Decidability

Decidability

Turing Machines

- The most general model of computation
- Computations of a TM are described by a sequence of configurations. (Accepting Configuration, Rejecting Configuration)
- Turing-recognizable languages
- TM halts in an accepting configuration if w is in the language.
- TM may halt in a rejecting configuration or go on indefinitely if w is not in the language.
- Turing-decidable languages
- TM halts in an accepting configuration if w is in the language.
- TM halts in a rejecting configuration if w is not in the language.
- Nondeterministic TMs are equivalent to Deterministic TMs.
- Multitape TMs are equivalent to Deterministic TMs.

Decidability

- We investigate the power of algorithms to solve problems.
- We discuss certain problems that can be solved algorithmically and others that can not be solved.
- Why discuss unsolvability?
- Knowing a problem is unsolvable is useful because
- you realize it must be simplified or altered before you find an algorithmic solution.
- you gain a better perspective on computation and its limitations.

Decidable Languages

Encoding Finite Automata As Strings

- The inputs to TMs have to be strings.
- Every object O that enters a computation will be represented with a string <O>, encoding the object.
- To represent a DFA as a string:
- Encode Q using unary encoding:
- For $Q=\left\{q_{0}, \ldots, q_{n}\right\}$ encode q_{i} using $i+10$'s, i.e., using the string 0^{i+1}.
- We assume that q_{0} is always the start state.
- Encode Σ using unary encoding:
- For $\Sigma=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\}$, encode a_{i} using i 0 's, i.e., using the string 0^{i}.
- With these conventions, all we need to encode is δ and F .
- Each entry of δ, e.g., $\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right)=\mathrm{q}_{\mathrm{k}}$ is encoded as

$$
\underbrace{0^{i+1}}_{q_{i}} 1 \underbrace{0^{j}}_{a_{j}} 1 \underbrace{0^{k+1}}_{q_{k}}
$$

Decidable Languages

Encoding Finite Automata As Strings

- The whole δ can now be encoded as

- F can be encoded just as a list of the encodings of all the final states. For example, if states 2 and 4 are the final states, F could be encoded as

- The whole DFA would be encoded by

Decidable Languages

Encoding Finite Automata As Strings

- representing the encoding of the description of an automaton (DFA/NFA) would be something like

$$
\langle B\rangle=11 \underbrace{00100010000100000 \cdots 0}_{\text {encoding of the transitions }} 11 \underbrace{0000000010000000}_{\text {encooding of the final states }} 11
$$

- In fact, the description of all DFAs could be described by a regular expression like

$$
11\left(0^{+} 10^{+} 10^{+} 1\right)^{*} 1\left(0^{+} 1\right)^{+} 1
$$

- Similarly strings over Σ can be encoded with (the same convention)

$$
\langle w\rangle=\underbrace{0000}_{a_{4}} 1 \underbrace{000000}_{a_{6}} 1 \cdots \underbrace{0}_{a_{1}}
$$

Decidable Problems on Regular Languages

- <B,w> represents the encoding of a machine followed by an input string, (with a suitable separator between and <w>).
- Now we can describe our problems over languages and automata as problems over strings (representing automata and languages).

Decidable Problems on Regular Languages

- Does B accept w?
- Is $L(B)$ empty?
- \quad Is $L(A)=\mathbf{L}(\mathbf{B})$?

Acceptance Problem for DFAs

- The acceptance problem for DFAs of testing whether a particular deterministic finite automaton accepts a given string can be expressed as a language, $\mathrm{A}_{\mathrm{DFA}}$.
- This language contains the encodings of all DFAs together with strings that DFAs accept.

$$
A_{D F A}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts input string } w\} .
$$

- The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether $\langle\mathrm{B}, \mathrm{w}\rangle$ is a member of the language $\mathrm{A}_{\mathrm{DFA}}$.
- Similarly, we can formulate other computational problems in terms of testing membership in a language.
- Showing that the language is decidable is the same as showing that the computational problem is decidable.

Acceptance Problem for DFAs

THEOREM: $\mathbf{A}_{\text {DFA }}=\{\langle\mathbf{B}, \mathbf{w}\rangle \mid \mathbf{B}$ is a DFA that accepts input string $\mathbf{w}\}$ is a decidable language.

PROOF IDEA:

- We simply need to present a TM M that decides $\mathrm{A}_{\mathrm{DFA}}$.
- $M=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept . If it ends in a non-accepting state, reject ."

