SVM - Support Vector Machines

A new classification method for both linear and nonlinear data

It uses a nonlinear mapping to transform the original training data into a
higher dimension

With the new dimension, it searches for the linear optimal separating
hyperplane (i.e., “decision boundary”)

With an appropriate nonlinear mapping to a sufficiently high dimension,
data from two classes can always be separated by a hyperplane

SVM finds this hyperplane using support vectors (“essential’” training
tuples) and margins (defined by the support vectors)
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SVM - History and Applications

Vapnik and colleagues (1992)—groundwork from Vapnik &
Chervonenkis’ statistical learning theory in 1960s

Features: training can be slow but accuracy 1s high owing to their ability
to model complex nonlinear decision boundaries (margin maximization)

Used both for classification and prediction
Applications:

— handwritten digit recognition, object recognition, speaker
identification, benchmarking time-series prediction tests
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Linear Classifiers

Consider a two dimensional dataset
with two classes

How would we classify this dataset?
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Linear Classifiers

Both of the lines can be linear classifiers.
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Linear Classifiers

There are many lines that can be linear classifiers.

Which one is the optimal classifier.
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Classifier Margin

Define the margin of a linear classifier as the width that
theboundary could be increased by before hitting a datapoint.
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Maximum Margin

The maximum margin linear
classifier 1s the linear classifier
with the maximum margin.

This 1s the simplest kind of SVM
(Called Linear SVM)
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Support Vectors

« Examples closest to the hyperplane are support vectors.

* Margin p of the separator 1s the distance between support vectors.

w.xX+5H>0 P /W X+b=0

A(x) = sign(w . X + b)
red is +1
blue is -1

"o . Support Vectors

. | w.XxX+bH<0
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Support Vectors

* Distance from example x; to the separator 1s y = !
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SVM - Linearly Separable

A separating hyperplane can be written as
*WeX+b=0
— where W={w,, w,, ..., w_} 1s a weight vector and b a scalar (bias)
For 2-D it can be written as
* Wyt W, X, +tW,X,=0
The hyperplane defining the sides of the margin:
*Hi:w,+w, x,+w,x,>21 fory,=+I, and
* Hy:wy+w, x, +w, x, <—1fory,=-1
Any training tuples that fall on hyperplanes H, or H, (i.e., the
sides defining the margin) are support vectors
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Linear SVM Mathematically

 Let training set {(X;, ¥,)} - » X,€RY% y. € {-1, 1} be separated by a
hyperplane with margin p. Then for each training example (x,, y,):

wix,+b<-p/2 ify=-1

wix. +b>p/2 ify =1 & ywlx;+b)= p/2

* For every support vector x, the above inequality 1s an equality.  After
rescaling w and b by p/2 in the equality, we obtain that distance between
each x, and the hyperplane is y.(wx +b) 1

V= =

W
* Then the margin can be expressed through (rescaled) w and b as:
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Linear SVMs Mathematically (cont.)

* Then we can formulate the quadratic optimization problem:

Find w and b such that

2 . .
p =+ 1S maximized
W

and for all (x,, y,), i=1.n: y(wix,+b)>1

Which can be reformulated as:
Find w and b such that

®(w) = ||w|]*=w'w is minimized

and for all (x,, y;), i=l.n: y,(wlx;+b)>1
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Solving the Optimization Problem

Find w and b such that
®(w) =w'w is minimized
and for all (x,, y,), i=l.n:  y,(Wix,+b)>1

Need to optimize a quadratic function subject to /inear constraints.

Quadratic optimization problems are a well-known class of mathematical
programming problems for which several (non-trivial) algorithms exist.

The solution involves constructing a dual problem where a Lagrange multiplier o 1s
associated with every inequality constraint in the primal (original) problem:

Find a;...a, such that

Q(0) =Za, - 2XZo,0y,yX,;'X; is maximized and
(1) Xay;=0

(2) a; 2 0 for all a;
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The Optimization Problem Solution

Given a solution ¢, ...a, to the dual problem, solution to the primal is:

W =Xa,)X, b=y,-2Zayx'x, foranya,>0

Each non-zero «, indicates that corresponding x; 1s a support vector.
Then the classifying function 1s (note that we don’t need w explicitly):

f(x)=2Zayxx+b

Notice that 1t relies on an inner product between the test point x and the
support vectors X. —

Also keep in mind that solving the optimization problem involved
computing the inner products x;'x; between all training points.
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Soft Margin Classification

« What if the training set 1s not linearly separable?

