Learning Disjunctive Sets of Rules

- Method 1. Learn decision tree, convert to rules
- Method 2. Sequential covering algorithm
 - i) Learn one rule with high accuracy, any coverage
 - ii) Remove positive examples covered by this rule
 - iii) Repeat

Sequential Covering Algorithm

SEQUENTIAL-COVERING(Target_attribute, Attributes, Examples, Threshold)

- Learned_rules ← {}
- Rule ← LEARN-ONE-RULE(Target_attribute, Attributes, Examples)
- while PERFORMANCE(Rule, Examples) > Threshold, do
 - Learned_rules ← Learned_rules + Rule
 - Examples ← Examples {examples correctly classified by Rule}
 - Rule ← LEARN-ONE-RULE(Target_attribute, Attributes, Examples)
- Learned_rules ← sort Learned_rules accord to Performance over Examples
- return Learned_rules

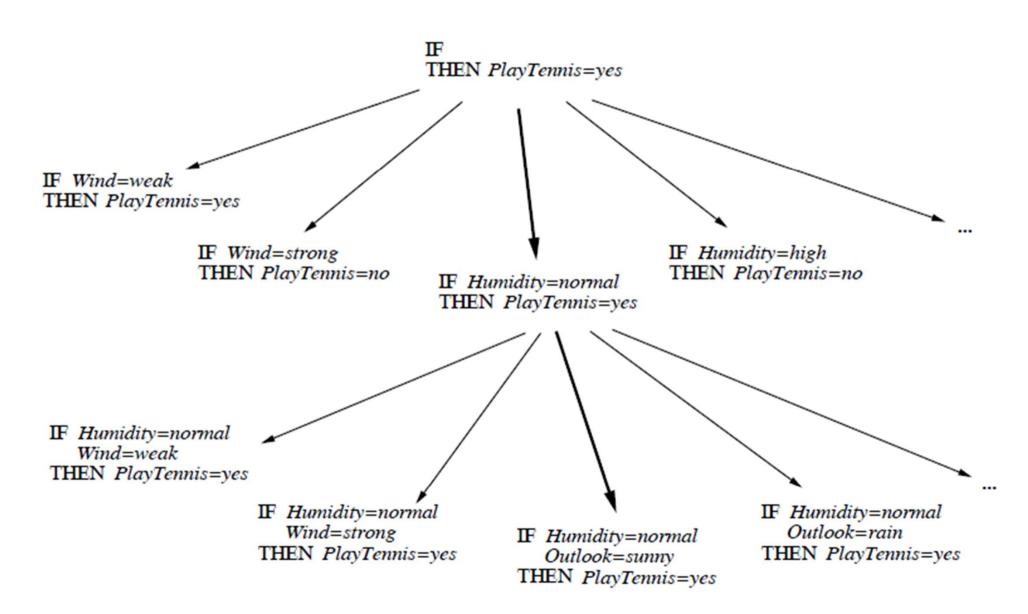
Sequential Covering Algorithm

- The sequential covering algorithm for learning a disjunctive set of rules.
- LEARN-ONE-RULE return a single rule that covers at least some of the Examples.
- PERFORMANCE is a user-provided subroutine to evaluate rule quality.
- The covering algorithm learns rules until it can no longer learn a rule whose performance is above the given Threshold.

LEARN-ONE-RULE

- The search for rule preconditions as LEARN-ONE-RULE proceeds from general to specific.
- At each step, the preconditions of the best rule are specialized in all possible ways.
- Rule postconditions are determined by the examples found to satisfy the preconditions.

LEARN-ONE-RULE



LEARN-ONE-RULE

Pos ← positive *Examples*

Neg ← negative *Examples*

while Pos is not empty do

Learn a NewRule

- NewRule ← most general rule possible
- NewRuleNeg ← Neg
- while NewRuleNeg is not empty do

Add a new literal to specialize NewRule

- Candidate literals ← generate candidates
- Best literal \leftarrow argmax $_{L \in Candidate\ literals}$ Performance(SpecializeRule(NewRule, L))
- add Best literal to NewRule preconditions
- NewRuleNeg ← subset of NewRuleNeg that satisfies NewRule preconditions
- Learned rules ← Learned rules + NewRule
- Pos ← Pos − { members of Pos covered by NewRule }

Return Learned rules

Performance in LEARN-ONE-RULE

• Relative frequency

- Let n denote the number of examples the rule matches and let nc denote the number of these that it classifies correctly.
- The relative frequency estimate of rule performance is **nc/n**

Entropy

- Let S be the set of examples that match the rule preconditions.
- Entropy measures the uniformity of the target function values for this set of examples.
- We take the negative of the entropy so that better rules will have higher scores.

$$-Entropy(S) = \sum_{i=1}^{c} p_i \log_2 p_i$$

- where c is the number of distinct values the target function may take on, p_i is the proportion of examples from S for which the target function takes on the ith value.

Learning First Order Rules

- The problem is that propositional representations offer no general way to describe the essential relations among the values of the attributes.
- In contrast, a program using first-order representations could learn the following general rule:

IF Father(y, x) **and** Female(y), **THEN** Daughter(x, y)

where x and y are variables that can be bound to any person.