Emptiness Problem for DFAs

THEOREM: $\mathrm{E}_{\mathrm{DFA}}=\{\langle\mathrm{A}\rangle \mid \mathrm{A}$ is a DFA and $\mathrm{L}(\mathbf{A})=\phi\}$ is a decidable language.

PROOF:

- A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible.
- To test this condition, we can design a TM T that uses a marking algorithm $\mathrm{T}=$ "On input $\langle\mathrm{A}\rangle$, where A is a DFA:

1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept ; otherwise, reject ."

Equivalence Problem for DFAs

THEOREM: $E_{\text {DFA }}=\{\langle A, B\rangle \mid A$ and B are $D F A s$ and $L(A)=L(B)\}$ is a decidable language.

PROOF:

- Construct the machine for

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

$\mathrm{T}=$ "On input $<\mathrm{A}, \mathrm{B}>$ where A and B are DFAs.

1. Construct the DFA for $\mathrm{L}(\mathrm{C})$ as described above.
2. Run TM T of Emptiness Theorem on input $\langle\mathrm{C}\rangle$.
3. If T accepts, accept; otherwise reject."

Decidable Problems on Context-Free Languages

Decidable Problems on CFLs

- Does grammar G generate w?
- Is $\mathbf{L}(\mathbf{G})$ empty?

Undecidable Problems on CFLs

- Is $L(G)=L(H)$ for grammars G and \mathbf{H} ?

Generation Problem for CFGs

THEOREM: $\mathbf{A}_{\text {CFG }}=\{\langle G, w\rangle \mid G$ is a CFG that generates input string $w\}$ is a decidable language.

PROOF :

- The TM S for $\mathrm{A}_{\mathrm{CFG}}$ is as follows.
$\mathrm{S}=$ "On input $\langle\mathrm{G}, \mathrm{w}\rangle$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2 \mathrm{n}-1$ steps, where n is the length of w ; except if $\mathrm{n}=0$, then instead list all derivations with one step.

- This works because every derivation using a CFG in CNF either increase the length of the sentential form by 1 (using a rule like $\mathrm{A} \rightarrow \mathrm{BC}$ or leaves it the same using a rule like $\mathrm{A} \rightarrow \mathrm{a}$)
- Obviously this is not very efficient as there may be exponentially many strings of length up to $2 \mathrm{n}-1$.

3. If any of these derivations generate w, accept ; if not, reject ."

Emptiness Problem for CFGs

THEOREM: $\mathbf{E}_{\mathbf{C F G}}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\phi\}$ is a decidable language.

PROOF:

- The TM R for $\mathrm{E}_{\mathrm{CFG}}$ is as follows.
$\mathrm{R}=$ "On input $\langle\mathrm{G}\rangle$, where G is a CFG :

1. Mark all terminal symbols in G.
2. Repeat until no new variables get marked:
3. Mark any variable A where G has a rule $A \rightarrow U_{1} \ldots U_{k}$ and each symbol $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{k}}$ has already been marked.
4. If the start variable is not marked, accept ; otherwise, reject ."

Equivalence Problem for CFGs

$E Q_{\text {CFG }}=\{\langle\mathbf{G}, \mathrm{H}\rangle \mid \mathrm{G}$ and H are CFGs and $\mathrm{L}(\mathbf{G})=\mathrm{L}(\mathbf{H})\}$ is NOT a decidable language.

- It turns out that $\mathrm{EQ}_{\mathrm{CFG}}$ is NOT a decidable language.
- The construction does not work because CFLs are NOT closed under intersection and complementation.

Decidability of CFLs

THEOREM: Every context free language is decidable.

PROOF:

- Let G be a CFG for a CFL A and design a $\mathrm{TM} \mathrm{M}_{\mathrm{G}}$ that decides A . We build a copy of G into M_{G}.
$\mathrm{M}_{\mathrm{G}}=$ "On input w :

1. Run TM S of Generation Theorem for CFGs on input $\langle\mathrm{G}, \mathrm{w}\rangle$.
2. If this machine accepts, accept ; if it rejects, reject ."

Undecidability

- What sorts of problems are unsolvable by computer?
- In one type of unsolvable problem, you are given a computer program and a precise specification of what that program is supposed to do. You need to verify that the program performs as specified or not.
- The general problem of software verification is not solvable by computer.
- The problem of determining whether a Turing machine accepts a given input string is an undecidable problem

Acceptance Problem for TMs

- Remember that acceptance problems for DFAs and CFGs are decidable (i.e. $\mathrm{A}_{\mathrm{DFA}}$ and $\mathrm{A}_{\mathrm{CFG}}$ are decidable languages).

