
CMP711 Natural Language Processing (Aselsan Akademi)
HW01 – Basic Text Processing & Language Models

Due Date: November 3, 2025

You are required to write a Python program that implements a variation of the Ngram (Bigram)

Language Model. Your program should contain a method named trainFromFile(fn) which

should learn the Ngram language model (both bigram and unigram) from the training data

provided in a given input text file whose file name is fn. Your python program may represent

the learned Ngram language model an instance of class. When the top-level method

trainFromFile(fn) is invoked, your Python program should learn a Ngram language model

from the given training file fn by performing the following tasks:

• Your program should read the given training file and create a list of tokenized (and

lowercased) sentences.

o The training file is encoded in UTF-8 and may contain both Turkish and English text.

o A token in the training file is a word containing only Turkish-English letters (lowercase

or uppercase letters) or an end-of-sentence token.

o You should assume that each sentence ends with one of the following end-of-sentence

tokens: ".", "?", or "!". Each tokenized sentence should be padded with a special sentence-

start token "<s>" and a special sentence-end token "</s>". This means that the first token

of each tokenized sentence should be "<s>", and the last token should be "</s>". All

words in a tokenized sentence should be lowercased. Before converting other characters

to lowercase, explicitly replace the Turkish uppercase letters "I" and "İ" with "ı" and "i",

respectively. Each token in a tokenized sentence can be a lower-cased word (containing

only lowercased Turkish and English letters), an end-of-sentence token, <s> or </s>.

• While a list of tokenized sentences is created, the following information about the training

file and the created Ngram language model should be also collected.

o The tokenized sentence list is a list of sentences and each sentence is a list of tokens. Each

token in a tokenized sentence can be a lower-cased word (containing only lowercased

Turkish and English letters), an end-of-sentence token, <s> or </s>. The first token of a

tokenized sentence should be the special sentence-start token "<s>", and the last token

should be the special sentence-end token "</s>".

o The total number of tokens in the train file.

o The size of the vocabulary, i.e., the number of unique tokens in the training data.

o The total number of sentences in the train file.

o The vocabulary list (unigrams) is the list of unique tokens in the list of tokenized

sentences (including special tokens <s> and </s>). Each item in this vocabulary list (the

list of unigrams) must be a tuple (word,frequency) where frequency is the count of

occurrences of the word (unigram).

o The list of bigrams is the list bigrams appearing in the sentences of the tokenized sentence

list. Each item in the list must be a tuple ((word1, word2),frequency) where frequency

is the count of occurrences of the bigram (word1,word2).

• Then, your program should print the following information into an output text file named as

fn_Result.txt where fn is the name of the training file.

o The number of sentences in the tokenized sentence list.

o The total number of tokens in the tokenized sentence list (Corpus Size).

o The number of unique words in the tokenized sentence list (Vocabulary Size).

o The tokenized sentence list (all tokenized sentences).

o Unigrams: Your program should print all sorted unigrams (sorted wrt their frequencies in

descending order) together with their frequencies.

o Bigrams: Your program should print all sorted bigrams (sorted wrt their frequencies in

descending order) together with their frequencies. You should only print bigrams with

non-zero frequencies.

• After the printing the above values into the output file (fn_Result.txt where fn is the name

of the training file), your program should print the smoothed bigram probability values

together with the original (unsmoothed) bigram probability values.

o The unsmoothed probability value of a bigram (w1,w2), (i.e., P(w2|w1)) can be found

using the following formula.

 P((w1,w2)) = freq((w1,w2)) / freq(w1)

when the both frequencies are non-zero values. Otherwise, it is equal to zero when at least

one of them is zero. Remember that the unsmoothed probability value of a bigram is equal

to 0 when at least one of the words is an unknown word.

o The smoothed probability value of the bigram (where bigram is a bigram (w1,w2))

should be computed using add-1 smoothing method and unknown words also should be

handled by add-1 smoothing method. Remember, the smoothed probability of a bigram

can be computed as follows with this approach:

 P’((w1,w2)) = (freq((w1,w2))+1)/(freq(w1)+(sizeOfVoc+1))

Since sizeOfVocab does not include unknown tokens, we add 1 to the size of the

vocabulary in the denominator to account for unknown tokens. The smoothed bigram

probability of a bigram where w2 is an unknown word and w1 is not an unknown word

must be equal to 1/(freq(w1)+(sizeOfVocab+1)), while the smoothed bigram

probability of a bigram where w1 is an unknown word must be equal to
1/(sizeOfVocab+1).

o Your program should print unsmoothed and smoothed probability values of sorted

bigrams (sorted wrt their frequencies in descending order) together with their

frequencies. Remember that you should also include the probability values for the

unknown token <unk>. For each bigram your program should print a line in the following

form.

