
Machine Learning 1

Artificial Neural Networks

• Artificial neural networks (ANNs) provide a general, practical method
for learning real-valued, discrete-valued, and vector-valued functions
from examples.

• Algorithms such as BACKPROPAGATION gradient descent to tune
network parameters to best fit a training set of input-output pairs.

• ANN learning is robust to errors in the training data and has been
successfully applied to problems such as interpreting visual scenes,
speech recognition, and learning robot control strategies.

Machine Learning 2

Biological Motivation

• The study of artificial neural networks (ANNs) has been inspired in part
by the observation that biological learning systems are built of very
complex webs of interconnected neurons.

• Artificial neural networks are built out of a densely interconnected set
of simple units, where each unit takes a number of real-valued inputs
(possibly the outputs of other units) and produces a single real-valued
output (which may become the input to many other units).

• The human brain is estimated to contain a densely interconnected
network of approximately 1011 neurons, each connected, on average, to
104 others.
– Neuron activity is typically inhibited through connections to other

neurons.

Machine Learning 3

ALVINN – Neural Network Learning To Steer An
Autonomous Vehicle

Machine Learning 4

Properties of Artificial Neural Networks

• A large number of very simple, neuron-like processing elements called
units,

• A large number of weighted, directed connections between pairs of
units
– Weights may be positive or negative real values

• Local processing in that each unit computes a function based on the
outputs of a limited number of other units in the network

• Each unit computes a simple function of its input values, which are the
weighted outputs from other units.
– If there are n inputs to a unit, then the unit's output, or activation is defined by a =

g((w1 * x1) + (w2 * x2) + ... + (wn * xn)).
– Each unit computes a (simple) function g of the linear combination of its inputs.

• Learning by tuning the connection weights

Machine Learning 5

Appropriate Problems for NN Learning

• Instances are represented by many attribute-value pairs.
• The target function output may be discrete-valued, real-valued, or a

vector of several real-valued or discrete-valued attributes.
• The training examples may contain errors.
• Long training times are acceptable.
• Fast evaluation of the learned target function may be required.
• The ability of humans to understand the learned target function is not

important.

Machine Learning 6

Perceptron

1 if i=0
n wi xi >0

o(x0 ,…,xn)= -1 otherwise{



x1

x2

xn

...

w1

w2

wn

w0

i=0
n wi xi

o

x0=1

Machine Learning 7

Perceptron

• Perceptron is a Linear Threshold Unit (LTU).
• A perceptron takes a vector of real-valued inputs, calculates a linear

combination of these inputs, then outputs 1 if the result is greater than
some threshold and -1 otherwise.

• Given inputs xl through xn, the output o(x1, . . . , xn) computed by the
perceptron is:

each wi is a real-valued constant, or weight, that determines the
contribution of input xi to the perceptron output.

• The quantity (-w0) is a threshold that the weighted combination of
inputs must surpass in order for the perceptron to output 1.
– To simplify notation, we imagine an additional constant input x0 = 1

Machine Learning 8

Perceptron - Learning

• Learning a perceptron involves choosing values for weights w0, …,wn.
• The space H of candidate hypotheses considered in perceptron learning

is the set of all possible real-valued weight vectors

Machine Learning 9

Representational Power of Perceptrons

• A perceptron represents a hyperplane decision surface in the
n-dimensional space of instances.

• The perceptron outputs 1 for instances lying on one side of the
hyperplane and outputs -1 for instances lying on the other side.

• The equation for this decision hyperplane is = 0
• Some sets of positive and negative examples cannot be separated by any

hyperplane. Those that can be separated are called linearly separable
sets of examples.

• A single perceptron can be used to represent many boolean functions.
– AND, OR, NAND, NOR are representable by a perceptron
– XOR cannot be representable by a perceptron.

Machine Learning 10

Representational Power of Perceptrons

+

+
+

+ -

-

-

-
x1

x2

+

+-

-

x1

x2

Representable by a perceptron NOT representable by a perceptron

Machine Learning 11

Perceptron Training Rule

• To learn an acceptable weight vector is to begin with random weights,
then iteratively apply the perceptron to each training example,
modifying the perceptron weights whenever it misclassifies an example.
– If the training example classifies correctly, weights are not updated.

