
Properties of
Regular Languages

BİL405 - Automata Theory and Formal Languages 1

Properties of Regular Languages

Pumping Lemma:
– Every regular language satisfies the pumping lemma.
– A non-regular language can be shown that it is not regular using the pumping lemma.

Closure Properties:
– One important kind of fact about the regular languages is called a closure property.
– These properties let us build recognizers for languages that are constructed from other

languages by certain operations.
– As an example, the intersection of two regular languages is also regular. Thus, given

automata that recognize two different regular languages, we can construct mechanically an
automaton that recognizes exactly the intersection of these two languages.

Decision Properties:
– Are two automata equivalent? How can we test it?
– Minimization of DFAs

1. We can use to test equivalency of two DFAs,
2. Minimization of DFAs saves money

BİL405 - Automata Theory and Formal Languages 2

Proving Languages not to be Regular

• Not every language is a regular language.

• A powerful technique, known as the pumping lemma, can be used to
show a certain language NOT to be regular.

• L01 = {0n1n | n ≥ 1 } is not regular.
– We can use the pumping lemma to show that this language is not regular.

BİL405 - Automata Theory and Formal Languages 3

The Pumping Lemma Informally

• Suppose L01 = {0n1n | n ≥ 1 } were regular.
• Then it would be recognized by some DFA A with k states.
• Let A read 0k as input:

• Now, we can fool A:
– If the machine will foolishly accept 0j1i

– If the machine will foolishly rejects 0i1i

• Therefore L01 cannot be regular.

BİL405 - Automata Theory and Formal Languages 4

Since there are only k states

The Pumping Lemma for Regular Languages

Theorem 4.1. The Pumping Lemma for Regular Languages

• Let L be a regular language.

• Then there exists a constant n such that for every string w in L such that
|w|> n, we can break w into three strings, w=xyz, such that:

1. y  
2. |xy| ≤ n
3. For all k ≥ 0, the string xykz is also in L.

• That is, we can always find a nonempty string y not too far from the
beginning of w that can be "pumped"; that is, repeating y any number
of times, or deleting it (the case k= 0), keeps the resulting string in the
language L.

BİL405 - Automata Theory and Formal Languages 5

The Pumping Lemma - Proof

BİL405 - Automata Theory and Formal Languages 6

Proof:

• Suppose L is regular

• Then L is recognized by some DFA A with n states, and L=L(A).

• Let a string w=a1a2...am  L, where m>n

• Let pi = (q0, a1a2...ai)

• Then, there exists j such that i<j and pi = pj

• Now we have w=xyz where

1. x = a1a2...ai

2. y = ai+1ai+2...aj

3. z = aj+1aj+2...am

̂

The Pumping Lemma - Proof

BİL405 - Automata Theory and Formal Languages 7

• That is, x takes us to pi, once; y takes us from pi back to pi. (since
pi is also pj), and z is the balance of w.

• So we have the following figure, and every string longer than the
number of states must cause a state to repeat

Since y can repeat 0 or more times
 xykz  L for any k>0. Q.E.D.

Applications of the Pumping Lemma – Example 1

• We use the pumping lemma to prove that the language is not regular.
Example1: Let us show that the language Leq consisting of all strings with
an equal number of 0's and l's is not a regular language.
• Suppose Leq were regular
• Then 0n1n  Leq

• By the pumping lemma w=xyz, |xy|≤n, y and xykz  Leq

• If y repeats 0 times, xy must be in Leq

• Since y , xy has fewer 0’s than 1’s
• So, there is a contradiction with our assumption (Leq is regular)
• Proof by contradiction, we prove that Leq is NOT regular

BİL405 - Automata Theory and Formal Languages 8

Applications of the Pumping Lemma – Example 2
Example2: Let us show that the language Lpr consisting of all strings of
l's whose length is a prime is not a regular language.
• Suppose Lpr were regular
• Choose a prime p≥n+2 (this is possible since there are infinite number of primes.)

• Now, xyp-mz  Lpr

• |xyp-mz| = |xz| + (p-m)|y| = (p-m)+(p-m)m = (1+m)(p-m)
• But, (1+m)(p-m) is not prime unless one of the factors is 1.

– y  (1+m) > 1
– m=|y| ≤ |xy| ≤ n and p≥n+2  (p-m) ≥ (n+2)-n ≥ 2

• So, contradiction  Proof by contradiction, Leq is NOT regular
BİL405 - Automata Theory and Formal Languages 9

Closure Properties of Regular Languages

• Closure Properties of Regular Languages are the theorems indicate that
the regular languages are closed under certain operations.

• A closure property of regular languages say that ``If a language is
created from regular languages using the operation mentioned in the
theorem, it is also a regular language´´.

• Closure properties also indicate that how regular languages (their
DFAs) can be created from other regular languages using certain
operations.

