
BBM401 Automata Theory and Formal Languages 1

Decidability



Decidability

BBM401 Automata Theory and Formal Languages 2

Turing Recognizable Languages

Turing Decidable Languages

Context Free Languages

Regular Languages

DFAs

PDAs

Turing Machines

Turing Deciders 

Unsolvable Problems
• Turing-unrecognizable  

languages



• The most general model of computation

• Computations of a TM are described by a sequence of configurations. (Accepting 

Configuration, Rejecting Configuration)

• Turing-recognizable languages

– TM halts in an accepting configuration if w is in the language.

– TM may halt in a rejecting configuration or go on indefinitely if w is not in the language.

• Turing-decidable languages

– TM halts in an accepting configuration if w is in the language.

– TM halts in a rejecting configuration if w is not in the language.

• Nondeterministic TMs are equivalent to Deterministic TMs.

• Multitape TMs are equivalent to Deterministic TMs.

Turing Machines

BBM401 Automata Theory and Formal Languages 3



• We investigate the power of algorithms to solve problems.

• We discuss certain problems that can be solved algorithmically and others that can not 

be solved.

• Why discuss unsolvability?

• Knowing a problem is unsolvable is useful because

– you realize it must be simplified or altered before you find an algorithmic solution.

– you gain a better perspective on computation and its limitations.

Decidability

BBM401 Automata Theory and Formal Languages 4



• The inputs to TMs have to be strings.

• Every object O that enters a computation will be represented with a string <O>, 

encoding the object.

• To represent a DFA as a string:

• Encode Q using unary encoding:

– For Q = {q0,…,qn} encode qi using i+1 0’s, i.e., using the string 0i+1.

– We assume that q0 is always the start state.

• Encode  using unary encoding:

– For  = {a1,…,am} , encode ai using i 0’s, i.e., using the string 0i .

• With these conventions, all we need to encode is  and F.

• Each entry of , e.g., (qi,aj ) = qk is encoded as

Decidable Languages
Encoding Finite Automata As Strings

BBM401 Automata Theory and Formal Languages 5



• The whole  can now be encoded as

• F can be encoded just as a list of the encodings of all the final states. For example, if 

states 2 and 4 are the final states, F could be encoded as

• The whole DFA would be encoded by

Decidable Languages
Encoding Finite Automata As Strings

BBM401 Automata Theory and Formal Languages 6



• <B> representing the encoding of the description of an automaton (DFA/NFA) would 

be something like

• In fact, the description of all DFAs could be described by a regular expression like

• Similarly strings over  can be encoded with (the same convention)

Decidable Languages
Encoding Finite Automata As Strings

BBM401 Automata Theory and Formal Languages 7



• <B,w> represents the encoding of a machine followed by an input string, (with a 

suitable separator between <B> and <w>).

• Now we can describe our problems over languages and automata as problems over 

strings (representing automata and languages).

Decidable Problems on Regular Languages

• Does B accept w?

• Is L(B) empty?

• Is L(A) = L(B)?

Decidable Problems

on Regular Languages

BBM401 Automata Theory and Formal Languages 8



• The acceptance problem for DFAs of testing whether a particular deterministic finite 

automaton accepts a given string can be expressed as a language, ADFA. 

– This language contains the encodings of all DFAs together with strings that DFAs accept. 

ADFA = {<B,w> | B is a DFA that accepts input string w}.

• The problem of testing whether a DFA B accepts an input w is the same as the 

problem of testing whether <B,w> is a member of the language ADFA. 

• Similarly, we can formulate other computational problems in terms of testing 

membership in a language. 

• Showing that the language is decidable is the same as showing that the computational 

problem is decidable.

Acceptance Problem for DFAs

BBM401 Automata Theory and Formal Languages 9



THEOREM: ADFA = {<B,w> | B is a DFA that accepts input string w} is a decidable 

language.

PROOF IDEA:

• We simply need to present a TM M that decides ADFA.

• M = “On input <B,w>, where B is a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept . If it ends in a non-accepting 

state, reject .”

Acceptance Problem for DFAs

BBM401 Automata Theory and Formal Languages 10



THEOREM:  EDFA = {<A> | A is a DFA and L(A) = } is a decidable language.

PROOF: 

• A DFA accepts some string iff reaching an accept state from the start state by traveling 

along the arrows of the DFA is possible.

• To test this condition, we can design a TM T that uses a marking algorithm

T = “On input <A>, where A is a DFA:

1. Mark the start state of A.

2. Repeat until no new states get marked:

3. Mark any state that has a transition coming into it from any state that is already 

marked.

4. If no accept state is marked, accept ; otherwise, reject .”

Emptiness Problem for DFAs

BBM401 Automata Theory and Formal Languages 11



THEOREM:  EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)} is a decidable 

language.

PROOF: 

• Construct the machine for

T = “On input <A,B> where A and B are DFAs.

