– the rest of tape to the right is shifted to “open up” space for that “virtual tape”.

• If one of the virtual heads moves left to a #, it just moves right again.

Simulating Multitape TM with Ordinary TM

BBM401 Automata Theory and Formal Languages 41

THEOREM: A language is Turing-recognizable if and only if some multitape Turing

machine recognizes it.

PROOF:

• A Turing-recognizable language is recognized by an ordinary (single tape)Turing

machine.

• Every single tape TM is a special case of a multitape Turing machine.

• We showed that every multitape TM can be simulated by a single tape machine.

• Thus, whenever needed or convenient, we can use multiple tape TMs.

• We can assume that these multitape TMS can always be converted to a single tape

standard TM.

Simulating Multitape TM With Ordinary TM

BBM401 Automata Theory and Formal Languages 42

• An ordinary TM is a deterministic machine.

• The transition function of an ordinary TM is:

: Q Q {L,R}

• A nondeterministic TM will proceed computation with multiple next configurations.

• The transition function for a nondeterministic Turing Machine has the form:

: Q PowerSet(Q {L,R})

Nondeterministic Turing Machines

BBM401 Automata Theory and Formal Languages 43

• A computation of a nondeterministic TM is a tree, where each branch of the tree is

looks like a computation of an ordinary TM.

• If a single branch reaches the accepting state, the nondeterministic TM accepts, even if

other branches reach the rejecting state.

Nondeterministic Turing Machines

BBM401 Automata Theory and Formal Languages 44

• What is the power of Nondeterministic TMs?

– Is there a language that a nondeterministic TM can accept but no deterministic TM can

accept? NO

THEOREM: Every nondeterministic Turing machine has an equivalent

deterministic Turing Machine.

PROOF IDEA:

• We can simulate any nondeterministic TM N with a deterministic TM D.

• The idea behind the simulation is to have D try all possible branches of N’s

nondeterministic computation.

• If D ever finds the accept state on one of these branches, D accepts.

• Otherwise, D’s simulation will not terminate.

Nondeterministic Turing Machines

BBM401 Automata Theory and Formal Languages 45

Nondeterministic Computation

BBM401 Automata Theory and Formal Languages 46

C1

⋮⋮
⋮

reject

reject reject

accept
infinite

q0 w1…wn initial configuration

u qaccept v

Simulating Nondeterministic Computation

BBM401 Automata Theory and Formal Languages 47

C1

⋮⋮
⋮

reject

reject reject

accept
infinite

q0 w1…wn initial configuration

u qaccept v

2 3

1

7654

200

111098

order of simulation

is level by level

Simulating Nondeterministic Computation

BBM401 Automata Theory and Formal Languages 48

• During simulation, D processes the

configurations of N in a breadth-first fashion.

• Thus, D needs to maintain a queue of N’s

configurations

• D gets the next configuration from the head

of the queue.

• D creates copies of this configuration (as

many as needed)

• On each copy, D simulates one of the

nondeterministic moves of N.

• D places the resulting configurations to the

back of the queue.

• Nondeterministic TM N is simulated with 2-tape Deterministic TM D

Structure Of Simulating Deterministic TM

BBM401 Automata Theory and Formal Languages 49

• Built into the finite control of D is the knowledge of what choices of moves N has for

each state and input.

How D Simulates N

BBM401 Automata Theory and Formal Languages 50

1. D examines the state and the

input symbol of the current

configuration (right after the

dotted separator)

2. If the state of the current

configuration is the accept state

of N, then D accepts the input

and stops simulating N.

3. D copies k copies of the current

configuration to the scratch

tape.

4. D then applies one

nondeterministic move of N to

each copy.

How D Simulates N

BBM401 Automata Theory and Formal Languages 51

5. D then copies the new

configurations from the scratch

tape, back to the end of tape 1

(so they go to the back of the

queue), and then clears the

scratch tape.

6. D then returns to the marked

current configuration, and

“erases” the mark, and “marks”

the next configuration.

7. D returns to step 1, if there is a

next configuration. Otherwise

rejects.

How D Simulates N

BBM401 Automata Theory and Formal Languages 52

COROLLARY:

• A language is Turing-recognizable if and only if some nondeterministic TM

recognizes it.

COROLLARY:

• A language is decidable if and only of some nondeterministic TM decides it.

Nondeterministic Turing Machines

BBM401 Automata Theory and Formal Languages 53

• As we mentioned earlier, we can use the term recursively enumerable language for

Turing-recognizable language.

• That term originates from a type of Turing machine variant called an enumerator.

• Loosely defined, an enumerator is a Turing machine with an attached printer.

– The Turing machine can use that printer as an output device to print strings.

– Every time Turing machine wants to add a string to the list, it sends the string to printer.

Enumerators

BBM401 Automata Theory and Formal Languages 54

• The enumerator E starts with a blank input tape.

• If it does not halt, it may print an infinite list of strings.

• The strings can be enumerated in any order; repetitions are possible.

• The language of the enumerator is the collection of strings it eventually prints out.

Enumerators

BBM401 Automata Theory and Formal Languages 55

THEOREM: A language is Turing-recognizable if and only if some enumerator

enumerates it.

PROOF:

If-part: If an enumerator E enumerates the language A then a TM M recognizes A.

M = “On input w

1. Run E. Every time E outputs a string, compare it with w.

2. If w ever appears in the output of E, accept.”

• Clearly M accepts only those strings that appear on E’s list.

Enumerators

BBM401 Automata Theory and Formal Languages 56

THEOREM: A language is Turing-recognizable if and only if some enumerator

enumerates it.

PROOF:

Only-If-part: If a TM M recognizes a language A, we can construct the following

enumerator for A. Assume s1, s2, … is a list of possible strings in *.

E = “Ignore the input

1. Repeat the following for i = 1, 2, …

2. Run M for i steps on each input s1, s2, … si.

3. If any computations accept, print out corresponding sk .”

If M accepts a particular string, it will appear on the list generated by E (in fact infinitely

many times)

Enumerators

BBM401 Automata Theory and Formal Languages 57

• An algorithm is a finite sequence of precise instructions for performing a computation

or for solving a problem.“

• In early 20th century, there was no formal definition of an algorithm.

• In 1936, Alonzo Church and Alan Turing came up with formalisms to define

algorithms. These were shown to be equivalent, leading to the

Church-Turing Thesis

BBM401 Automata Theory and Formal Languages 58

Church-Turing thesis

Each algorithm can

be implemented by

some Turing machine.

