
SVM - Support Vector Machines

• A new classification method for both linear and nonlinear data
• It uses a nonlinear mapping to transform the original training data into a 

higher dimension
• With the new dimension, it searches for the linear optimal separating 

hyperplane (i.e., “decision boundary”)
• With an appropriate nonlinear mapping to a sufficiently high dimension, 

data from two classes can always be separated by a hyperplane
• SVM finds this hyperplane using support vectors (“essential” training 

tuples) and margins (defined by the support vectors)
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SVM - History and Applications

• Vapnik and colleagues (1992)—groundwork from Vapnik & 
Chervonenkis’ statistical learning theory in 1960s

• Features: training can be slow but accuracy is high owing to their ability 
to model complex nonlinear decision boundaries (margin maximization)

• Used both for classification and prediction
• Applications: 

– handwritten digit recognition, object recognition, speaker 
identification, benchmarking time-series prediction tests
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Linear Classifiers

Consider a two dimensional dataset
with two classes

How would we classify this dataset? 

Machine Learning 3



Linear Classifiers

Both of the lines can be linear classifiers.
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Linear Classifiers

There are many lines that can be linear classifiers.

Which one is the optimal classifier.
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Classifier Margin

Define the margin of a linear classifier as the width that 
theboundary could be increased by before hitting a datapoint.
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Maximum Margin

The maximum margin linear 
classifier is the linear classifier
with the maximum margin.

This is the simplest kind of SVM 
(Called Linear SVM)
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Support Vectors

• Examples closest to the hyperplane are support vectors. 
• Margin ρ of the separator is the distance between support vectors.

ρw . x + b > 0

w . x + b < 0

w . x + b = 0

Support Vectors

f(x) = sign(w . x + b)
red is +1
blue is -1
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Support Vectors

• Distance from example xi to the separator is 
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SVM - Linearly Separable

• A separating hyperplane can be written as
• W ● X + b = 0

– where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)
• For 2-D it can be written as

• w0 + w1 x1 + w2 x2 = 0
• The hyperplane defining the sides of the margin: 

• H1: w0 + w1 x1 + w2 x2 ≥ 1    for yi = +1, and
• H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

• Any training tuples that fall on hyperplanes H1 or H2 (i.e., the 
sides defining the margin) are support vectors
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Linear SVM Mathematically

Machine Learning 11

• Let training set {(xi, yi)}i=1..n, xiRd, yi {-1, 1} be separated by a 
hyperplane with margin ρ. Then for each training example (xi, yi):

• For every support vector xs the above inequality is an equality.    After 
rescaling w and b by ρ/2 in the equality, we obtain that distance between 
each xs and the hyperplane is 

• Then the margin can be expressed through (rescaled) w and b as:

wTxi + b ≤ - ρ/2 if yi = -1
wTxi + b ≥ ρ/2 if yi = 1
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Linear SVMs Mathematically (cont.)

• Then we can formulate the quadratic optimization problem: 

Which can be reformulated as: 

Machine Learning 12

Find w and b such that

is maximized 

and for all (xi, yi), i=1..n :     yi(wTxi + b) ≥ 1
w
2



Find w and b such that

Φ(w) = ||w||2=wTw is minimized 

and for all (xi, yi), i=1..n :    yi (wTxi + b) ≥ 1



Solving the Optimization Problem

• Need to optimize a quadratic function subject to linear constraints.
• Quadratic optimization problems are a well-known class of mathematical 

programming problems for which several (non-trivial) algorithms exist.
• The solution involves constructing a dual problem where a Lagrange multiplier αi is 

associated with every inequality constraint in the primal (original) problem:
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Find w and b such that
Φ(w) =wTw is minimized 
and for all (xi, yi), i=1..n :       yi (wTxi + b) ≥ 1

Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1)  Σαiyi = 0
(2) αi ≥ 0 for all αi



The Optimization Problem Solution

• Given a solution α1…αn to the dual problem, solution to the primal is: 

• Each non-zero αi indicates that corresponding xi is a support vector.
• Then the classifying function is (note that we don’t need w explicitly):

• Notice that it relies on an inner product between the test point x and the 
support vectors xi –

• Also keep in mind that solving the optimization problem involved 
computing the inner products xi