* Slack variables ¢; can be added to allow misclassification of difficult or
noisy examples, resulting margin called sofft.
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Soft Margin Classification Mathematically

The old formulation:

Find w and b such that
®(w) =w'w is minimized
and for all (x; ,y,), i=l.n:  y,(Wix,+b)>1

Modified formulation incorporates slack variables:

Find w and b such that
®(w)=wlw + CZ¢, is minimized
and for all (x;,y), =l.n:  y,(wix,+b)>1-¢ , &=0

Parameter C can be viewed as a way to control overfitting: it “trades off” the relative
importance of maximizing the margin and fitting the training data.
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Soft Margin Classification — Solution

Dual problem 1s 1dentical to separable case (would not be 1dentical 1f the 2-norm
penalty for slack variables CX&? was used in primal objective, we would need
additional Lagrange multipliers for slack variables):

Find a;...ay such that

Q(0) =Za, - 2XZo,0y,yX,;"X; is maximized and
(1) Xay;=0

(2) 0< ;< Cforall g

Again, x; with non-zero a, will be support vectors.

Solution to the dual problem is: Again, we don’t need to compute
w explicitly for classification:

W =20 VX,

f(x)=2Zayx x+b

b=y,(1-¢) - Za,yx,'x, forany ks.t. a,>0
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Theoretical Justification for Maximum Margins

Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as

2
h< min{{D—2—|, mO} +1
p

where p is the margin, D is the diameter of the smallest sphere that can enclose all of
the training examples, and m,is the dimensionality.

Intuitively, this implies that regardless of dimensionality m,we can minimize
the VC dimension by maximizing the margin p.

Thus, complexity of the classifier 1s kept small regardless of dimensionality.
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Linear SVMs: Overview

The classifier 1s a separating hyperplane.
Most “important” training points are support vectors; they define the

hyperplane.

Quadratic optimization algorithms can identify which training points x;

are support vectors with non-zero Lagrangian multipliers a..

Both 1n the dual formulation of the problem and 1n the solution training

points appear only inside inner products:

Find a;...ay such that

Q(0) =Za, - 2XZo,0y,yX,;"X; is maximized

and
(1) Xay;=0
(2) 0< ;< Cforall g

f(x)=2Zayx x+b
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Non-linear SVMs

« Datasets that are linearly separable with some noise work out great:

* But what are we going to do if the dataset 1s just too hard?

*—0 o—0— *-0—0 *—o o—>

0 X
 How about... mapping data to a higher-dimensional space

Machine Learning
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Non-linear SVMs: Feature spaces

General 1dea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:
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The “Kernel Trick”

The linear classifier relies on inner product between vectors K(x,,X;)=x,"x;

If every datapoint 1s mapped into high-dimensional space via some transformation
®: x — @(x), the inner product becomes:

K(x;,x))= o(x;) To(x))
A kernel function 1s a function that 1s eqiuvalent to an inner product in some feature
space.

Example:

2-dimensional vectors x=[x; x,]; let K(x;,x,)=(1 + x;x;)*

Need to show that K(x;,x;)= @(x;) To(x)):

K(Xiaxj):(l T XiTXj)z,: 1+ xi12xj12 +2 X1 X1 XipXjp T xi22xj22 T zxille T 2xl-2xj2=
=[1 x,° \2 XXy Xiy \/le-, \/2xi2]T [1 x;,° \2 XXy Xy \/ij, \/Zxﬂ] =
= o(x;) To(x;), where @(x) = [1 x,° N2 xx, X2 \2x; \2x,]

Thus, a kernel function implicitly maps data to a high-dimensional space (without
the need to compute each @(x) explicitly).
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Examples of Kernel Functions

Linear: K(x,,x;)= x;'x;

— Mapping ®: x — @(x), where @(x) 1s x itself

Polynomial of power p: K(x,;,x;)= (1+ x,"'x,)?
d+p

— Mapping ®: x — @(x), where @(x) has ( ,

j dimensions

2

Gaussian (radial-basis function): K(x,,x;) = ¢ 207

— Mapping ®: x — @(x), where @(X) 1s infinite-dimensional: every point 1s
mapped to a function (a Gaussian); combination of functions for support vectors
1s the separator.

Higher-dimensional space still has intrinsic dimensionality d (the mapping 1s not
onto), but linear separators 1n it correspond to non-linear separators in original space.
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Non-linear SVMs Mathematically

* Dual problem formulation:

Find a;...a, such that

Q(a) =20, - 2Xra0yyK(X;, X;) 1s maximized and
(1) Xay;=0

(2) a; 2 0 for all g,

e The solution 1s:

JX) = ZayK(x;, X))+ b

» Optimization techniques for finding «;’s remain the same!
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SVM applications

SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained
increasing popularity in late 1990s.

SVMs are currently among the best performers for a number of classification tasks
ranging from text to genomic data.

SVMs can be applied to complex data types beyond feature vectors (e.g. graphs,
sequences, relational data) by designing kernel functions for such data.

SVM techniques have been extended to a number of tasks such as regression [ Vapnik
et al. ’97], principal component analysis [Scholkopf et al. *99], etc.

Most popular optimization algorithms for SVMs use decomposition to hill-climb over
a subset of a;’s at a time, e.g. SMO [Platt ’99] and [Joachims ’99]

Tuning SVMs remains a black art: selecting a specific kernel and parameters 1s
usually done 1n a try-and-see manner.
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