• This process is repeated, iterating through the training examples as
many times as needed until the perceptron classifies all training
examples correctly.
– Each pass through all of the training examples is called one epoch

• Weights are modified at each step according to
perceptron training rule

Machine Learning 12

Perceptron Training Rule

wi = wi + wi
wi =  (t - o) xi

t is the target value
o is the perceptron output
 is a small constant (e.g. 0.1) called learning rate

• If the output is correct (t=o) the weights wi are not changed
• If the output is incorrect (to) the weights wi are changed such that

the output of the perceptron for the new weights is closer to t.
• The algorithm converges to the correct classification

• if the training data is linearly separable
• and  is sufficiently small

Machine Learning 13

Perceptron Learning Rule

t=1
t=-1

w=[0.25,–0.1,0.5]
x2 = 0.2 x1 – 0.5

o=1

o=-1

(x,t)=([-1,-1],1)
o=sgn(0.25+0.1-0.5)

=-1
w=[0.2 –0.2 –0.2]

(x,t)=([2,1],-1)
o=sgn(0.45-0.6+0.3)=1

w=[-0.2,–0.4,–0.2]

(x,t)=([1,1],1)
o=sgn(0.25-0.7+0.1)=-1

w=[0.2, 0.2, 0.2]

Machine Learning 14

Perceptron Learning Rule – Learning OR
x1 x2 T O w1 w1 w2 w2 w0 w0
- - - - - .1 - .5 - -.8
0 0 0 0 0 .1 0 .5 0 -.8
0 1 1 0 0 .1 .2 .7 .2 -.6
1 0 1 0 .2 .3 0 .7 .2 -.4
1 1 1 1 0 .3 0 .7 0 -.4
0 0 0 0 0 .3 0 .7 0 -.4
0 1 1 1 0 .3 0 .7 0 -.4
1 0 1 0 .2 .5 0 .7 .2 -.2
1 1 1 1 0 .5 0 .7 0 -.2
0 0 0 0 0 .5 0 .7 0 -.2
0 1 1 1 0 .5 0 .7 0 -.2
1 0 1 1 0 .5 0 .7 0 -.2
1 1 1 1 0 .5 0 .7 0 -.2

Learning rate parameter
is 0.2

The result of executing
the learning algorithm
for 3 epochs.

Machine Learning 15

Perceptron Learning Rule – Learning AND
x1 x2 T O w1 w1 w2 w2 w0 w0
- - - - - .1 - .5 - -.8
0 0 0 0 0 .1 0 .5 0 -.8
0 1 0 0 0 .1 0 .5 0 -.8
1 0 0 0 0 .1 0 .5 0 -.8
1 1 1 0 .2 .3 .2 .7 .2 -.6
0 0 0 0 0 .3 0 .7 0 -.6
0 1 0 1 0 .3 -.2 .5 -.2 -.8
1 0 0 0 0 .3 0 .5 0 -.8
1 1 1 0 .2 .5 .2 .7 .2 -.6
0 0 0 0 0 .5 0 .7 0 -.6
0 1 0 1 0 .5 -.2 .5 -.2 -.8
1 0 0 0 0 .5 0 .5 0 -.8
1 1 1 1 0 .5 0 .5 0 -.8

Learning rate parameter
is 0.2

The result of executing
the learning algorithm
for 4 epochs.

1 epcoch not shown in
the table.

Machine Learning 16

Gradient Descent and the Delta Rule

• The perceptron rule finds a successful weight vector when the training examples are
linearly separable, it can fail to converge if the examples are not linearly separable.

• The delta rule overcomes this difficulty.
• If the training examples are not linearly separable, the delta rule converges toward a

best-fit approximation to the target concept.
• The key idea behind the delta rule is to use gradient descent to search the hypothesis

space of possible weight vectors to find the weights that best fit the training examples.
• The delta rule is important because gradient descent provides the basis for the

BACKPROPAGATION Algorithm, which can learn networks with many
interconnected units.
– The gradient descent can serve as the basis for learning algorithms that must

search through hypothesis spaces containing many different types of continuously
parameterized hypotheses

Machine Learning 17

Gradient Descent

• Consider linear unit without threshold and continuous output o (not just
–1,1)

o = w0 + w1 x1 + … + wn xn

• Train the wi’s such that they minimize the squared error
E[w0,…,wn] = ½ dD (td - od)2

where D is the set of training examples td is the target output for training
example d, and od is the output of the linear unit for training example d.

Machine Learning 18

Gradient Descent
• The wo, wl plane represents the entire
hypothesis space.
• The vertical axis indicates the error E
relative to some fixed set of training
examples.
• The error surface summarizes the
desirability of every weight vector in the
hypothesis space (we desire a hypothesis
with minimum error).
• The arrow shows the negated gradient at
one particular point, indicating the direction
in the wo, wl plane producing steepest
descent along the error surface.

