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Properties of Regular Languages

Pumping Lemma:
– Every regular language satisfies the pumping lemma.
– A non-regular language can be shown that it is not regular using the pumping lemma.

Closure Properties:
– One important kind of fact about the regular languages is called a closure property.
– These properties let us build recognizers for languages that are constructed from other

languages by certain operations.
– As an example, the intersection of two regular languages is also regular. Thus, given

automata that recognize two different regular languages, we can construct mechanically an
automaton that recognizes exactly the intersection of these two languages.

Decision Properties:
– Are two automata equivalent? How can we test it?
– Minimization of DFAs

1. We can use to test equivalency of two DFAs,
2. Minimization of DFAs saves money
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Proving Languages not to be Regular 

• Not every language is a regular language. 

• A powerful technique, known as the pumping lemma, can be used to 
show a certain language NOT to be regular. 

• L01 = {0n1n | n ≥ 1 }  is not regular.
– We can use the pumping lemma to show that this language is not regular.
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The Pumping Lemma Informally

• Suppose L01 = {0n1n | n ≥ 1 } were regular.
• Then it would be recognized by some DFA A with k states.
• Let A read 0k as input:

• Now, we can fool A:
– If                           the machine will foolishly accept 0j1i

– If                           the machine will foolishly rejects 0i1i

• Therefore L01  cannot be regular.
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Since there are only k states



The Pumping Lemma for Regular Languages 

Theorem 4.1. The Pumping Lemma for Regular Languages

• Let L be a regular language. 

• Then there exists a constant n such that for every string w in L such that 
|w|> n, we can break w into three strings, w=xyz, such that: 

1. y  
2. |xy| ≤ n
3. For all k ≥ 0, the string xykz is also in L.

• That is, we can always find a nonempty string y not too far from the 
beginning of w that can be "pumped"; that is, repeating y any number 
of times, or deleting it (the case k= 0), keeps the resulting string in the 
language L.
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The Pumping Lemma - Proof
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Proof:  

• Suppose L is regular

• Then L is recognized by some DFA A with n states, and L=L(A).

• Let  a string  w=a1a2...am  L,  where m>n

• Let  pi =   (q0, a1a2...ai)

• Then, there exists j such that  i<j  and  pi = pj

• Now we have w=xyz where

1. x = a1a2...ai

2. y = ai+1ai+2...aj

3. z =  aj+1aj+2...am

̂



The Pumping Lemma - Proof
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• That is, x takes us to pi, once; y takes us from pi back to pi. (since 
pi is also pj), and z is the balance of w. 

• So we have the following figure, and every string longer than the 
number of states must cause a state to repeat 

Since y can repeat 0 or more times
 xykz  L for any k>0.                    Q.E.D.



Applications of the Pumping Lemma – Example 1

• We use the pumping lemma to prove that the language is not regular. 
Example1: Let us show that the language Leq consisting of all strings with 
an equal number of 0's and l's is not a regular language. 
• Suppose Leq were regular
• Then 0n1n  Leq

• By the pumping lemma  w=xyz,  |xy|≤n, y and xykz  Leq

• If y repeats 0 times,  xy must be in Leq

• Since y , xy has fewer 0’s than 1’s
• So, there is a contradiction with our assumption (Leq is regular)
• Proof by contradiction, we prove that Leq is NOT regular
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Applications of the Pumping Lemma – Example 2
Example2: Let us show that the language Lpr consisting of all strings of 
l's whose length is a prime is not a regular language. 
• Suppose Lpr were regular
• Choose a prime p≥n+2 (this is possible since there are infinite number of primes.)

• Now, xyp-mz  Lpr

• |xyp-mz| = |xz| + (p-m)|y| = (p-m)+(p-m)m = (1+m)(p-m)
• But, (1+m)(p-m) is not prime unless one of the factors is 1.

– y  (1+m) > 1
– m=|y| ≤ |xy| ≤ n and p≥n+2    (p-m) ≥ (n+2)-n  ≥ 2 

• So, contradiction  Proof by contradiction, Leq is NOT regular
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Closure Properties of Regular Languages 

• Closure Properties of Regular Languages are the theorems indicate that 
the regular languages are closed under certain operations.

• A closure property of regular languages say that ``If a language is 
created from regular languages using the operation mentioned in the 
theorem, it is also a regular language´´. 

