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Artificial Neural Networks

• Artificial neural networks (ANNs) provide a general, practical method 
for learning real-valued, discrete-valued, and vector-valued functions 
from examples. 

• Algorithms such as BACKPROPAGATION gradient descent to tune 
network parameters to best fit a training set of input-output pairs. 

• ANN learning is robust to errors in the training data and has been 
successfully applied to problems such as interpreting visual scenes,
speech recognition, and learning robot control strategies.
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Biological Motivation

• The study of artificial neural networks (ANNs) has been inspired in part 
by the observation that biological learning systems are built of very 
complex webs of interconnected neurons. 

• Artificial neural networks are built out of a densely interconnected set 
of simple units, where each unit takes a number of real-valued inputs 
(possibly the outputs of other units) and produces a single real-valued 
output (which may become the input to many other units).

• The human brain is estimated to contain a densely interconnected
network of approximately 1011 neurons, each connected, on average, to
104 others.
– Neuron activity is typically inhibited through connections to other 

neurons.
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ALVINN – Neural Network Learning To Steer An 
Autonomous Vehicle
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Properties of Artificial Neural Networks 

• A large number of very simple, neuron-like processing elements called 
units, 

• A large number of weighted, directed connections between pairs of 
units 
– Weights may be positive or negative real values 

• Local processing in that each unit computes a function based on the 
outputs of a limited number of other units in the network 

• Each unit computes a simple function of its input values, which are the 
weighted outputs from other units. 
– If there are n inputs to a unit, then the unit's output, or activation is defined by a = 

g((w1 * x1) + (w2 * x2) + ... + (wn * xn)). 
– Each unit computes a (simple) function g of the linear combination of its inputs. 

• Learning by tuning the connection weights 
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Appropriate Problems for NN Learning

• Instances are represented by many attribute-value pairs.
• The target function output may be discrete-valued, real-valued, or a 

vector of several real-valued or discrete-valued attributes.
• The training examples may contain errors.
• Long training times are acceptable.
• Fast evaluation of the learned target function may be required.
• The ability of humans to understand the learned target function is not 

important.
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Perceptron
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Perceptron

• Perceptron is a Linear Threshold Unit (LTU).
• A perceptron takes a vector of real-valued inputs, calculates a linear

combination of these inputs, then outputs 1 if the result is greater than 
some threshold and -1 otherwise.

• Given inputs xl through xn, the output o(x1, . . . , xn) computed by the 
perceptron is:

each wi is a real-valued constant, or weight, that determines the 
contribution of input xi to the perceptron output.

• The quantity (-w0) is a threshold that the weighted combination of 
inputs must surpass in order for the perceptron to output 1.
– To simplify notation, we imagine an additional constant input x0 = 1
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Perceptron - Learning

• Learning a perceptron involves choosing values for weights w0, …,wn.
• The space H of candidate hypotheses considered in perceptron learning

is the set of all possible real-valued weight vectors
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Representational Power of Perceptrons

• A perceptron represents a hyperplane decision surface in the
n-dimensional space of instances.

• The perceptron outputs 1 for instances lying on one side of the 
hyperplane and outputs -1 for instances lying on the other side.

• The equation for this decision hyperplane is = 0
• Some sets of positive and negative examples cannot be separated by any 

hyperplane. Those that can be separated are called linearly separable
sets of examples.

• A single perceptron can be used to represent many boolean functions.
– AND, OR, NAND, NOR are representable by a perceptron
– XOR cannot be representable by a perceptron.
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Representational Power of Perceptrons
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Perceptron Training Rule

• To learn an acceptable weight vector is to begin with random weights, 
then iteratively apply the perceptron to each training example, 
modifying the perceptron weights whenever it misclassifies an example.
– If the training example classifies correctly, weights are not updated.

