Properties of
Regular Languages

BIL405 - Automata Theory and Formal Languages

Properties of Regular Languages

Pumping Lemma:
— Every regular language satisfies the pumping lemma.

— A non-regular language can be shown that it is not regular using the pumping lemma.

Closure Properties:
— One important kind of fact about the regular languages is called a closure property.

— These properties let us build recognizers for languages that are constructed from other
languages by certain operations.

— As an example, the intersection of two regular languages is also regular. Thus, given
automata that recognize two different regular languages, we can construct mechanically an
automaton that recognizes exactly the intersection of these two languages.

Decision Properties:
— Are two automata equivalent? How can we test it?
— Minimization of DFAs =>
1. We can use to test equivalency of two DFAs,

2. Minimization of DFAs saves money

BIL405 - Automata Theory and Formal Languages 2

Proving Languages not to be Regular

Not every language 1s a regular language.

A powertful technique, known as the pumping lemma, can be used to
show a certain language NOT to be regular.

Ly, =10"1"|n>1} 1snotregular.

— We can use the pumping lemma to show that this language is not regular.

BIL405 - Automata Theory and Formal Languages

The Pumping Lemma Informally

Suppose L,; = {0"1" |n>1 } were regular.
Then 1t would be recognized by some DFA A with k states.

Let A read 0% as input: e Po
0 p1
00 Po Since there are only k states
= di<j:p;=p; Call this state gq.
ok Dj.

Now, we can fool A:
—_If 5(q.1") € F the machine will foolishly accept (V1!
—If 5(q,1") ¢ F' the machine will foolishly rejects 0i11

Therefore L, cannot be regular.

BIL405 - Automata Theory and Formal Languages

The Pumping Lemma for Regular Languages

Theorem 4.1. The Pumping Lemma for Regular Languages
 Let L be a regular language.

* Then there exists a constant n such that for every string w in L such that
'w|>n, we can break w into three strings, w=xyz, such that:
1. y#¢
2. xy|<n
3. For all k>0, the string xy*z is also in L.
« That 1s, we can always find a nonempty string y not too far from the
beginning of w that can be "pumped"; that 1s, repeating y any number

of times, or deleting 1t (the case k= 0), keeps the resulting string in the
language L.

BIL405 - Automata Theory and Formal Languages 5

The Pumping Lemma - Proof

Proof:

* Suppose L 1s regular

* Then L 1s recognized by some DFA A with n states, and L=L(A).

* Let astring w=a,a,...a, € L, where m>n

+ Let p,=5(qp 2,2;...2))

* Then, there exists j such that 1<) and p; = p;

 Now we have w=xyz where
l. x=aa,..a
2. y=a42,.-9

3. Z — J+1aj+2...am

BIL405 - Automata Theory and Formal Languages

The Pumping Lemma - Proof

* That 1s, x takes us to p;, once; y takes us from p; back to p;. (since
p; 1s also p;), and z 1s the balance of w.

* So we have the following figure, and every string longer than the
number of states must cause a state to repeat

i+1 9
_ X = | | z=
Start ~ %G O G Gy 2R\
—»(Pp)-----omee e (D f---o- e -))
N ./ \—"/

Since y can repeat 0 or more times
= xy*z € L for any k>0. Q.E.D.

BIL405 - Automata Theory and Formal Languages

Applications of the Pumping Lemma — Example 1

* We use the pumping lemma to prove that the language 1s not regular.

Examplel: Let us show that the language L, consisting of all strings with
an equal number of 0's and I's 1s not a regular language.

* Suppose L., were regular
* Then 01" € L,
* By the pumping lemma w=xyz, |xy|<n, y#¢ and xy*z € L,

w=000-.--.. 00111.--11

* If y repeats O times, xy mustbe in L,
e Since y#¢ , Xy has fewer 0’s than 1’s
* So, there 1s a contradiction with our assumption (L., 1s regular)

* Proof by contradiction, we prove that L, 1s NOT regular

BIL405 - Automata Theory and Formal Languages 8

Applications of the Pumping Lemma — Example 2

Example2: Let us show that the language L, consisting of all strings of
I's whose length 1s a prime is not a regular language.
* Suppose L, were regular

 Choose a prime pZIH‘z (this 1s possible since there are infinite number of primes.)

* Now, xy?™z € L,

xyP™z| = [xz| + (p-m)|y| = (p-m)*+(p-m)m = (1+m)(p-m)
But, (1+m)(p-m) 1s not prime unless one of the factors 1s 1.
— y#¢ =2 (1+m)>1
— m=ly| <[xy| <nand p>nt2 = (p-m)>(n+2)-n >2

* So, contradiction =» Proof by contradiction, L., is NOT regular

BIL405 - Automata Theory and Formal Languages

Closure Properties of Regular Languages

* Closure Properties of Regular Languages are the theorems indicate that
the regular languages are closed under certain operations.