• Closure properties also indicate that how regular languages (their 
DFAs) can be created from other regular languages using certain 
operations.
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Principal Closure Properties of Regular Languages 

1. The union of two regular languages is regular. 
2. The intersection of two regular languages is regular. 
3. The complement of a regular language is regular. 
4. The difference of two regular languages is regular. 
5. The reversal of a regular language is regular. 
6. The closure (star) of a regular language is regular. 
7. The concatenation of regular languages is regular. 
8. A homomorphism (substitution of strings for symbols) of a regular 
language is regular. 
9. The inverse homomorphism of a regular language is regular.
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The union of two regular languages is regular –
Closure Under Union

Theorem 4.4. For any regular languages L and M, LM is regular.

Proof.
• Since L and M are regular, they have regular expressions; say L = L(R) 

and M = L(S). 
• Then L U M = L(R + S) by the definition of the + operator for regular 

expressions. �
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The closure of a regular language is regular, and
the concatenation of regular languages is regular

Theorem. (closure under concetanation)
• If L and M are regular languages, then so is LM. 
Proof.
• Let L=L(R) and M=L(S),  then LM=L(RS)

Theorem. (closure under star)
• If L is a regular language, then so is L*. 
Proof.
• Let L=L(R) ,  then L*=L(R*)
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The complement of a regular language is regular -
Closure Under Complementation 
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Closure Under Complementation - Example
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L=L(A)  : strings of 0's and l’s that
end in 01; 
in regular-expression terms, 
L(A) = L((0+l)*01). 

L=L(A)  : strings of 0's and l’s that
do not end in 01; 



Closure Under Complementation –
Pumping Lemma Example
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The intersection of two regular languages is regular
Closure Under Intersection 
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Closure Under Intersection – Proof2 

Theorem 4.8. If L and M are regular languages, then so is LM.
Proof 2. (DFA Construction Proof)
• Let L be the language of AL = (QL, , L, qL, FL), and M be the 

language of AM = (QM, , M, qM, FM), 
• For simplicity, we will assume that AL and AM are DFAs. For NFAs, we can have a similar 

construction.

• We shall construct an automaton that simulates AL and AM in parallel, 
and accepts if and only if both AL and AM accept.

• If AL goes from state p to state s on reading a, and AM goes from state q 
to state t on reading a, then ALM will go from state (p,q) to state (s,t) 
on reading a.
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Closure Under Intersection – Proof2

BİL405 - Automata Theory and Formal Languages 19

An automaton simulating two other automata and accepting if and 
only if both accept.



Closure Under Intersection – Proof2
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Closure Under Intersection –
Product ConstructionExample

• (c) = (a)x(b),  ie.  Lc = LaLb
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The difference of two regular languages is regular -
Closure Under Difference 
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The reversal of a regular language is regular -
Reversal

• The reversal of a string a1a2 ... an is the string written backwards, that 
is, anan-1 ... a1.

• We use wR for the reversal of string w. 
– Thus, 0010R is 0100, and 
– R = .

• The reversal of a language L, written LR is the language consisting of 
the reversals of all its strings. 
– For instance, if L={001,10,111}, then LR ={100,01,111}.

• Reversal is another operation that preserves regular languages; that is, 
if L is a regular language, so is LR.
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Reversal - Theorem

Theorem 4.11. If L is a regular language, so is LR. 

Proof 1. (Automaton Creation)
• Let L be recognized by an Finite Automaton (FA) A.
• Turn A into an FA for LR, by

1. Reverse all the arcs in the transition diagram for A, 
2. Make the start state of A be the only accepting state for the new 

automaton. 
3. Create a new start state p0 with transitions on  to all the accepting 

states of A.
• The result is an automaton that, simulates A "in reverse." and therefore 

accepts a string w if and only if A accepts wR.
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Reversal – Theorem – Proof2

Theorem 4.11. If L is a regular language, so is LR. 

Proof 2. (Using Regular Expressions)
• Assume L is defined by regular expression E. 
• The proof is a structural induction on the size of E. 
• We show that there is another regular expression ER such that 

L(ER) = (L(E))R; that is, the language of ER is the reversal of the 
language of E. 
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Reversal – Theorem – Proof2

BASIS: 
• If E is , , or a, for some symbol a, then ER is the same as E. 
• We know {}R = {}, R = , and {a}R = {a}. 