• This process is repeated, iterating through the training examples as 
many times as needed until the perceptron classifies all training 
examples correctly. 
– Each pass through all of the training examples is called one epoch

• Weights are modified at each step according to 
perceptron training rule
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Perceptron Training Rule

wi = wi + wi
wi =  (t - o) xi

t    is the target value
o   is the perceptron output
 is a small constant (e.g. 0.1) called learning rate

• If the output is correct (t=o) the weights wi are not changed
• If the output is incorrect (to) the weights wi are changed such that 

the output of the perceptron for the new weights is closer to t.
• The algorithm converges to the correct classification

• if the training data is linearly separable
• and  is sufficiently small 
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Perceptron Learning Rule

t=1
t=-1

w=[0.25,–0.1,0.5]
x2 = 0.2 x1 – 0.5

o=1

o=-1

(x,t)=([-1,-1],1)
o=sgn(0.25+0.1-0.5)

=-1
w=[0.2 –0.2 –0.2]

(x,t)=([2,1],-1)
o=sgn(0.45-0.6+0.3)=1

w=[-0.2,–0.4,–0.2]

(x,t)=([1,1],1)
o=sgn(0.25-0.7+0.1)=-1

w=[0.2, 0.2, 0.2]
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Perceptron Learning Rule – Learning OR
x1 x2 T O w1 w1 w2 w2 w0 w0
- - - - - .1 - .5 - -.8
0 0 0 0 0 .1 0 .5 0 -.8
0 1 1 0 0 .1 .2 .7 .2 -.6
1 0 1 0 .2 .3 0 .7 .2 -.4
1 1 1 1 0 .3 0 .7 0 -.4
0 0 0 0 0 .3 0 .7 0 -.4
0 1 1 1 0 .3 0 .7 0 -.4
1 0 1 0 .2 .5 0 .7 .2 -.2
1 1 1 1 0 .5 0 .7 0 -.2
0 0 0 0 0 .5 0 .7 0 -.2
0 1 1 1 0 .5 0 .7 0 -.2
1 0 1 1 0 .5 0 .7 0 -.2
1 1 1 1 0 .5 0 .7 0 -.2

Learning rate parameter 
is 0.2

The result of executing 
the learning algorithm 
for 3 epochs.
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Perceptron Learning Rule – Learning AND
x1 x2 T O w1 w1 w2 w2 w0 w0
- - - - - .1 - .5 - -.8
0 0 0 0 0 .1 0 .5 0 -.8
0 1 0 0 0 .1 0 .5 0 -.8
1 0 0 0 0 .1 0 .5 0 -.8
1 1 1 0 .2 .3 .2 .7 .2 -.6
0 0 0 0 0 .3 0 .7 0 -.6
0 1 0 1 0 .3 -.2 .5 -.2 -.8
1 0 0 0 0 .3 0 .5 0 -.8
1 1 1 0 .2 .5 .2 .7 .2 -.6
0 0 0 0 0 .5 0 .7 0 -.6
0 1 0 1 0 .5 -.2 .5 -.2 -.8
1 0 0 0 0 .5 0 .5 0 -.8
1 1 1 1 0 .5 0 .5 0 -.8

Learning rate parameter 
is 0.2

The result of executing 
the learning algorithm 
for 4 epochs.

1 epcoch not shown in 
the table.
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Gradient Descent and the Delta Rule

• The perceptron rule finds a successful weight vector when the training examples are 
linearly separable, it can fail to converge if the examples are not linearly separable. 

• The delta rule overcomes this difficulty. 
• If the training examples are not linearly separable, the delta rule converges toward a 

best-fit approximation to the target concept.
• The key idea behind the delta rule is to use gradient descent to search the hypothesis

space of possible weight vectors to find the weights that best fit the training examples.
• The delta rule is important because gradient descent provides the basis for the 

BACKPROPAGATION Algorithm, which can learn networks with many 
interconnected units. 
– The gradient descent can serve as the basis for learning algorithms that must 

search through hypothesis spaces containing many different types of continuously 
parameterized hypotheses
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Gradient Descent

• Consider linear unit without threshold and continuous output o (not just 
–1,1)

o = w0 + w1 x1 + … + wn xn

• Train the wi’s such that they minimize the squared error
E[w0,…,wn] = ½ dD (td - od)2

where D is the set of training examples td is the target output for training 
example d, and od is the output of the linear unit for training example d.
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Gradient Descent
• The wo, wl plane represents the entire 
hypothesis space. 
• The vertical axis indicates the error E 
relative to some fixed set of training 
examples. 
• The error surface summarizes the 
desirability of every weight vector in the 
hypothesis space (we desire a hypothesis 
with minimum error).
• The arrow shows the negated gradient at 
one particular point, indicating the direction 
in the wo, wl plane producing steepest 
descent along the error surface.