* A closure property of regular languages say that " 'If a language is
created from regular languages using the operation mentioned in the
theorem, it is also a regular language”’.

» Closure properties also indicate that how regular languages (their
DFAs) can be created from other regular languages using certain
operations.

BIL405 - Automata Theory and Formal Languages 10

Principal Closure Properties of Regular Languages

. The union of two regular languages 1s regular.

. The mtersection of two regular languages 1s regular.
. The complement of a regular language 1s regular.

. The difference of two regular languages 1s regular.

. The reversal of a regular language 1s regular.

. The closure (star) of a regular language 1s regular.

. The concatenation of regular languages 1s regular.

O J N DN K~ W N =

. A homomorphism (substitution of strings for symbols) of a regular
language 1s regular.

9. The inverse homomorphism of a regular language 1s regular.

BIL405 - Automata Theory and Formal Languages

The union of two regular languages is regular —
Closure Under Union

Theorem 4.4. For any regular languages L and M, LUM 1s regular.

Proof.

Since L and M are regular, they have regular expressions; say L = L(R)
and M = L(S).

Then L UM = L(R + S) by the definition of the + operator for regular
expressions. [

BIL405 - Automata Theory and Formal Languages 12

The closure of a regular language is regular, and
the concatenation of regular languages is regular

Theorem. (closure under concetanation)

e If L and M are regular languages, then so 1s LM.
Proof.

o Let L=L(R) and M=L(S), then LM=L(RS)

Theorem. (closure under star)

« If L 1s aregular language, then so 1s L*.
Proof.

 Let L=L(R), then L*=L(R*)

BIL405 - Automata Theory and Formal Languages

The complement of a regular language is regular -
Closure Under Complementation

Theorem 4.5. If L is a regular language over alphabet =, then L=3* - L
1s also a regular language.

Proof.
 Let L =L(A) for some DFA A =(Q, %, 9, q,, F)
e Then L= L(B), where B is the DFA (Q, Z, 8, q,, Q-F)

« That 1s., B 1s exactly like A, but the accepting states of A have become
non-accepting states of B, and vice versa.

e Then w is in L(B) if and only if §(q,,w) is in Q-F, which occurs if and
only if w is not m L{A). []

BIL405 - Automata Theory and Formal Languages 14

Closure Under Complementation - Example

— . . ') 1 0
L L.(A) : strings of 0's and 1’s that —~ ~
end in 01; Start v) B g,
in regular-expression terms, 4 o g N0 /() AR .//f((1\I
L(A) = L((0+))*01). \os_J o B \Ee 2

1
L=L(A) : strings of 0's and I’s that ('\} ™
do not end in 01; Start -;;;_—_-_;{\
—Pl// fe1 \ i—ob

BIL405 - Automata Theory and Formal Languages 15

Closure Under Complementation —
Pumping Lemma Example

Problem: Show that the language M consisting of those strings of 0's and
I's that have an unequal number of 0’s and 1’s 1s NOT regular.

» It would be hard to use the pumping lemma to show that M is not
regular.

 However, M i1s still NOT regular.
e The reason is that M = L.

* Since the complement of the complement 1s the set we started with, 1t

also follows that L = M.
e If M is regular, then by Theorem 4.5, L 1s regular.

« But we know L (all of strings of equal number of 0’s and 1°’s) 1s not
regular; so we have a proof by contradiction that M 1s not regular. [

BIL405 - Automata Theory and Formal Languages 16

The intersection of two regular languages is regular
Closure Under Intersection

Theorem 4.8. If L and M are regular languages, then so 1s LmM.

Proof 1. (Simple Proof)

By DeMorgan's law LnM = LUM.

* We already know that regular languages are closed under complement
and union.

* So, LM 1s regular when L and M are regular. [

BIL405 - Automata Theory and Formal Languages 17

Closure Under Intersection — Proof2

Theorem 4.8. If L and M are regular languages, then so 1s LnM.
Proof 2. (DFA Construction Proof)

* Let L be the language of A; =(Qy, %, 9, q;, F;), and M be the
language of Ay; = (Qup, Z, Opp, ds)

For simplicity, we will assume that A; and A, are DFAs. For NFAs, we can have a similar
construction.

* We shall construct an automaton that simulates A; and A,, in parallel,
and accepts 1f and only 1f both A; and A,, accept.

« If A, goes from state p to state s on reading a, and A,,; goes from state q
to state t on reading a, then A -, will go from state (p,q) to state (s,t)
on reading a.

BIL405 - Automata Theory and Formal Languages 18

Closure Under Intersection — Proof2

Input a

SRR
Start _,.l AND/ Accept

—

A,

An automaton simulating two other automata and accepting if and
only 1f both accept.