INDUCTION:
• There are three cases, depending on the form of E.

Case 1.   E = F + G  ER = FR + GR

• The reversal of the union of two languages is obtained by computing 
the reversals of the two languages and taking the union of those 
languages.

• So,  L(FR+GR ) = (L(F+G))R
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Reversal – Theorem – Proof2

Case 2.   E = F G  ER = GR FR

• We reverse the order of the two languages, as well as reversing the 
languages themselves. 
– For instance, if L(F)={01,111} and L(G)={00,10}, then L(FG) = 

{0100,0110,11100,111100}. 
– Its reversal is {0010,0110,00111,01111} 
– If we concatenate the reversals of L(G) and L(F) in that order, we get 

{00,01}{10,111} = {0010,00111,0110,01111} which is the same language as 
(L(FG))R .

• In general, if a word w in L(E) is the concatenation of x from L(F) and 
y from L(G), then wR = yR xR

• So,  L(GRFR ) = (L(FG))R
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Reversal – Theorem – Proof2

Case 3.   E = F*   ER = (FR )*
• Let w be a string in L(F*) that can be written as w1w2 … wn,            

where each wi is in L(F).  
• Then, wR = wn

R wn-1
R … w1

R

• Since each  wi
R is in L(FR),  wR  is in L((FR )*)

• This means that  “if w is in L(F*), then wR is L((FR)*)”
• Conversly, let w be a string in L((FR)*) that can be written                   

as w1w2 ... wn,  where each wi is the reversal of a string L(F). 
• Since each  wi

R is in L(F),  wR  is in L(F*)
• This means that  “if w is in L((FR)*), then wR is L(F*)”
• Thus, w is in L(F*) if and only if wR is L((FR)*)
• L((FR)*) = (L(F*))R
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Reversal – Example

• Let M be L((0+1)0*)
• Then MR  (ie  (L((0+1)0*)) R )  can be found as follows: 

MR  = ( L((0+1)0*) ) R

= L( ((0+1)0*)) R )

= L( (0*)R(0+1)R )

= L( (0R)* (0R+1R) )

= L( 0*(0+1) )
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Minimizing Number of States of a DFA

• partition the set of states into two groups:
– G1 :  set of accepting states
– G2 :  set of non-accepting states

• For each new group G
– partition G into subgroups such that states s1 and s2 are in the same 

group iff for all input symbols a, states s1 and s2 have transitions to 
states in the same group.

• Start state of the minimized DFA is the group containing                     
the start state of the original DFA.

• Accepting states of the minimized DFA are the groups containing       
the accepting states of the original DFA.
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Minimizing DFA - Example
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Minimizing DFA – Another Example
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Equivalence and Minimization of Automata

Equivalence of States:
• Let A = (Q,,,q0,F) be a DFA, and {p,q}Q, we define

• If p  q  we say that p and q are equivalent.
• If p  q  we say that p and q are distinguishable.

• In other words, p and q are distinguishable iff
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Finding Distinguishable States –
Table Filling Algorithm

• We can compute distinguishable pairs of states with the
following inductive table filling algorithm.
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Table Filling Algorithm - Example
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Minimization of DFA's

• We can also use table filling algorithm to minimize a DFA by merging 
all equivalent states. That is, we replace a state p with its equivalance 
class found by the table filling algorithm.
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Equivalance Classes:

{ {A,E}, {B,H}, {C}, {D,F}, {G} }



Minimization of DFA's - Example
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Equivalance Classes:
{ {A,E}, {B,H}, {C}, {D,F}, {G} }



Testing Equivalence of Regular Languages
with Table Filling Algorithm 

• Let L and M be regular languages, to test if L = M

1. Convert both L and M to DFAs

2. Imagine the DFA that is the union of the two DFA's (never mind 
there are two start states)

3. If table filling algorithm says that the two start states are 
distinguishable, then L  M, otherwise L = M.

Another Way To Test Equiavalance:
– Minimize DFAs,
– Check whether they are isomorphic
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Testing Equivalence of Regular Languages
with Table Filling Algorithm - Example
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• Since A and C are equivalent,
these two DFAs are equivalent.

• Their languages are also equivalent.