• Gradient descent search determines a weight vector that minimizes E by starting with an 
arbitrary initial weight vector, then repeatedly modifying it in small steps. 
• At each step, the weight vector is altered in the direction that produces the steepest descent 
along the error surface. 
• This process continues until the global minimum error is reached.
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Gradient Descent

• How can we calculate the direction of steepest descent along the error 
surface?

• This direction can be found by computing the derivative of E with 
respect to each component of the vector w0,..,wn.

• This vector derivative is called the gradient of E with respect to 
w1,..,wn, written E(w0,…,wn)

• Gradient:
E[w0,…,wn] = [E/w0,… E/wn]

• When the gradient is interpreted as a vector in weight space, the 
gradient specifies the direction that produces the steepest increase in E. 

• The negative of this vector ( -E[w0,…,wn] ) gives the direction of 
steepest decrease.
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Training Rule for Gradient Descent

• For each weight wi
– wi = wi + wi
– wi = -  E[wi]

•  is a small constant called learning rate

wi = -  E[wi]
= -  ( E/wi )

.

.

wi = -  dD (td-od) (-xid)

E/wi = /wi  ½ dD (td-od)2

= ½ dD /wi (td-od)2

= ½ dD 2(td-od) /wi (td-od)
= dD (td-od) /wi (td-(w0x0d+…+wnxnd))

E/wi= dD (td-od) (-xid)
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Gradient Descent

Gradient-Descent(training_examples, )
Each training example is a pair of the form <(x1,…xn),t> where (x1,…,xn) is the vector 
of input values, and t is the target output value,  is the learning rate (e.g. 0.1)

• Initialize each wi to some small random value
• Until the termination condition is met, Do

– Initialize each wi to zero
– For each <(x1,…xn),t> in training_examples, Do

• Input the instance (x1,…,xn) to the linear unit and compute the output o
• For each linear unit weight wi Do

– wi= wi +  (t-o) xi

– For each linear unit weight wi, Do
• wi=wi+wi
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Incremental (Stochastic) Gradient Descent

Gradient descent is a strategy for searching through a large or 
infinite hypothesis space that can be applied whenever

• the hypothesis space contains continuously parameterized 
hypotheses (e.g., the weights in a linear unit), and 

• the error can be differentiated with respect to these hypothesis 
parameters. 

The key practical difficulties in applying gradient descent are 
– converging to a local minimum can sometimes be quite slow (i.e.,it 

can require many thousands of gradient descent steps), and 
– if there are multiple local minima in the error surface, then there is 

no guarantee that the procedure will find the global minimum.

Incremental (stochastic) gradient descent tries to solve these problems.
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Incremental (Stochastic) Gradient Descent

• Batch mode : gradient descent
w=w -  ED[w] over the entire data D
ED[w]=1/2d(td-od)2

• Incremental mode: gradient descent
w=w -  Ed[w] over individual training examples d
Ed[w]=1/2 (td-od)2

Incremental Gradient Descent can approximate Batch Gradient Descent
arbitrarily closely if  is small enough 
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Incremental (Stochastic) Gradient Descent

Incremental (Stochastic) Gradient-Descent(training_examples, )
Each training example is a pair of the form <(x1,…xn),t> where (x1,…,xn) is the vector 
of input values, and t is the target output value,  is the learning rate (e.g. 0.1)

• Initialize each wi to some small random value
• Until the termination condition is met, Do

– Initialize each wi to zero
– For each <(x1,…xn),t> in training_examples, Do

• Input the instance (x1,…,xn) to the linear unit and compute the output o
• For each linear unit weight wi Do

– wi= wi +  (t-o) xi wi= wi +  (t-o) xi

– For each linear unit weight wi, Do
• wi=wi+wi

/ / / / / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / / / / / / / /
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Incremental (Stochastic) Gradient Descent

• In standard gradient descent, the error is summed over all examples 
before updating weights, whereas in stochastic gradient descent weights 
are updated upon examining each training example. 

• Summing over multiple examples in standard gradient descent requires 
more computation per weight update step. On the other hand, because it 
uses the true gradient, standard gradient descent is often used with a 
larger step size per weight update than stochastic gradient descent.