1. Construct the DFA for L(C) as described above.

2. Run TM T of Emptiness Theorem on input <C>.

3. If T accepts, accept; otherwise reject.”

Equivalence Problem for DFAs

BBM401 Automata Theory and Formal Languages 12



Decidable Problems on CFLs

• Does grammar G generate w?

• Is L(G) empty?

Undecidable Problems on CFLs

• Is L(G) = L(H) for grammars G and H?

Decidable Problems

on Context-Free Languages

BBM401 Automata Theory and Formal Languages 13



THEOREM: ACFG = {<G,w> | G is a CFG that generates input string w}  is a 

decidable language.

PROOF :

• The TM S for ACFG is as follows.

S = “On input <G,w>, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with 2n−1 steps, where n is the length of w; except if n = 0, 

then instead list all derivations with one step.

• This works because every derivation using a CFG in CNF either increase the length of the 

sentential form by 1 (using a rule like A  BC or leaves it the same using a rule like A  a)

• Obviously this is not very efficient as there may be exponentially many strings of length up to 

2n-1.

3. If any of these derivations generate w, accept ; if not, reject .”

Generation Problem for CFGs

BBM401 Automata Theory and Formal Languages 14



THEOREM:  ECFG = {<G> | G is a CFG and L(G) = } is a decidable language.

PROOF: 

• The TM R for ECFG is as follows.

R = “On input <G>, where G is a CFG:

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3. Mark any variable A where G has a rule A  U1…Uk and each symbol 

U1,…,Uk has already been marked.

4. If the start variable is not marked, accept ; otherwise, reject .”

Emptiness Problem for CFGs

BBM401 Automata Theory and Formal Languages 15



EQCFG = {<G,H> | G and H are CFGs and L(G) = L(H)}  is NOT a decidable 

language.

• It turns out that EQCFG is NOT a decidable language.

• The construction does not work because CFLs are NOT closed under intersection and 

complementation.

Equivalence Problem for CFGs

BBM401 Automata Theory and Formal Languages 16



THEOREM:  Every context free language is decidable.

PROOF: 

• Let G be a CFG for a CFL A and design a TM MG that decides A. We build a copy of 

G into MG. 

MG = “On input w:

1. Run TM S of Generation Theorem for CFGs on input <G,w>.

2. If this machine accepts, accept ; if it rejects, reject .”

Decidability of CFLs

BBM401 Automata Theory and Formal Languages 17



• What sorts of problems are unsolvable by computer?

– In one type of unsolvable problem, you are given a computer program and a precise 

specification of what that program is supposed to do. You need to verify that the program 

performs as specified or not.

– The general problem of software verification is not solvable by computer.

• The problem of determining whether a Turing machine accepts a given input string is 

an undecidable problem

Undecidability

BBM401 Automata Theory and Formal Languages 18



• Remember that acceptance problems for DFAs and CFGs are decidable (i.e. ADFA and 

ACFG are decidable languages).

THEOREM: ATM = {<M,w> | M is a TM and accepts string w}  is UNDECIDABLE.

• Note that ATM is Turing-recognizable. 

• When this theorem is proved, it shows that recognizers are more powerful than 

deciders.

– Requiring a TM to halt on all inputs restricts the kinds of languages that it can 

recognize.

• We can encode TMs with strings just like we did for DFAs

Acceptance Problem for TMs

BBM401 Automata Theory and Formal Languages 19



THEOREM: ATM = {<M,w> | M is a TM and accepts string w}  is UNDECIDABLE.

• The following Turing machine U recognizes ATM.

U = “On input <M,w>, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept ; if M ever enters its reject state, 

reject .”

• Note that if M loops on w, then U loops on <M,w>, i.e. U is NOT a decider!

• U can not detect that M halts on w.

• ATM is also known as the Halting Problem

• U is known as the Universal Turing Machine because it can simulate every TM 

(including itself!)

Acceptance Problem for TMs

BBM401 Automata Theory and Formal Languages 20



• The proof of the undecidability of ATM uses a technique called diagonalization.

Some Basic Definitions :

• Let A and B be any two sets (not necessarily finite) and f be a function from A to B.

• f is one-to-one if f(a)f(b) whenever ab.

• f is onto if for every bB there is an aA such that f(a)=b.

• We say A and B are the same size if there is a one-to-one and onto function f : AB:

• Such a function is called a correspondence for pairing A and B.

– Every element of A maps to a unique element of B

– Each element of B has a unique element of A mapping to it.

Diagonalization Method

BBM401 Automata Theory and Formal Languages 21



• Let N be the set of natural numbers {1,2,3,…}and let E be the set of even numbers 

{2,4,6,…}.

• f(n)=2n is a correspondence mapping N to E.

• Hence, N and E have the same size  (even though EN).

Definition: Countable Set

A set S is countable if it is either finite or has the same size as N (natural numbers).

Diagonalization Method
Countable Set

BBM401 Automata Theory and Formal Languages 22



• Positive rational numbers  Q = { m/n | m, n  N } is countable.

– Correspondence: 

• list all the elements of Q. 

• Then we pair the first element on the list with the number 1 from N, the second element on the list 

with the number 2 from N, and so on.