BIL405 - Automata Theory and Formal Languages

19

Closure Under Intersection — Proof2

Formally A; = (QrxQpp, 2, 0 v (qr,9m)> FrxFy) where
SLHM((paq):a) - (6L(p:a)a 6M(q:a))

By induction on |w|, it can be shown that

81 m((Ar,qn)>W) = (81.(qr,W), Spi(usW))

To see why L(A; ~\)=L(A;)NL(A,), first we can observe that an easy
induction on |w| proves that & Lm((drsdn)s W) = (6 (qr,W), SM(CIMaW))

But A accepts w if and only if & L ~m((Qr,9n),W) 1s a pair of accepting
states.

That is, 6, (q;,w), must be in F,, and &,,(qy,w) must be in F,,
w 1s accepted by A 1if and only 1f both A; and A,, accept w.
Thus, A, - accepts the intersection of L(A;) and L(Ay,). [

BIL405 - Automata Theory and Formal Languages 20

Closure Under Intersection —
Product ConstructionExample

: 1
— / \
/N - t - Vo
st) 0 e O (s
= 0)) 2 T
a
(a) 0 0
0
—~ - Y T e 0.1
Start VL, —~/ 1 a\uhag (‘1’) @§>
) L} B ==
L _/
(b) :
(©)

. (¢)=(a)x(b), ie. L,=L,L,

BIL405 - Automata Theory and Formal Languages

21

The difference of two regular languages is regular -
Closure Under Difference

Theorem 4.10. If L and M are regular languages, then so 1s L - M.

Proof.
« Observe that L-M = LNM.
By Theorem 4.5. M is regular, and

By Theorem 4.8. LNM is regular.
e Therefore L-M 1s regular. [

BIL405 - Automata Theory and Formal Languages 22

The reversal of a regular language is regular -
Reversal

The reversal of a string a,a, ... a, 1s the string written backwards, that

1s,a.a, { ... 4;.

n

We use wR for the reversal of string w.

— Thus, 0010R is 0100, and

— gh=g.
The reversal of a language L, written LR is the language consisting of
the reversals of all 1ts strings.

— For instance, if L={001,10,111}, then LR={100,01,111}.

Reversal 1s another operation that preserves regular languages; that is,
if L is a regular language, so is LR,

BIL405 - Automata Theory and Formal Languages 23

Reversal - Theorem

Theorem 4.11. If L is a regular language, so is LR,

Proof 1. (Automaton Creation)
e Let L be recognized by an Finite Automaton (FA) A.
e Turn A into an FA for LR, by
1. Reverse all the arcs 1n the transition diagram for A,

2. Make the start state of A be the only accepting state for the new
automaton.

3. Create a new start state p, with transitions on ¢ to all the accepting
states of A.

* The result 1s an automaton that, ssmulates A "in reverse." and therefore
accepts a string w if and only if A accepts wX.

BIL405 - Automata Theory and Formal Languages 24

Reversal — Theorem — Proof2

Theorem 4.11. If L is a regular language, so is LR,

Proof 2. (Using Regular Expressions)

Assume L 1s defined by regular expression E.
The proof is a structural induction on the size of E.

We show that there is another regular expression ER such that
L(ER) = (L(E))R; that is, the language of ER is the reversal of the
language of E.

BIL405 - Automata Theory and Formal Languages

25

Reversal — Theorem — Proof2

BASIS:

« IfEiseg, ¢, or a, for some symbol a, then ER is the same as E.
 Weknow {g}R= {g}, p" = ¢, and {a}R = {a}.

INDUCTION:

» There are three cases, depending on the form of E.

Casel. E=F+G =2 ER=FR4+GR

e The reversal of the union of two languages 1s obtained by computing
the reversals of the two languages and taking the union of those
languages.

« So, L(FR+GR) = (L(F+G))R

BIL405 - Automata Theory and Formal Languages 26

Reversal — Theorem — Proof2

Case2. E=FG = ER=GRFR
 We reverse the order of the two languages, as well as reversing the

languages themselves.
— For instance, 1f L(F)={01,111} and L(G)={00,10}, then L(FG) =
{0100,0110,11100,111100}.
— Itsreversal 1s {0010,0110,00111,01111}

— If we concatenate the reversals of L(G) and L(F) in that order, we get
{00,01} {10,111} = {0010,00111,0110,01111} which is the same language as

(LFG))*.
e In general, if a word w 1n L(E) 1s the concatenation of x from L(F) and

y from L(G), then wR = yR xR
« So, L(GRFR) = (L(FG))R

BIL405 - Automata Theory and Formal Languages

27

Reversal — Theorem — Proof2

Case3. E=F* = ER=(FR)*

Let w be a string in L(F*) that can be written as w,w, ... w
where each w. 1s in L(F).

n?’