• Gradient descent search determines a weight vector that minimizes E by starting with an
arbitrary initial weight vector, then repeatedly modifying it in small steps.
• At each step, the weight vector is altered in the direction that produces the steepest descent
along the error surface.
• This process continues until the global minimum error is reached.

Machine Learning 19

Gradient Descent

• How can we calculate the direction of steepest descent along the error
surface?

• This direction can be found by computing the derivative of E with
respect to each component of the vector w0,..,wn.

• This vector derivative is called the gradient of E with respect to
w1,..,wn, written E(w0,…,wn)

• Gradient:
E[w0,…,wn] = [E/w0,… E/wn]

• When the gradient is interpreted as a vector in weight space, the
gradient specifies the direction that produces the steepest increase in E.

• The negative of this vector (-E[w0,…,wn]) gives the direction of
steepest decrease.

Machine Learning 20

Training Rule for Gradient Descent

• For each weight wi
– wi = wi + wi
– wi = -  E[wi]

•  is a small constant called learning rate

wi = -  E[wi]
= -  (E/wi)

.

.

wi = -  dD (td-od) (-xid)

E/wi = /wi ½ dD (td-od)2

= ½ dD /wi (td-od)2

= ½ dD 2(td-od) /wi (td-od)
= dD (td-od) /wi (td-(w0x0d+…+wnxnd))

E/wi= dD (td-od) (-xid)

Machine Learning 21

Gradient Descent

Gradient-Descent(training_examples, )
Each training example is a pair of the form <(x1,…xn),t> where (x1,…,xn) is the vector
of input values, and t is the target output value,  is the learning rate (e.g. 0.1)

• Initialize each wi to some small random value
• Until the termination condition is met, Do

– Initialize each wi to zero
– For each <(x1,…xn),t> in training_examples, Do

• Input the instance (x1,…,xn) to the linear unit and compute the output o
• For each linear unit weight wi Do

– wi= wi +  (t-o) xi

– For each linear unit weight wi, Do
• wi=wi+wi

Machine Learning 22

Incremental (Stochastic) Gradient Descent

Gradient descent is a strategy for searching through a large or
infinite hypothesis space that can be applied whenever

• the hypothesis space contains continuously parameterized
hypotheses (e.g., the weights in a linear unit), and

• the error can be differentiated with respect to these hypothesis
parameters.

The key practical difficulties in applying gradient descent are
– converging to a local minimum can sometimes be quite slow (i.e.,it

can require many thousands of gradient descent steps), and
– if there are multiple local minima in the error surface, then there is

no guarantee that the procedure will find the global minimum.

Incremental (stochastic) gradient descent tries to solve these problems.

Machine Learning 23

Incremental (Stochastic) Gradient Descent

• Batch mode : gradient descent
w=w -  ED[w] over the entire data D
ED[w]=1/2d(td-od)2

• Incremental mode: gradient descent
w=w -  Ed[w] over individual training examples d
Ed[w]=1/2 (td-od)2

Incremental Gradient Descent can approximate Batch Gradient Descent
arbitrarily closely if  is small enough

Machine Learning 24

Incremental (Stochastic) Gradient Descent

Incremental (Stochastic) Gradient-Descent(training_examples, )
Each training example is a pair of the form <(x1,…xn),t> where (x1,…,xn) is the vector
of input values, and t is the target output value,  is the learning rate (e.g. 0.1)

• Initialize each wi to some small random value
• Until the termination condition is met, Do

– Initialize each wi to zero
– For each <(x1,…xn),t> in training_examples, Do

• Input the instance (x1,…,xn) to the linear unit and compute the output o
• For each linear unit weight wi Do

– wi= wi +  (t-o) xi wi= wi +  (t-o) xi

– For each linear unit weight wi, Do
• wi=wi+wi

/ / / / / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / / / / / /

/ /
/ / / / / / / / / / / / / / / / / / /

Machine Learning 25

Incremental (Stochastic) Gradient Descent

• In standard gradient descent, the error is summed over all examples
before updating weights, whereas in stochastic gradient descent weights
are updated upon examining each training example.

• Summing over multiple examples in standard gradient descent requires
more computation per weight update step. On the other hand, because it
uses the true gradient, standard gradient descent is often used with a
larger step size per weight update than stochastic gradient descent.

• In cases where there are multiple local minima with respect to
E(w0,…,wn), stochastic gradient descent can sometimes avoid falling
into these local minima because it uses the various Ed(w0,…,wn)
rather than E (w0,…,wn) to guide its search.

