Basic Text Processing

- Regular Expressions
- Text Normalization

Basic Text Processing: Regular Expressions

Regular Expressions

- **Regular expressions** are the most important tool to describe text patterns and we can use them to specify the strings to be extracted from the text.
 - Regular expressions are widely used in many text preprocessing tasks.
 - A set of text preprocessing tasks is called as text normalization.
 - Normalizing text means converting it to a more convenient, standard form.

Tokenization: Separating out or **tokenizing** words from text.

- English words are often separated from each other by whitespace (not enough).
 - For processing tweets we'll need to tokenize emoticons like:) or hashtags like #nlproc.

Lemmatization: Task of determining that words have the same root.

- Words sings, singing, sang, sung have the same root word (lemma) sing.
- Words *kitabım*, *kitaplar*, ... have the same root word *kitap*.
- Stemming: a simpler version of lemmatization in which we mainly just strip suffixes from the end of the word.

Sentence Segmentation: breaking up a text into individual sentences.

Regular Expressions

- Each **Regular Expression** (**RE**) represents a set of strings having certain pattern.
 - In NLP, we can use REs to find strings having certain patterns in a given text.
- Regular Expressions are an algebraic way to describe formal languages.
 - Regular Expressions describe exactly the regular languages.
- A regular expression is built up of simpler regular expressions (using defining rules).
- Simple Definition for Regular Expressions over alphabet Σ
 - ε is a regular expression
 - If $\mathbf{a} \in \Sigma$, \mathbf{a} is a regular expression
 - or: If E_1 and E_2 are regular expressions, then $E_1 \mid E_2$ is a regular expression
 - **concatenation**: If E_1 and E_2 are regular expressions, then $\mathbf{E_1}\mathbf{E_2}$ is a regular expression
 - Kleene Closure: If E is a regular expression, then E^* is a regular expression
 - **Positive Closure:** If E is a regular expression, then E^+ is a regular expression

Searching Strings with Regular Expressions

(using Python style REs)

- How can we search for any of following strings?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks
- The **simplest kind of regular expression** is a sequence of simple characters.
 - The regular expression **b** will match with the string "b".
 - The regular expression **bc** will match with the string "bc".
 - The regular expression woodchuck will match with the string "woodchuck".
 - The regular expression **woodchucks** will match with the string "woodchucks".
 - The regular expression **woodchuck** will NOT match with the string "Woodchuck".

Regular Expressions: Disjunctions disjunction of characters []

- **Disjunction of Characters:** The **string of characters inside the braces** [] specifies a **disjunction** of characters to match.
- The regular expression [wW] matches patterns containing either w or W.

Regular Expression	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

• Ranges in []: If there is a well-defined sequence associated with a set of characters, dash (-) in brackets can specify any one character in a range.

Regular Expression	Matches
[A-Z]	An upper case letter
[a-z]	A lower case letter
[0-9]	A single digit

Regular Expressions: Disjunctions Negations in []

• Negations in []:

- The square braces can also be used to specify what a single character cannot be, by use of the caret ^.
- If the caret ^ is the first symbol after the open square brace [, the resulting pattern is negated.

Regular Expression	Matches
[^A-Z]	Not an upper case letter
[^a-z]	Not a lower case letter
[^Ss]	Neither 'S' nor 's'
[^e^]	Neither e nor ^
a^b	The pattern a^b

Regular Expressions: Disjunctions or (disjunction) operator | (pipe symbol)

• If E_1 and E_2 are regular expressions, then $E_1 \mid E_2$ is a regular expression

Regular Expression	Matches
woodchuck groundhog	woodchuck or groundhog
a b c	a, b or c
[gG]roundhog [Ww]oodchuck	woodchuck, Woodchuck, groundhog or Groundhog
fl(y ies)	fly or flies

Regular Expressions: Closure Operators Kleene * and Kleene +

- **Kleene** * (**closure**) **operator:** The Kleene star means "zero or more occurrences of the immediately previous regular expression.
- **Kleene** + (**positive closure**) **operator:** The Kleene plus means "one or more occurrences of the immediately preceding regular expression.

Regular Expression	Matches
ba*	b, ba, baa, baaa,
ba+	ba, baa, baaa,
(ba) *	ε, ba, baba, bababa,
(ba) +	ba, baba, bababa,
(b a)+	b, a, bb, ba, aa, ab,

Regular Expressions: {} . ?

- {m,n} causes the resulting RE to match from m to n repetitions of the preceding RE.
- {m} specifies that exactly m copies of the previous RE should be matched
- The question mark ? marks **optionality of the previous expression**.

Regular Expression	Matches
woodchucks?	woodchuck or woodchucks
colou?r	color or colour
(a b)?c	ac, bc, c
(ba) {2,3}	baba, bababa

• A wildcard expression **dot** . matches any single character (except a carriage return).