Then, wR =w Rw_ R . w?R

Since each wR isin L(FR), wR is in L((FR)*)

This means that “if w is in L(F*), then w® is L((FR)*)”
Conversly, let w be a string in L((F®)*) that can be written
as w,;w, ... w., where each w. 1s the reversal of a string L(F).
Since each w;R isin L(F), wR is in L(F¥)

This means that “if w is in L((FR)*), then w® is L(F*)”
Thus, w is in L(F*) if and only if wR is L((FR)*)

L((FR)*) = (L(F*)R

BIL405 - Automata Theory and Formal Languages 28

Reversal — Example

 Let M be L((0+1)0%*)
e Then MR (ie (L((0+1)0*))®R) can be found as follows:

MR = (L((0+1)0%))R
=L(((0+1)0*) *)
=L((0%)%0+1)%)
=L((0%)* (0%+1%))
=L(0*(0+1))

Minimizing Number of States of a DFA

partition the set of states into two groups:
— @G, : set of accepting states
— G, : set of non-accepting states

For each new group G

— partition G nto subgroups such that states s, and s, are in the same
group 1iff for all input symbols a, states s, and s, have transitions to
states 1n the same group.

Start state of the minimized DFA 1s the group containing
the start state of the original DFA.

Accepting states of the minimized DFA are the groups containing
the accepting states of the original DFA.

BIL405 - Automata Theory and Formal Languages

30

Minimizing DFA - Example

© G, = {2}
/ G2 - { 1 93}
'() b a
(3) G, cannot be partitioned because
5(1,2)=2 5(1,b)=3
5(3,2)=2 5(2,6)=3

So, the minimized DFA (with minimum states)

BIL405 - Automata Theory and Formal Languages

31

Minimizing DFA — Another Example

Groups: {1,2,3} {4}

/\
1,25 35

no more partitioning

BIL405 - Automata Theory and Formal Languages

a b
1->2 1->3
2>) 2>3
3>4 3>3

32

Equivalence and Minimization of Automata

Equivalence of States:
+ Let A=(Q,%,0,qy,F) be a DFA, and {p,q}<=Q, we define

p=q < YweX* : §(p,w) € Fiff §(qw) € F

 If p=q we say that p and q are equivalent.
 If p+#q we say that p and q are distinguishable.

* In other words, p and q are distinguishable 1ff

Jw : 6(p,w) € F and 6(q,w) € F, or vice versa

BIL405 - Automata Theory and Formal Languages

33

Finding Distinguishable States —
Table Filling Algorithm

 We can compute distinguishable pairs of states with the
following inductive table filling algorithm.

Basis: If pc F and ¢ ¢ F, then p #Z q.

Induction: If da € X : §(p,a) #Z d(q,a),
then p £ q.

Table Filling Algorithm - Example

B |x

£ |x X

¥ |F |3

E ¥ |3 | &

F |x |x [« X

0 G |x |x |[x |[x |x |x

H |x X |¥ X |X |3

A B C D E F G

BIL405 - Automata Theory and Formal Languages

35

Minimization of DFA's

* We can also use table filling algorithm to minimize a DFA by merging
all equivalent states. That 1s, we replace a state p with its equivalance
class found by the table filling algorithm.

2 |3 Equivalance Classes:

L [| @

b S S

D { {AE}, (BH}, (C}, (DF}, (G} }
¥ ¥ |z |3 X

ir | |®¥ ¥ |# X | &

H |x X |x |x |x |x

BIL405 - Automata Theory and Formal Languages

36

Minimization of DFA's - Example

O
fe—

\\\ v \ / N\ e
R / 0 4 / 5 \
(\ / >—>Q/<—@) -\
— | | G) N
- 0 T Start ‘ //
/ 0
—=\AE 0
\;5\0 |
Equivalance Classes: \G 2 1 fi\\
{{AE}, (BH), (C}, (DF}, (G} } A,
o |
0

BIL405 - Automata Theory and Formal Languages

37

Testing Equivalence of Regular Languages
with Table Filling Algorithm

 Let L and M be regular languages, to test if L =M
1. Convert both L and M to DFAs

2. Imagine the DFA that is the union of the two DFA's (never mind
there are two start states)

3. [If table filling algorithm says that the two start states are
distinguishable, then L # M, otherwise L = M.

Another Way To Test Equiavalance:
— Minimize DFAs,
— Check whether they are 1somorphic

BIL405 - Automata Theory and Formal Languages 38

Testing Equivalence of Regular Languages
with Table Filling Algorithm - Example

0 1
Start };:_Q\\ 1 ‘/__\
- ‘\A% B C 2
0 D X
0
E |x F | %
Start / (:.,\\. 0 }?5\\|
&) 4 B CD
1 ' 0 // . .
I e Since A and C are equivalent,
/ these two DFAs are equivalent.
7 N\KF
\E)

Their languages are also equivalent.

BIL405 - Automata Theory and Formal Languages

39

