
 

 

CLUSTERING 

Machine Learning 1 



What is Clustering 

 Cluster: a collection of data objects 

 Similar to one another within the same cluster 

 Dissimilar to the objects in other clusters 

 Cluster analysis 

 Grouping a set of data objects into clusters 

 Clustering is unsupervised classification:                                

     no predefined classes 

 Typical applications 

 As a stand-alone tool to get insight into data distribution  

 As a preprocessing step for other algorithms 
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Examples of Clustering Applications 

• Marketing: Help marketers discover distinct groups in their customer 

bases, and then use this knowledge to develop targeted marketing 

programs 

• Land use: Identification of areas of similar land use in an earth 

observation database 

• Insurance: Identifying groups of motor insurance policy holders with a 

high average claim cost 

• Urban planning: Identifying groups of houses according to their house 

type, value, and geographical location 

• Seismology: Observed earth quake epicenters should be clustered along 

continent faults 

 
Machine Learning 3 



What Is a Good Clustering? 

• A good clustering method will produce      clusters with 

– High intra-class similarity 

– Low inter-class similarity  

• Precise definition of clustering quality is difficult 

– Application-dependent 

– Ultimately subjective 
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Similarity and Dissimilarity Between Objects 

• Euclidean distance:  

 

    

• Properties of a metric d(i,j): 

– d(i,j)  0 

– d(i,i) = 0 

– d(i,j) = d(j,i) 

– d(i,j)  d(i,k) + d(k,j) 
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Major Clustering Approaches 

• Partitioning: Construct various partitions and then evaluate them by 

some criterion 

• Hierarchical: Create a hierarchical decomposition of the set of objects 

using some criterion 

• Model-based: Hypothesize a model for each cluster and find best fit of 

models to data 

• Density-based: Guided by connectivity and density functions 
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Partitioning Algorithms 

• Partitioning method: Construct a partition of a database D of n objects 

into a set of k clusters 

• Given a k, find a partition of k clusters that optimizes the chosen 

partitioning criterion 

– Global optimal: exhaustively enumerate all partitions 

– Heuristic methods: k-means and k-medoids algorithms 

– k-means (MacQueen, 1967): Each cluster is represented by the 

center of the cluster 

– k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw, 1987): Each cluster is represented by one of the objects 

in the cluster   
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K-Means Clustering  

• Given k, the k-means algorithm consists of four steps: 

– Select initial centroids at random. 

– Assign each object to the cluster with the nearest centroid. 

– Compute each centroid as the mean of the objects assigned 

to it. 

– Repeat previous 2 steps until no change. 
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Algorithm Definition 

• The K-Means algorithm is an method to cluster objects based on their 
attributes into k partitions.  
 

• It assumes that the k clusters exhibit Gaussian distributions.  
 

• It assumes that the object attributes form a vector space.  
 

• The objective it tries to achieve is to minimize total intra-cluster 
variance. 
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Algorithm Fitness Function 

• The K-Means algorithm attempts to minimize the squared error for all 
elements in all clusters. 

 

• The error equation is: 

 

 

 

 

• Where E is the sum of the square error for all elements in the data set;   
p is a given element; and mi is the mean of cluster Ci 
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K-Means Algorithm 

• Input 

– k: the number of clusters 

– D: a dataset containing n elements 
 

• Output: a set of k clusters 
 

• Method 

– (1) arbitrarily choose k elements from D as the initial cluster mean values 

– (2) repeat 

– (3)      assign each element to the cluster whose mean the element  

               is closest to 

– (4)      once all of the elements are assigned to clusters,  

               calculate the actual cluster means 

– (5) until there is no change between the new and old cluster means 

 
Machine Learning 11 



K-Means Clustering (Example) 
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Comments on the K-Means Method 

• Strengths  

– Relatively efficient: O(tkn), where n is # objects, k is     # clusters, 
and t  is # iterations. Normally, k, t << n. 

– Often terminates at a local optimum. The global optimum may be 
found using techniques such as simulated annealing and genetic 
algorithms 

 

• Weaknesses 

– Applicable only when mean is defined (what about categorical data?) 

