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• The most general model of computation

• Computations of a TM are described by a sequence of configurations. (Accepting 

Configuration, Rejecting Configuration)

• Turing-recognizable languages

– TM halts in an accepting configuration if w is in the language.

– TM may halt in a rejecting configuration or go on indefinitely if w is not in the language.

• Turing-decidable languages

– TM halts in an accepting configuration if w is in the language.

– TM halts in a rejecting configuration if w is not in the language.

• Nondeterministic TMs are equivalent to Deterministic TMs.

• Multitape TMs are equivalent to Deterministic TMs.

Turing Machines
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• We investigate the power of algorithms to solve problems.

• We discuss certain problems that can be solved algorithmically and others that can not 

be solved.

• Why discuss unsolvability?

• Knowing a problem is unsolvable is useful because

– you realize it must be simplified or altered before you find an algorithmic solution.

– you gain a better perspective on computation and its limitations.

Decidability
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• The inputs to TMs have to be strings.

• Every object O that enters a computation will be represented with a string <O>, 

encoding the object.

• To represent a DFA as a string:

• Encode Q using unary encoding:

– For Q = {q0,…,qn} encode qi using i+1 0’s, i.e., using the string 0i+1.

– We assume that q0 is always the start state.

• Encode  using unary encoding:

– For  = {a1,…,am} , encode ai using i 0’s, i.e., using the string 0i .

• With these conventions, all we need to encode is  and F.

• Each entry of , e.g., (qi,aj ) = qk is encoded as

Decidable Languages
Encoding Finite Automata As Strings
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• The whole  can now be encoded as

• F can be encoded just as a list of the encodings of all the final states. For example, if 

states 2 and 4 are the final states, F could be encoded as

• The whole DFA would be encoded by

Decidable Languages
Encoding Finite Automata As Strings
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• <B> representing the encoding of the description of an automaton (DFA/NFA) would 

be something like

• In fact, the description of all DFAs could be described by a regular expression like

• Similarly strings over  can be encoded with (the same convention)

Decidable Languages
Encoding Finite Automata As Strings
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• <B,w> represents the encoding of a machine followed by an input string, (with a 

suitable separator between <B> and <w>).

• Now we can describe our problems over languages and automata as problems over 

strings (representing automata and languages).

Decidable Problems on Regular Languages

• Does B accept w?

• Is L(B) empty?

• Is L(A) = L(B)?

Decidable Problems

on Regular Languages

BBM401 Automata Theory and Formal Languages 8



• The acceptance problem for DFAs of testing whether a particular deterministic finite 

automaton accepts a given string can be expressed as a language, ADFA. 

– This language contains the encodings of all DFAs together with strings that DFAs accept. 

ADFA = {<B,w> | B is a DFA that accepts input string w}.

• The problem of testing whether a DFA B accepts an input w is the same as the 

problem of testing whether <B,w> is a member of the language ADFA. 

• Similarly, we can formulate other computational problems in terms of testing 

membership in a language. 

• Showing that the language is decidable is the same as showing that the computational 

problem is decidable.

Acceptance Problem for DFAs
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THEOREM: ADFA = {<B,w> | B is a DFA that accepts input string w} is a decidable 

language.

PROOF IDEA:

• We simply need to present a TM M that decides ADFA.

• M = “On input <B,w>, where B is a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept . If it ends in a non-accepting 

state, reject .”

Acceptance Problem for DFAs
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THEOREM:  EDFA = {<A> | A is a DFA and L(A) = } is a decidable language.

PROOF: 

• A DFA accepts some string iff reaching an accept state from the start state by traveling 

along the arrows of the DFA is possible.

• To test this condition, we can design a TM T that uses a marking algorithm

T = “On input <A>, where A is a DFA:

1. Mark the start state of A.

2. Repeat until no new states get marked:

3. Mark any state that has a transition coming into it from any state that is already 

marked.

4. If no accept state is marked, accept ; otherwise, reject .”

Emptiness Problem for DFAs
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THEOREM:  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)} is a decidable 

language.

PROOF: 

• Construct the machine for

T = “On input <A,B> where A and B are DFAs.

1. Construct the DFA for L(C) as described above.

2. Run TM T of Emptiness Theorem on input <C>.

3. If T accepts, accept; otherwise reject.”

Equivalence Problem for DFAs
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Decidable Problems on CFLs

• Does grammar G generate w?