• In cases where there are multiple local minima with respect to 
E(w0,…,wn), stochastic gradient descent can sometimes avoid falling 
into these local minima because it uses the various Ed(w0,…,wn) 
rather than E (w0,…,wn) to guide its search.
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Comparison Perceptron and Gradient Descent Rule

Perceptron learning rule guaranteed to succeed if
• Training examples are linearly separable
• Sufficiently small learning rate 

Linear unit training rules uses gradient descent
• Guaranteed to converge to hypothesis with minimum squared error
• Given sufficiently small learning rate 
• Even when training data contains noise
• Even when training data not separable by H



Machine Learning 27

Multi-Layer Networks

• Single perceptrons can only express linear decision surfaces.
• Multilayer networks are capable of expressing a rich variety of 

nonlinear decision surfaces.

input layer

hidden layer

output layer
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Multi-Layer Networks with Linear Units
Ex. XOR

• Multiple layers of cascaded linear units still produce only linear 
functions.

OR AND

x1 x2

w1=0.5

w1=0.5

w2=0.5

w2=0.5

w1=0.5 w2= -0.5

w0= -0.25

w0= -0.25

w0= -0.75

OR: 0.5*x1 + 0.5*x2 – 0.25   > 0

AND: 0.5*x1 + 0.5*x2 – 0.75   > 0

XOR: 0.5*x1 - 0.5*x2 – 0.25   > 0
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Multi-Layer Networks with Non-Linear Units

• Multiple layers of cascaded linear units still produce only linear 
functions.

• We prefer networks capable of representing highly nonlinear functions.
• What we need is a unit whose output is a nonlinear function of its 

inputs, but whose output is also a differentiable function of its inputs. 
• One solution is the sigmoid unit, a unit very much like a perceptron, 

but based on a smoothed, differentiable threshold function.
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Sigmoid Unit

(x) is the sigmoid function: 1/(1+e-x)

d(x)/dx = (x) (1- (x))



x1

x2

xn

...

w1

w2

wn

w0

o

o=(net)=1/(1+e-net)

x0=1

net= wi xi

n

i=0

 differentiable function
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Sigmoid Unit

Derive gradient descent rules to train:
– one sigmoid function

E/wi = -d(td-od) od (1-od) xid

– Multilayer networks of sigmoid units backpropagation
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Backpropagation Algorithm

• Create a feed-forward network with ni inputs, nhidden hidden units, and nout output units.
• Initialize each wi to some small random value (e.g., between -.05 and .05).
• Until the termination condition is met, Do

– For each training example  <(x1,…xn),t>, Do
// Propagate the input forward through the network:
1. Input the instance (x1,…,xn) to the network and compute the network outputs ok for 

every unit

// Propagate the errors backward through the network:
2. For each output unit k, calculate its error term k

k = ok(1-ok)(tk-ok)

3. For each hidden unit h, calculate its error term h 

h=oh(1-oh) k wh,k k

4. For each network weight wi,j , Do
wi,j=wi,j+wi,j    where wi,j=  j xi,j
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Backpropagation

• Gradient descent over entire network weight vector
• Easily generalized to arbitrary directed graphs
• Will find a local, not necessarily global error minimum

-in practice often works well (can be invoked multiple times with 
different initial weights)

• Often include weight momentum term 
wi,j(n)=  j xi,j +  wi,j (n-1)

• Minimizes error training examples
• Training can be slow typical 1000-10000 iterations
• Using network after training is fast



Machine Learning 34

8-3-8 Binary Encoder -Decoder 

• 8 x 3 x 8 network was trained to learn the identity function, using the eight training 
examples shown. 
• After 5000 training epochs, the three hidden unit values encode the eight distinct 
inputs using the encoding shown on the right. 
• If the encoded values are rounded to zero or one, the result is the standard binary 
encoding for eight distinct values.
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Single Layer – Linear Problem
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Multi-Layer Network – NonLinear Problem
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Multi-Layer Network – NonLinear Problem2

output = f tanh(x) + g tanh2(x) +a
tanh1(x) = tanh(d*x + b)
tanh2(x) = tanh(e*x + c)
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Multi-Layer Network – NonLinear Problem2
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Expressive Capabilities of ANNs

Boolean functions
– Every boolean function can be represented by network with single 

hidden layer
– but might require exponential (in number of inputs) hidden units

Continuous functions
– Every bounded continuous function can be approximated with 

arbitrarily small error by network with one hidden layer 
– Any function can be approximated to arbitrary accuracy by a 

network with two hidden layers