THEOREM: $\mathbf{A}_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM and accepts string $w\}$ is UNDECIDABLE.

- Note that $\mathbf{A}_{\mathbf{T M}}$ is Turing-recognizable.
- When this theorem is proved, it shows that recognizers are more powerful than deciders.
- Requiring a TM to halt on all inputs restricts the kinds of languages that it can recognize.
- We can encode TMs with strings just like we did for DFAs

Acceptance Problem for TMs

THEOREM: $\mathbf{A}_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM and accepts string $w\}$ is UNDECIDABLE.

- The following Turing machine U recognizes A_{TM}.
$\mathrm{U}=$ "On input $\langle\mathrm{M}, \mathrm{w}\rangle$, where \mathbf{M} is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept ; if M ever enters its reject state, reject."

- Note that if M loops on w , then U loops on 〈M,w>, i.e. U is NOT a decider!
- U can not detect that M halts on w.
- \mathbf{A}_{TM} is also known as the Halting Problem
- U is known as the Universal Turing Machine because it can simulate every TM (including itself!)

Diagonalization Method

- The proof of the undecidability of A_{TM} uses a technique called diagonalization.

Some Basic Definitions :

- Let A and B be any two sets (not necessarily finite) and f be a function from A to B.
- f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
- f is onto if for every $b \in B$ there is an $a \in A$ such that $f(a)=b$.
- We say A and B are the same size if there is a one-to-one and onto function $f: A \rightarrow B$:
- Such a function is called a correspondence for pairing A and B.
- Every element of A maps to a unique element of B
- Each element of B has a unique element of A mapping to it.

Diagonalization Method

Countable Set

- Let N be the set of natural numbers $\{1,2,3, \ldots\}$ and let E be the set of even numbers $\{2,4,6, \ldots\}$.
- $\mathrm{f}(\mathrm{n})=2 \mathrm{n}$ is a correspondence mapping N to E .
- Hence, \mathbf{N} and \mathbf{E} have the same size (even though $\mathrm{E} \subset \mathrm{N}$).

Definition: Countable Set

A set \mathbf{S} is countable if it is either finite or has the same size as \mathbf{N} (natural numbers).

Diagonalization Method

Countable Set

- Positive rational numbers $\mathbf{Q}=\{\mathbf{m} / \mathbf{n} \mid \mathbf{m}, \mathbf{n} \in \mathbf{N}\}$ is countable.
- Correspondence:
- list all the elements of Q .
- Then we pair the first element on the list with the number 1 from N , the second element on the list with the number 2 from N , and so on.
- We must ensure that every member of Q appears only once on the list.

Diagonalization Method

Uncountable Set

- Are there infinite sets that are uncountable (i.e. No correspondence with N)? YES

THEOREM: The set of positive real numbers R are uncountable.

PROOF:

- In order to show that R is uncountable, we show that no correspondence exists between N and R .
- The proof is by contradiction.
- Suppose that a correspondence f existed between N and R.
- Our job is to show that f fails to work as it should.
- For it to be a correspondence, f must pair all the members of N with all the members of R .
- But we will find an x in R that is not paired with anything in N , which will be our contradiction.

Diagonalization Method

Uncountable Set

THEOREM: The set of positive real numbers \mathbf{R} are uncountable.

PROOF:

- Assume f exists and every number in R is listed.
- Assume $\mathrm{x} \in \mathrm{R}$ is a real number such that x differs from the $\mathrm{j}^{\text {th }}$ number in the $\mathrm{j}^{\text {th }}$ decimal digit.
- If x is listed at some position k , then it differs from itself at $\mathrm{k}^{\text {th }}$ position; otherwise the premise does not hold.
- f does not exist.

n	$f(n)$
1	$3 . \underline{1} 4159 \ldots$
2	$55.5 \underline{5} 555 \ldots$
3	$0.12 \underline{3} 45 \ldots$
4	$0.500 \underline{0} 0 \ldots$
\vdots	\vdots

$\mathrm{x}=.4627 \ldots$ defined as such, can not be on this list.

Diagonalization over Languages

- How many languages are there?
- How many TMs are there?
\rightarrow uncountably many languages
\rightarrow countably many TMs
- This means that there are some languages that
- They are not decidable and even they are not Turing recognizable.

COROLLARY: Some languages are not Turing-recognizable.

- In order to prove this corollary, we have to show that there are countably many TMs and there are uncountably many languages.