BİL405 - Automata Theory and Formal Languages 10

Principal Closure Properties of Regular Languages

1. The union of two regular languages is regular.
2. The intersection of two regular languages is regular.
3. The complement of a regular language is regular.
4. The difference of two regular languages is regular.
5. The reversal of a regular language is regular.
6. The closure (star) of a regular language is regular.
7. The concatenation of regular languages is regular.
8. A homomorphism (substitution of strings for symbols) of a regular
language is regular.
9. The inverse homomorphism of a regular language is regular.

BİL405 - Automata Theory and Formal Languages 11

The union of two regular languages is regular –
Closure Under Union

Theorem 4.4. For any regular languages L and M, LM is regular.

Proof.
• Since L and M are regular, they have regular expressions; say L = L(R)

and M = L(S).
• Then L U M = L(R + S) by the definition of the + operator for regular

expressions. �

BİL405 - Automata Theory and Formal Languages 12

The closure of a regular language is regular, and
the concatenation of regular languages is regular

Theorem. (closure under concetanation)
• If L and M are regular languages, then so is LM.
Proof.
• Let L=L(R) and M=L(S), then LM=L(RS)

Theorem. (closure under star)
• If L is a regular language, then so is L*.
Proof.
• Let L=L(R) , then L*=L(R*)

BİL405 - Automata Theory and Formal Languages 13

The complement of a regular language is regular -
Closure Under Complementation

BİL405 - Automata Theory and Formal Languages 14

Closure Under Complementation - Example

BİL405 - Automata Theory and Formal Languages 15

L=L(A) : strings of 0's and l’s that
end in 01;
in regular-expression terms,
L(A) = L((0+l)*01).

L=L(A) : strings of 0's and l’s that
do not end in 01;

Closure Under Complementation –
Pumping Lemma Example

BİL405 - Automata Theory and Formal Languages 16

The intersection of two regular languages is regular
Closure Under Intersection

BİL405 - Automata Theory and Formal Languages 17

Closure Under Intersection – Proof2

Theorem 4.8. If L and M are regular languages, then so is LM.
Proof 2. (DFA Construction Proof)
• Let L be the language of AL = (QL, , L, qL, FL), and M be the

language of AM = (QM, , M, qM, FM),
• For simplicity, we will assume that AL and AM are DFAs. For NFAs, we can have a similar

construction.

• We shall construct an automaton that simulates AL and AM in parallel,
and accepts if and only if both AL and AM accept.

• If AL goes from state p to state s on reading a, and AM goes from state q
to state t on reading a, then ALM will go from state (p,q) to state (s,t)
on reading a.

BİL405 - Automata Theory and Formal Languages 18

Closure Under Intersection – Proof2

BİL405 - Automata Theory and Formal Languages 19

An automaton simulating two other automata and accepting if and
only if both accept.

Closure Under Intersection – Proof2

BİL405 - Automata Theory and Formal Languages 20

Closure Under Intersection –
Product ConstructionExample

• (c) = (a)x(b), ie. Lc = LaLb

BİL405 - Automata Theory and Formal Languages 21

The difference of two regular languages is regular -
Closure Under Difference

BİL405 - Automata Theory and Formal Languages 22

The reversal of a regular language is regular -
Reversal

• The reversal of a string a1a2 ... an is the string written backwards, that
is, anan-1 ... a1.

• We use wR for the reversal of string w.
– Thus, 0010R is 0100, and
– R = .

• The reversal of a language L, written LR is the language consisting of
the reversals of all its strings.
– For instance, if L={001,10,111}, then LR ={100,01,111}.

• Reversal is another operation that preserves regular languages; that is,
if L is a regular language, so is LR.

BİL405 - Automata Theory and Formal Languages 23

Reversal - Theorem

Theorem 4.11. If L is a regular language, so is LR.

Proof 1. (Automaton Creation)
• Let L be recognized by an Finite Automaton (FA) A.
• Turn A into an FA for LR, by

1. Reverse all the arcs in the transition diagram for A,
2. Make the start state of A be the only accepting state for the new

automaton.
3. Create a new start state p0 with transitions on  to all the accepting

states of A.
• The result is an automaton that, simulates A "in reverse." and therefore

accepts a string w if and only if A accepts wR.
BİL405 - Automata Theory and Formal Languages 24

Reversal – Theorem – Proof2

Theorem 4.11. If L is a regular language, so is LR.

Proof 2. (Using Regular Expressions)
• Assume L is defined by regular expression E.
• The proof is a structural induction on the size of E.
• We show that there is another regular expression ER such that

L(ER) = (L(E))R; that is, the language of ER is the reversal of the
language of E.

BİL405 - Automata Theory and Formal Languages 25

Reversal – Theorem – Proof2

BASIS:
• If E is , , or a, for some symbol a, then ER is the same as E.
• We know {}R = {}, R = , and {a}R = {a}.

INDUCTION:
• There are three cases, depending on the form of E.

Case 1. E = F + G  ER = FR + GR

• The reversal of the union of two languages is obtained by computing
the reversals of the two languages and taking the union of those
languages.