Bigram Frequency UnsmoothedProbability SmoothedProbability

• In the last step, your program should compute the probabilities of at least two sentences

using the smoothed bigram probability values. One of the sentences should contain at least

one unknown word. If a sentence contains a word which is not in the training text, your

program should use the probability values of the unknown token <unk> for that word. Then

it should print those sentences into fn_Result.txt where fn is the name of the training file

together with their computed probabilities.

You should test your program with at least given two sample files (hw01_tiny.txt,

hw01_tinytr.txt). You will submit the produced result files for each file together with

your program file (hw01_yourname.py – Make sure that this file contains only your python

program). You should create a result file for each test file (such as

hw01_tinytr_Result.txt and hw01_tiny_Result.txt) to submit together with

your program file. The content of each result file should be as follows:

Number of Sentences in File: ….

Number of Total Tokens (Corpus Size): ….

Number of Unique Words (Vocabulary Size): ….

Tokenized Sentences:

 Sentence1

 Sentence2

…

Unigrams Sorted wrt Frequencies (from Higher to Lower Frequencies):

Unigram1 ItsFrequency

Unigram2 ItsFrequency

…

Bigrams Sorted wrt Frequencies (from Higher to Lower Frequencies):

Bigram1 ItsFrequency

Bigram2 ItsFrequency

…

Bigram Probability Values Sorted wrt Frequencies (from Higher to Lower Frequencies):

Bigram1 ItsFrequency UnsmoothedProbability SmoothedProbability

Bigram2 ItsFrequency UnsmoothedProbability SmoothedProbability

…

SampleSentence1 ItsComputedProbability

SampleSentence2 ItsComputedProbability

…

Example:

• The provided training file hw01_tiny.txt contains the following lines:

a b c d. a b b c d. a c d. a b c f. e c f. e c d. e b b c d.

• The following result file (hw01_tiny_Result.txt) with this training file

Number of Sentences in File: 7

Number of Total Tokens (Corpus Size): 48

Number of Unique Words (Vocabulary Size): 9

Tokenized Sentences:

 ['<s>', 'a', 'b', 'c', 'd', '.', '</s>'],

 ['<s>', 'a', 'b', 'b', 'c', 'd', '.', '</s>'],

 ['<s>', 'a', 'c', 'd', '.', '</s>'],

 ['<s>', 'a', 'b', 'c', 'f', '.', '</s>'],

 ['<s>', 'e', 'c', 'f', '.', '</s>'],

 ['<s>', 'e', 'c', 'd', '.', '</s>'],

 ['<s>', 'e', 'b', 'b', 'c', 'd', '.', '</s>']

Unigrams Sorted wrt Frequencies (from Higher to Lower Frequencies):

('.', 7)

('</s>', 7)

('<s>', 7)

('c', 7)

('b', 6)

('d', 5)

 ('a', 4)

('e', 3)

('f', 2)

Bigrams Sorted wrt Frequencies (from Higher to Lower Frequencies):

 (('.', '</s>'), 7)

(('c', 'd'), 5)

(('d', '.'), 5)

 (('<s>', 'a'), 4)

(('b', 'c'), 4)

(('<s>', 'e'), 3)

 (('a', 'b'), 3)

(('b', 'b'), 2)

(('c', 'f'), 2)

(('e', 'c'), 2)

 (('f', '.'), 2)

(('a', 'c'), 1)

(('e', 'b'), 1)

Bigram Probability Values Sorted wrt Frequencies (from Higher to Lower

Frequencies):

 (('.', '</s>'), 7) 1.0 0.470588

(('c', 'd'), 5) 0.714285 0.352941

…

(('e', 'b'), 1) 0.333333 0.153846

…

(('.', '<unk>'), 0) 0 0.058823

…

(('<unk>', '<unk>'), 0) 0 0.1

(['<s>','a','f','d','.','</s>']) ItsComputedProbability

(['<s>','a','g','d','.','</s>']) ItsComputedProbability

Hand in:

• You will submit your homework by sending an email to me (ilyas@cs.hacettepe.edu.tr).

Make sure that the subject of email is “CMP711 HW01”. You have to send a single zip

file (yourname.zip, yourname.gzip or yourname.rar) holding three files

(hw01_yourname.py, hw01_tiny_Result.txt, hw01_tinytr_Result.txt)

with your email.