• Is L(G) empty?

Undecidable Problems on CFLs

• Is L(G) = L(H) for grammars G and H?

Decidable Problems

on Context-Free Languages
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THEOREM: ACFG = {<G,w> | G is a CFG that generates input string w}  is a 

decidable language.

PROOF :

• The TM S for ACFG is as follows.

S = “On input <G,w>, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with 2n−1 steps, where n is the length of w; except if n = 0, 

then instead list all derivations with one step.

• This works because every derivation using a CFG in CNF either increase the length of the 

sentential form by 1 (using a rule like A  BC or leaves it the same using a rule like A  a)

• Obviously this is not very efficient as there may be exponentially many strings of length up to 

2n-1.

3. If any of these derivations generate w, accept ; if not, reject .”

Generation Problem for CFGs
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THEOREM:  ECFG = {<G> | G is a CFG and L(G) = } is a decidable language.

PROOF: 

• The TM R for ECFG is as follows.

R = “On input <G>, where G is a CFG:

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3. Mark any variable A where G has a rule A  U1…Uk and each symbol 

U1,…,Uk has already been marked.

4. If the start variable is not marked, accept ; otherwise, reject .”

Emptiness Problem for CFGs
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EQCFG = {<G,H> | G and H are CFGs and L(G) = L(H)}  is NOT a decidable 

language.

• It turns out that EQCFG is NOT a decidable language.

• The construction does not work because CFLs are NOT closed under intersection and 

complementation.

Equivalence Problem for CFGs
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THEOREM:  Every context free language is decidable.

PROOF: 

• Let G be a CFG for a CFL A and design a TM MG that decides A. We build a copy of 

G into MG. 

MG = “On input w:

1. Run TM S of Generation Theorem for CFGs on input <G,w>.

2. If this machine accepts, accept ; if it rejects, reject .”

Decidability of CFLs
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• What sorts of problems are unsolvable by computer?

– In one type of unsolvable problem, you are given a computer program and a precise 

specification of what that program is supposed to do. You need to verify that the program 

performs as specified or not.

– The general problem of software verification is not solvable by computer.

• The problem of determining whether a Turing machine accepts a given input string is 

an undecidable problem

Undecidability
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• Remember that acceptance problems for DFAs and CFGs are decidable (i.e. ADFA and 

ACFG are decidable languages).

THEOREM: ATM = {<M,w> | M is a TM and accepts string w}  is UNDECIDABLE.

• Note that ATM is Turing-recognizable. 

• When this theorem is proved, it shows that recognizers are more powerful than 

deciders.

– Requiring a TM to halt on all inputs restricts the kinds of languages that it can 

recognize.

• We can encode TMs with strings just like we did for DFAs

Acceptance Problem for TMs
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THEOREM: ATM = {<M,w> | M is a TM and accepts string w}  is UNDECIDABLE.

• The following Turing machine U recognizes ATM.

U = “On input <M,w>, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept ; if M ever enters its reject state, 

reject .”

• Note that if M loops on w, then U loops on <M,w>, i.e. U is NOT a decider!

• U can not detect that M halts on w.

• ATM is also known as the Halting Problem

• U is known as the Universal Turing Machine because it can simulate every TM 

(including itself!)

Acceptance Problem for TMs
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• The proof of the undecidability of ATM uses a technique called diagonalization.

Some Basic Definitions :

• Let A and B be any two sets (not necessarily finite) and f be a function from A to B.

• f is one-to-one if f(a)f(b) whenever ab.

• f is onto if for every bB there is an aA such that f(a)=b.

• We say A and B are the same size if there is a one-to-one and onto function f : AB:

• Such a function is called a correspondence for pairing A and B.

– Every element of A maps to a unique element of B

– Each element of B has a unique element of A mapping to it.

Diagonalization Method
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• Let N be the set of natural numbers {1,2,3,…}and let E be the set of even numbers 

{2,4,6,…}.

• f(n)=2n is a correspondence mapping N to E.

• Hence, N and E have the same size  (even though EN).

Definition: Countable Set

A set S is countable if it is either finite or has the same size as N (natural numbers).

Diagonalization Method
Countable Set
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• Positive rational numbers  Q = { m/n | m, n  N } is countable.

– Correspondence: 

• list all the elements of Q. 

• Then we pair the first element on the list with the number 1 from N, the second element on the list 

with the number 2 from N, and so on.