• So, L(FR+GR) = (L(F+G))R

BİL405 - Automata Theory and Formal Languages 26

Reversal – Theorem – Proof2

Case 2. E = F G  ER = GR FR

• We reverse the order of the two languages, as well as reversing the
languages themselves.
– For instance, if L(F)={01,111} and L(G)={00,10}, then L(FG) =

{0100,0110,11100,111100}.
– Its reversal is {0010,0110,00111,01111}
– If we concatenate the reversals of L(G) and L(F) in that order, we get

{00,01}{10,111} = {0010,00111,0110,01111} which is the same language as
(L(FG))R .

• In general, if a word w in L(E) is the concatenation of x from L(F) and
y from L(G), then wR = yR xR

• So, L(GRFR) = (L(FG))R

BİL405 - Automata Theory and Formal Languages 27

Reversal – Theorem – Proof2

Case 3. E = F*  ER = (FR)*
• Let w be a string in L(F*) that can be written as w1w2 … wn,

where each wi is in L(F).
• Then, wR = wn

R wn-1
R … w1

R

• Since each wi
R is in L(FR), wR is in L((FR)*)

• This means that “if w is in L(F*), then wR is L((FR)*)”
• Conversly, let w be a string in L((FR)*) that can be written

as w1w2 ... wn, where each wi is the reversal of a string L(F).
• Since each wi

R is in L(F), wR is in L(F*)
• This means that “if w is in L((FR)*), then wR is L(F*)”
• Thus, w is in L(F*) if and only if wR is L((FR)*)
• L((FR)*) = (L(F*))R

BİL405 - Automata Theory and Formal Languages 28

Reversal – Example

• Let M be L((0+1)0*)
• Then MR (ie (L((0+1)0*)) R) can be found as follows:

MR = (L((0+1)0*)) R

= L(((0+1)0*)) R)

= L((0*)R(0+1)R)

= L((0R)* (0R+1R))

= L(0*(0+1))

BİL405 - Automata Theory and Formal Languages 29

Minimizing Number of States of a DFA

• partition the set of states into two groups:
– G1 : set of accepting states
– G2 : set of non-accepting states

• For each new group G
– partition G into subgroups such that states s1 and s2 are in the same

group iff for all input symbols a, states s1 and s2 have transitions to
states in the same group.

• Start state of the minimized DFA is the group containing
the start state of the original DFA.

• Accepting states of the minimized DFA are the groups containing
the accepting states of the original DFA.

BİL405 - Automata Theory and Formal Languages 30

Minimizing DFA - Example

BİL405 - Automata Theory and Formal Languages 31

b a

a

a

b

b

3

2

1

G1 = {2}
G2 = {1,3}

G2 cannot be partitioned because
(1,a)=2 (1,b)=3
(3,a)=2 (2,b)=3

So, the minimized DFA (with minimum states)

{1,3}

a

a

b

b

{2}

Minimizing DFA – Another Example

BİL405 - Automata Theory and Formal Languages 32

b

b

b

a

a

a

a

b 4

3

2

1 Groups: {1,2,3} {4}

a b
1->2 1->3
2->2 2->3
3->4 3->3

{1,2} {3}
no more partitioning

So, the minimized DFA

{1,2}

{4}

{3}
b

a

a

a

b

b

Equivalence and Minimization of Automata

Equivalence of States:
• Let A = (Q,,,q0,F) be a DFA, and {p,q}Q, we define

• If p  q we say that p and q are equivalent.
• If p  q we say that p and q are distinguishable.

• In other words, p and q are distinguishable iff

BİL405 - Automata Theory and Formal Languages 33

Finding Distinguishable States –
Table Filling Algorithm

• We can compute distinguishable pairs of states with the
following inductive table filling algorithm.

BİL405 - Automata Theory and Formal Languages 34

Table Filling Algorithm - Example

BİL405 - Automata Theory and Formal Languages 35

Minimization of DFA's

• We can also use table filling algorithm to minimize a DFA by merging
all equivalent states. That is, we replace a state p with its equivalance
class found by the table filling algorithm.

BİL405 - Automata Theory and Formal Languages 36

Equivalance Classes:

{ {A,E}, {B,H}, {C}, {D,F}, {G} }

Minimization of DFA's - Example

BİL405 - Automata Theory and Formal Languages 37

Equivalance Classes:
{ {A,E}, {B,H}, {C}, {D,F}, {G} }

Testing Equivalence of Regular Languages
with Table Filling Algorithm

• Let L and M be regular languages, to test if L = M

1. Convert both L and M to DFAs

2. Imagine the DFA that is the union of the two DFA's (never mind
there are two start states)

3. If table filling algorithm says that the two start states are
distinguishable, then L  M, otherwise L = M.

Another Way To Test Equiavalance:
– Minimize DFAs,
– Check whether they are isomorphic

BİL405 - Automata Theory and Formal Languages 38

Testing Equivalence of Regular Languages
with Table Filling Algorithm - Example

BİL405 - Automata Theory and Formal Languages 39

• Since A and C are equivalent,
these two DFAs are equivalent.

• Their languages are also equivalent.