Machine Learning 26

Comparison Perceptron and Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if
• Training examples are linearly separable
• Sufficiently small learning rate 

Linear unit training rules uses gradient descent
• Guaranteed to converge to hypothesis with minimum squared error
• Given sufficiently small learning rate 
• Even when training data contains noise
• Even when training data not separable by H

Machine Learning 27

Multi-Layer Networks

• Single perceptrons can only express linear decision surfaces.
• Multilayer networks are capable of expressing a rich variety of

nonlinear decision surfaces.

input layer

hidden layer

output layer

Machine Learning 28

Multi-Layer Networks with Linear Units
Ex. XOR

• Multiple layers of cascaded linear units still produce only linear
functions.

OR AND

x1 x2

w1=0.5

w1=0.5

w2=0.5

w2=0.5

w1=0.5 w2= -0.5

w0= -0.25

w0= -0.25

w0= -0.75

OR: 0.5*x1 + 0.5*x2 – 0.25 > 0

AND: 0.5*x1 + 0.5*x2 – 0.75 > 0

XOR: 0.5*x1 - 0.5*x2 – 0.25 > 0

Machine Learning 29

Multi-Layer Networks with Non-Linear Units

• Multiple layers of cascaded linear units still produce only linear
functions.

• We prefer networks capable of representing highly nonlinear functions.
• What we need is a unit whose output is a nonlinear function of its

inputs, but whose output is also a differentiable function of its inputs.
• One solution is the sigmoid unit, a unit very much like a perceptron,

but based on a smoothed, differentiable threshold function.

Machine Learning 30

Sigmoid Unit

(x) is the sigmoid function: 1/(1+e-x)

d(x)/dx = (x) (1- (x))



x1

x2

xn

...

w1

w2

wn

w0

o

o=(net)=1/(1+e-net)

x0=1

net= wi xi

n

i=0

 differentiable function

Machine Learning 31

Sigmoid Unit

Derive gradient descent rules to train:
– one sigmoid function

E/wi = -d(td-od) od (1-od) xid

– Multilayer networks of sigmoid units backpropagation

Machine Learning 32

Backpropagation Algorithm

• Create a feed-forward network with ni inputs, nhidden hidden units, and nout output units.
• Initialize each wi to some small random value (e.g., between -.05 and .05).
• Until the termination condition is met, Do

– For each training example <(x1,…xn),t>, Do
// Propagate the input forward through the network:
1. Input the instance (x1,…,xn) to the network and compute the network outputs ok for

every unit

// Propagate the errors backward through the network:
2. For each output unit k, calculate its error term k

k = ok(1-ok)(tk-ok)

3. For each hidden unit h, calculate its error term h

h=oh(1-oh) k wh,k k

4. For each network weight wi,j , Do
wi,j=wi,j+wi,j where wi,j=  j xi,j

Machine Learning 33

Backpropagation

• Gradient descent over entire network weight vector
• Easily generalized to arbitrary directed graphs
• Will find a local, not necessarily global error minimum

-in practice often works well (can be invoked multiple times with
different initial weights)

• Often include weight momentum term
wi,j(n)=  j xi,j +  wi,j (n-1)

• Minimizes error training examples
• Training can be slow typical 1000-10000 iterations
• Using network after training is fast

Machine Learning 34

8-3-8 Binary Encoder -Decoder

• 8 x 3 x 8 network was trained to learn the identity function, using the eight training
examples shown.
• After 5000 training epochs, the three hidden unit values encode the eight distinct
inputs using the encoding shown on the right.
• If the encoded values are rounded to zero or one, the result is the standard binary
encoding for eight distinct values.

Machine Learning 35

Single Layer – Linear Problem

Machine Learning 36

Multi-Layer Network – NonLinear Problem

Machine Learning 37

Multi-Layer Network – NonLinear Problem2

output = f tanh(x) + g tanh2(x) +a
tanh1(x) = tanh(d*x + b)
tanh2(x) = tanh(e*x + c)

Machine Learning 38

Multi-Layer Network – NonLinear Problem2

Machine Learning 39

Expressive Capabilities of ANNs

Boolean functions
– Every boolean function can be represented by network with single

hidden layer
– but might require exponential (in number of inputs) hidden units

Continuous functions
– Every bounded continuous function can be approximated with

arbitrarily small error by network with one hidden layer
– Any function can be approximated to arbitrary accuracy by a

network with two hidden layers