– Need to specify k, the number of clusters, in advance 

– Trouble with noisy data and outliers 

– Not suitable to discover clusters with non-convex shapes 
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K-medoids Clustering 

• K-means is appropriate when we can work with Euclidean distances 

• Thus, K-means can work only with numerical, quantitative variable 

types 

• Euclidean distances do not work well in at least two situations 

– Some variables are categorical 

– Outliers can be potential threats 

• A general version of K-means algorithm called K-medoids can work 

with any distance measure 

• K-medoids clustering is computationally more intensive 
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K-medoids Algorithm 

• Step 1: For a given cluster assignment C, find the observation in the 

cluster minimizing the total distance to other points in that cluster: 

 

 

• Step 2: Assign  

 

• Step 3: Given a set of cluster centers {m1, …, mK}, minimize the total 

error by assigning each observation to the closest (current) cluster 

center: 

 

• Iterate steps 1 to 3  
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K-medoids Summary 

• Generalized K-means 

• Computationally much costlier that K-means 

• Apply when dealing with categorical data 

• Apply when data points are not available, but only pair-wise distances 

are available 

• Converges to local minimum 
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Hierarchical Clustering 

• Two types: (1) agglomerative (bottom up), (2) divisive (top down) 

• Agglomerative: two groups are merged if distance between them is less 

than a threshold 

• Divisive: one group is split into two if intergroup distance more than a 

threshold 

• Can be expressed by an excellent graphical representation called 

“dendogram”, when the process is monotonic: dissimilarity between 

merged clusters is increasing. Agglomerative clustering possesses this 

property. Not all divisive methods possess this monotonicity. 

• Heights of nodes in a dendogram are proportional to the threshold 

value that produced them. 
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An Example Hierarchical Clustering 
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Hierarchical Clustering 

• Use distance matrix as clustering criteria.   

• This method does not require the number of clusters k as an input, but 

needs a termination condition  
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Agglomerative Nesting (Bottom Up) 

• Produces tree of clusters (nodes) 

• Initially: each object is a cluster (leaf) 

• Recursively merges nodes that have the least dissimilarity 

• Criteria: min distance, max distance, avg distance, center distance 

• Eventually all nodes belong to the same cluster (root) 
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A Dendrogram Shows  

How the Clusters are Merged Hierarchically 

 
• Decompose data objects into several levels of nested partitioning (tree 

of clusters), called a dendrogram.  

• A clustering of the data objects is obtained by cutting the dendrogram 

at the desired level. Then each connected component forms a cluster. 
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Divisive Analysis (Top Down) 

• Inverse order of Agglomerative  

• Start with root cluster containing all objects 

• Recursively divide into subclusters 

• Eventually each cluster contains a single object 
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Linkage Functions 

• We know how to measure the distance between two objects, but defining the distance 

between an object and a cluster, or defining the distance between two clusters is non 

obvious.   

– Single linkage (nearest neighbor): In this method the distance between two 

clusters is determined by the distance of the two closest objects (nearest neighbors) 

in the different clusters. 

 

–  Complete linkage (furthest neighbor): In this method, the distances between 

clusters are determined by the greatest distance between any two objects in the 

different clusters (i.e., by the "furthest neighbors").  

 

–  Group average linkage: In this method, the distance between two clusters is 

calculated as the average distance between all pairs of objects in the two different 

clusters. 
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Linkage Functions 

• SL considers only a single pair of data points; if this pair is close 

enough then action is taken. So, SL can form a “chain” by combining 

relatively far apart data points. 

• SL often violates the compactness property of a cluster. SL can produce 

clusters with large diameters (DG). 

 

 

• CL is just the opposite of SL; it produces many clusters with small 

diameters. 

• CL can violate “closeness” property- two close data points may be 

assigned to different clusters. 

• GA is a compromise between SL and CL 
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Linkage Functions 
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Density-Based Clustering Methods 

• Clustering based on density (local cluster criterion), such as density-

connected points 

• Major features: 

– Discover clusters of arbitrary shape 

– Handle noise 

– One scan 

– Need density parameters as termination condition 
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Model based clustering 

• Assume data generated from K probability distributions 

• Typically Gaussian distribution Soft or probabilistic version of K-means 

clustering 

• Need to find distribution parameters. 

• EM Algorithm 
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