Txj between all training points.
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w =Σαiyixi b = yk - Σαiyixi
Txk for any αk > 0

f(x) = Σαiyixi
Tx + b



Soft Margin Classification 

• What if the training set is not linearly separable?
• Slack variables ξi can be added to allow misclassification of difficult or 

noisy examples, resulting margin called soft.
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Soft Margin Classification Mathematically

• The old formulation:

• Modified formulation incorporates slack variables:

• Parameter C can be viewed as a way to control overfitting:  it “trades off” the relative 
importance of maximizing the margin and fitting the training data.
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Find w and b such that
Φ(w) =wTw is minimized 
and for all (xi ,yi), i=1..n :       yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =wTw + CΣξi   is minimized 
and for all (xi ,yi), i=1..n :       yi (wTxi + b) ≥ 1 – ξi, ,    ξi ≥ 0



Soft Margin Classification – Solution

• Dual problem is identical to separable case (would not be identical if the 2-norm 
penalty for slack variables CΣξi

2 was used in primal objective, we would need 
additional Lagrange multipliers for slack variables):

• Again, xi with non-zero αi will be support vectors.
• Solution to the dual problem is:
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Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1)  Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

w =Σαiyixi
b= yk(1- ξk) - Σαiyixi

Txk for any k s.t. αk>0

Again, we don’t need to compute 
w explicitly for classification:

f(x) = Σαiyixi
Tx + b



Theoretical Justification for Maximum Margins

• Vapnik has proved the following:
The class of optimal linear separators has VC dimension h bounded from above as 

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of 
the training examples, and m0 is the dimensionality.

• Intuitively, this implies that regardless of dimensionality m0 we can minimize 
the VC dimension by maximizing the margin ρ.

• Thus, complexity of the classifier is kept small regardless of dimensionality.
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Linear SVMs:  Overview

• The classifier is a separating hyperplane.
• Most “important” training points are support vectors; they define the 

hyperplane.
• Quadratic optimization algorithms can identify which training points xi

are support vectors with non-zero Lagrangian multipliers αi.
• Both in the dual formulation of the problem and in the solution training 

points appear only inside inner products: 
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Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized 
and 
(1)  Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b



Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space
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Non-linear SVMs:  Feature spaces
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• General idea:   the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ:  x → φ(x)



The “Kernel Trick”
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• The linear classifier relies on inner product between vectors K(xi,xj)=xi
Txj

• If every datapoint is mapped into high-dimensional space via some transformation 
Φ:  x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi) Tφ(xj)
• A kernel function is a function that is eqiuvalent to an inner product in some feature 

space.
• Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)2

,

Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] =

= φ(xi) Tφ(xj),    where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
• Thus, a kernel function implicitly maps data to a high-dimensional space (without 

the need to compute each φ(x) explicitly).



Examples of Kernel Functions
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• Linear: K(xi,xj)= xi
Txj

– Mapping Φ:    x → φ(x), where φ(x) is x itself

• Polynomial of power p: K(xi,xj)= (1+ xi
Txj)p

– Mapping Φ:    x → φ(x), where φ(x) has           dimensions 

• Gaussian (radial-basis function): K(xi,xj) =

– Mapping Φ:  x →  φ(x), where φ(x) is infinite-dimensional: every point is 
mapped to a function (a Gaussian); combination of functions for support vectors 
is the separator.

• Higher-dimensional space still has intrinsic dimensionality d (the mapping is not 
onto), but linear separators in it correspond to non-linear separators in original space.
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Non-linear SVMs Mathematically

• Dual problem formulation:

• The solution is:

• Optimization techniques for finding αi’s remain the same!
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Find α1…αn such that
Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 
(1)  Σαiyi = 0
(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b



SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained 
increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of classification tasks 
ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, 
sequences, relational data) by designing kernel functions for such data.

• SVM techniques have been extended to a number of tasks such as regression [Vapnik 
et al. ’97], principal component analysis [Schölkopf et al. ’99], etc. 

• Most popular optimization algorithms for SVMs use decomposition to hill-climb over 
a subset of αi’s at a time, e.g. SMO [Platt ’99] and [Joachims ’99]

• Tuning SVMs remains a black art:  selecting a specific kernel and parameters is 
usually done in a try-and-see manner. 
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