• We must ensure that every member of Q appears only once on the list.

Diagonalization Method
Countable Set
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• Are there infinite sets that are uncountable (i.e. No correspondence with N)?  YES

THEOREM: The set of positive real numbers R are uncountable.

PROOF: 

• In order to show that R is uncountable, we show that no correspondence exists 

between N and R. 

• The proof is by contradiction. 

– Suppose that a correspondence f existed between N and R. 

– Our job is to show that f fails to work as it should. 

– For it to be a correspondence, f must pair all the members of N with all the members of R.

– But we will find an x in R that is not paired with anything in N, which will be our 

contradiction.

Diagonalization Method
Uncountable Set
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THEOREM: The set of positive real numbers R are uncountable.

PROOF: 

• Assume f exists and every number in R is listed.

• Assume xR is a real number such that x differs from the jth number in the jth decimal 

digit.

• If x is listed at some position k, then it differs from itself at kth position; otherwise the 

premise does not hold.

• f does not exist.

Diagonalization Method
Uncountable Set
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x = .4627… defined as such, 

can not be on this list.



• How many languages are there?  uncountably many languages

• How many TMs are there?  countably many TMs

• This means that there are some languages that 

– They are not decidable and even they are not Turing recognizable.

COROLLARY: Some languages are not Turing-recognizable.

• In order to prove this corollary, we have to show that there are countably many TMs 

and there are uncountably many languages.

Diagonalization over Languages
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COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all TMS is countable:

• For any alphabet , * is countable. 

– Order strings in * by length and then alphanumerically, so * = {s1,s2,…}

– * is countable.

• The set of all TMs is a countable language.

– Each TM M corresponds to a string <M>.

– Generate a list of strings and remove any strings that do not represent a TM to get a list of 

TMs.

– Since * is countable, the set of all TMs is a countable language.

Diagonalization over Languages
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COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all languages is uncountable:

• The set of infinite binary sequences B is uncountable.

– The same proof we gave for uncountability of R.

• The set of all languages L is uncountable.

– Let L be the set of all languages over .

– For each language AL there is unique infinite binary sequence XA

• The ith bit in XA is  1 if  siA, 0 otherwise.

– The function f : LB is a correspondence. Thus L is uncountable.

• So, there are languages that can not be recognized by some TM.

• There are not enough TMs to go around.

Diagonalization over Languages
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THEOREM: ATM = {<M,w> | M is a TM and accepts string w}  is UNDECIDABLE.

PROOF: 

• We assume that ATM is decidable and obtain a contradiction. 

• Suppose that H is a decider for ATM, i.e. H is a TM where

• H produces reject if M rejects w or M runs forever.

Acceptance Problem for TMs

Halting Problem is Undecidable
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PROOF (cont.): 

• Now, construct a new TM D 

• So,

• Run D with its own description <D> as input:

• No matter what D does, it is forced to do the opposite,  a contradiction. 

• Thus, neither TM D nor TM H can exist.

Acceptance Problem for TMs

Halting Problem is Undecidable

BBM401 Automata Theory and Formal Languages 30



• Where is the diagonalization in the proof of Halting Problem?

• List all TMs down the rows, M1,M2,…, and all their descriptions across the columns, 

<M1>, <M2>,…

• The entries tell whether the machine in a given row accepts the input in a given 

column. 

– The entry is accept if the machine accepts the input but is blank if it rejects or loops on that 

input.

Diagonalization in Halting Problem 
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• The results of running H on inputs:

Diagonalization in Halting Problem 
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• Consider the behavior of all possible deciders:

– D computes the opposite of the diagonal entries!

Diagonalization in Halting Problem 
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• ATM is an undecidable language (but it is a Turing-recognizable language).

• A language is co-Turing-recognizable if it is the complement of a Turing-

recognizable language.

THEOREM:

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

• In other words, a language is decidable exactly when both it and its complement are 

Turing-recognizable.

A Turing-Unrecognizable Language
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COROLLARY: 𝐀𝐓𝐌 is not Turing-recognizable.

PROOF: 

• We know ATM is Turing-recognizable.

• If 𝐀𝐓𝐌 were also Turing-recognizable, ATM would have to be decidable.

• We know ATM is not decidable.

• 𝐀𝐓𝐌 must not be Turing-recognizable.

A Turing-Unrecognizable Language
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