• We must ensure that every member of Q appears only once on the list.

Diagonalization Method
Countable Set

BBM401 Automata Theory and Formal Languages 23



• Are there infinite sets that are uncountable (i.e. No correspondence with N)?  YES

THEOREM: The set of positive real numbers R are uncountable.

PROOF: 

• In order to show that R is uncountable, we show that no correspondence exists 

between N and R. 

• The proof is by contradiction. 

– Suppose that a correspondence f existed between N and R. 

– Our job is to show that f fails to work as it should. 

– For it to be a correspondence, f must pair all the members of N with all the members of R.

– But we will find an x in R that is not paired with anything in N, which will be our 

contradiction.

Diagonalization Method
Uncountable Set

BBM401 Automata Theory and Formal Languages 24



THEOREM: The set of positive real numbers R are uncountable.

PROOF: 

• Assume f exists and every number in R is listed.

• Assume xR is a real number such that x differs from the jth number in the jth decimal 

digit.

• If x is listed at some position k, then it differs from itself at kth position; otherwise the 

premise does not hold.

• f does not exist.

Diagonalization Method
Uncountable Set

BBM401 Automata Theory and Formal Languages 25

x = .4627… defined as such, 

can not be on this list.



• How many languages are there?  uncountably many languages

• How many TMs are there?  countably many TMs

• This means that there are some languages that 

– They are not decidable and even they are not Turing recognizable.

COROLLARY: Some languages are not Turing-recognizable.

• In order to prove this corollary, we have to show that there are countably many TMs 

and there are uncountably many languages.

Diagonalization over Languages

BBM401 Automata Theory and Formal Languages 26



COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all TMS is countable:

• For any alphabet , * is countable. 

– Order strings in * by length and then alphanumerically, so * = {s1,s2,…}

– * is countable.

• The set of all TMs is a countable language.

– Each TM M corresponds to a string <M>.

– Generate a list of strings and remove any strings that do not represent a TM to get a list of 

TMs.

– Since * is countable, the set of all TMs is a countable language.

Diagonalization over Languages

BBM401 Automata Theory and Formal Languages 27



COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all languages is uncountable:

• The set of infinite binary sequences B is uncountable.

– The same proof we gave for uncountability of R.

• The set of all languages L is uncountable.

– Let L be the set of all languages over .

– For each language AL there is unique infinite binary sequence XA

• The ith bit in XA is  1 if  siA, 0 otherwise.

– The function f : LB is a correspondence. Thus L is uncountable.

• So, there are languages that can not be recognized by some TM.

• There are not enough TMs to go around.

Diagonalization over Languages

BBM401 Automata Theory and Formal Languages 28



THEOREM: ATM = {<M,w> | M is a TM and accepts string w}  is UNDECIDABLE.

PROOF: 

• We assume that ATM is decidable and obtain a contradiction. 

• Suppose that H is a decider for ATM, i.e. H is a TM where

• H produces reject if M rejects w or M runs forever.

Acceptance Problem for TMs

Halting Problem is Undecidable

BBM401 Automata Theory and Formal Languages 29



PROOF (cont.): 

• Now, construct a new TM D 

• So,

• Run D with its own description <D> as input:

• No matter what D does, it is forced to do the opposite,  a contradiction. 

• Thus, neither TM D nor TM H can exist.

Acceptance Problem for TMs

Halting Problem is Undecidable

BBM401 Automata Theory and Formal Languages 30



• Where is the diagonalization in the proof of Halting Problem?

• List all TMs down the rows, M1,M2,…, and all their descriptions across the columns, 

<M1>, <M2>,…

• The entries tell whether the machine in a given row accepts the input in a given 

column. 

– The entry is accept if the machine accepts the input but is blank if it rejects or loops on that 

input.

Diagonalization in Halting Problem 

BBM401 Automata Theory and Formal Languages 31



• The results of running H on inputs:

Diagonalization in Halting Problem 

BBM401 Automata Theory and Formal Languages 32



• Consider the behavior of all possible deciders:

– D computes the opposite of the diagonal entries!

Diagonalization in Halting Problem 

BBM401 Automata Theory and Formal Languages 33

a contradiction occurs at “?”



• ATM is an undecidable language (but it is a Turing-recognizable language).

• A language is co-Turing-recognizable if it is the complement of a Turing-

recognizable language.

THEOREM:

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

• In other words, a language is decidable exactly when both it and its complement are 

Turing-recognizable.

A Turing-Unrecognizable Language

BBM401 Automata Theory and Formal Languages 34



COROLLARY: 𝐀𝐓𝐌 is not Turing-recognizable.

PROOF: 

• We know ATM is Turing-recognizable.

• If 𝐀𝐓𝐌 were also Turing-recognizable, ATM would have to be decidable.

• We know ATM is not decidable.

• 𝐀𝐓𝐌 must not be Turing-recognizable.

A Turing-Unrecognizable Language

BBM401 Automata Theory and Formal Languages 35