Diagonalization over Languages

COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all TMS is countable:

- For any alphabet Σ, Σ^{*} is countable.
- Order strings in Σ^{*} by length and then alphanumerically, so $\Sigma^{*}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots\right\}$
$-\Sigma^{*}$ is countable.
- The set of all TMs is a countable language.
- Each TM M corresponds to a string <M>.
- Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs.
- Since Σ^{*} is countable, the set of all TMs is a countable language.

Diagonalization over Languages

COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all languages is uncountable:

- The set of infinite binary sequences B is uncountable.
- The same proof we gave for uncountability of R.
- The set of all languages L is uncountable.
- Let L be the set of all languages over Σ.
- For each language $A \in L$ there is unique infinite binary sequence X_{A}
- The $i^{\text {th }}$ bit in X_{A} is 1 if $s_{i} \in A, 0$ otherwise.

$$
\begin{aligned}
\Sigma^{*} & =\left\{\begin{array}{lllllllll}
\varepsilon, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001,
\end{array} \cdots\right. \\
A & =\left\{\begin{array}{llllcccccc}
& 0, & & 00, & 01, & & 000,001, & \cdots
\end{array}\right\} \\
\chi_{A} & \left.=\begin{array}{llllllll}
& 1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- The function $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{B}$ is a correspondence. Thus L is uncountable.
- So, there are languages that can not be recognized by some TM.
- There are not enough TMs to go around.

Acceptance Problem for TMs Halting Problem is Undecidable

THEOREM: $\mathbf{A}_{T M}=\{\langle M, w\rangle \mid M$ is a TM and accepts string w $\}$ is UNDECIDABLE.

PROOF:

- We assume that $\mathrm{A}_{\text {TM }}$ is decidable and obtain a contradiction.
- Suppose that H is a decider for A_{TM}, i.e. H is a TM where

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

- H produces reject if M rejects w or M runs forever.

Acceptance Problem for TMs Halting Problem is Undecidable

PROOF (cont.):

- Now, construct a new TM D

$$
D=\text { "On input }\langle M\rangle \text {, where } M \text { is a TM: }
$$

1. Run H on input $\langle M,\langle M\rangle\rangle$.
2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

- So,

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle .\end{cases}
$$

- Run D with its own description < $\mathrm{D}>$ as input:

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle .\end{cases}
$$

- No matter what D does, it is forced to do the opposite, \rightarrow a contradiction.
- Thus, neither TM D nor TM H can exist.

Diagonalization in Halting Problem

- Where is the diagonalization in the proof of Halting Problem?
- List all TMs down the rows, $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots$, and all their descriptions across the columns, $\left\langle M_{1}\right\rangle,\left\langle M_{2}\right\rangle, \ldots$
- The entries tell whether the machine in a given row accepts the input in a given column.
- The entry is accept if the machine accepts the input but is blank if it rejects or loops on that input.

Diagonalization in Halting Problem

- The results of running H on inputs:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept	reject	accept	reject	
M_{2}	accept	accept	accept	accept	\ldots
M_{3}	reject	reject	reject	reject	\cdots
M_{4}	accept	accept	reject	reject	
\vdots	\vdots				
		\quad			

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept		accept		
M_{2}	accept	accept	accept	accept	
M_{3}					\cdots
M_{4}	accept	accept			
\vdots		\vdots			

Diagonalization in Halting Problem

- Consider the behavior of all possible deciders:
- D computes the opposite of the diagonal entries!

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots	$\langle D\rangle$	\ldots
M_{1}	accept	reject	accept	reject		accept	
M_{2}	accept	accept	accept	accept	\ldots	accept	\ldots
M_{3}	reject	$\frac{\text { reject }}{\text { reject }}$	reject	\ldots	reject	\ldots	
M_{4}	accept	accept	reject	reject		accept	
\vdots		\vdots			\ddots		
D	reject	reject	accept	accept		?	
\vdots		\vdots				\ddots	

A Turing-Unrecognizable Language

- $A_{T M}$ is an undecidable language (but it is a Turing-recognizable language).
- A language is co-Turing-recognizable if it is the complement of a Turingrecognizable language.

THEOREM:

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

- In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.

A Turing-Unrecognizable Language

COROLLARY: $\overline{\mathrm{ATM}}$ is not Turing-recognizable.

PROOF:

- We know $\mathbf{A}_{\mathbf{T M}}$ is Turing-recognizable.
- If $\overline{\text { ATM }}$ were also Turing-recognizable, $\mathbf{A}_{\text {TM }}$ would have to be decidable.
- We know $\mathbf{A}_{\mathbf{T M}}$ is not decidable.
- $\overline{\text { ATM }}$ must not be Turing-recognizable.