Regular Expression	Matches	
beg.n	begin, begun, begxn,	
a.*b	any string starts with a and ends with b	

Regular Expressions: Anchors ^ \$

- Anchors are special characters that anchor regular expressions to particular places in a string.
- The **caret** ^ matches the start of a string.
 - The regular expression **^The** matches the word **The** only at the start of a string.
- The **dollar sign** \$ matches the end of a line.

Regular Expression	Matches
.\$	any character at the end of a string
\.\$	dot character at the end of a string
^[A-Z]	any uppercase character at the beginning of a string
^The dog\.\$	a string that contains only the phrase The dog.

Regular Expressions: Precedence of Operators

• The order precedence of RE operator precedence, from highest precedence to lowest precedence is as follows

```
Parenthesis ()
Counters * + ? {}
Sequences and anchors ^ $
Disjunction |
```

- The regular expression the* matches theeeee but not thethe
- The regular expression (the)* matches thethe but not theeeee

Regular Expressions: backslashed characters

• Aliases for common sets of characters

RE	Expansion	Match
\d	[0-9]	any digit
\D	[^0-9]	any non-digit
\w	[a-zA-Z0-9_]	any alphanumeric/underscore
\W	[^\w]	a non-alphanumeric
\s	[whitespace (space, tab)
\S	[^\s]	Non-whitespace

• Special characters need to be backslashed.

RE	Match
\ *	an asterisk "*"
١.	a period "."
\?	a question mark
\n	a newline
\t	a tab

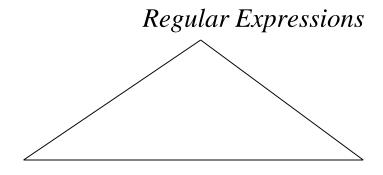
Regular Expressions: Example

• We want to write a RE to find cases of the English article **the**

Regular Expression	Matches	
the	this pattern will miss the word The	
[tT]he	this pattern will still incorrectly return texts with the embedded in other words (e.g., other or theology).	
[^a-zA-Z][tT]he[^a-zA-Z]	But there is still one more problem with thi pattern: it won't find the word the when it begins a line.	
(^ [^a-zA-Z])[tT]he([^a-zA-Z] \$)	We can avoid this problem by specifying that before the we require either the beginning-of-line or a non-alphabetic character, and the same at the end of the line:	

Regular Expressions & FSAs

- Any regular expression can be realized as a **finite state automaton (FSA)**
- There are two kinds of FSAs
 - Deterministic Finite state Automatons (DFAs)
 - Non-deterministic Finite state Automatons (NFAs)
- Any NFA can be converted into a corresponding DFA.
- A FSA (and a regular expression) represents a **regular language**.



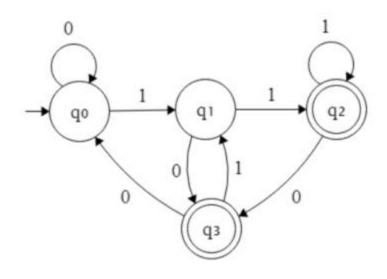
Finite Automata

Regular Languages

Regular Expressions: A DFA and A NFA

The strings whose second characters from the right end are 1.

Regular Expression: (0|1)*1(0|1)



 $\begin{array}{c|c}
\hline
 & 0,1 \\
\hline
 & q_0 \\
\hline
 & q_1 \\
\hline
 & q_2 \\
\hline
\end{array}$

A DFA: A NFA:

Formal Definition of Finite-State Automaton

- FSA is $Q \times \Sigma \times q_0 \times F \times \delta$
- Q: a finite set of N states $q_0, q_1, \dots q_N$
- Σ : a finite input alphabet of symbols
- q_0 : the start state
- F: the set of final states -- F is a subset of Q for NFAs
- $\delta(q,i)$: transition function
 - DFA: There is exactly one arc leaving a state q with a symbol a.
 There is no arc with the empty string.
 - NFA: There can be more than one arc leaving a state q with a symbol a.
 There can be arcs with empty string.

Basic Text Processing: Text Normalization

Text Normalization

- Almost every natural language processing task needs to do text normalization.
- Three tasks are commonly applied as part of any normalization process:
 - 1. Segmenting/tokenizing words from the text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in the text.

Words

- Before processing words, we need to decide what counts as a **word**.
- How many words are in the following sentence?

He stepped out into the hall, was delighted to encounter a water brother.

If we do NOT count punctuations as words

→ 13 words

If we count punctuations as words

→ 15 words

- Punctuations can be useful to identify boundaries of things and some aspects of meaning.
- Are capitalized tokens and uncapitalized tokens the same word?
 - The and the big possibly
 - US and us may be not (US: united states of America)

Words

- Are the inflected forms like cat and cats the same word?
- They have the same **lemma** cat, but they have different **wordforms**.
- A **lemma** is a set of lexical forms having the same stem, the same major part-of-speech, and the same word sense.
- The **wordform** is the full inflected or derived form of the word.
 - For morphologically complex languages, we often need to deal with lemmatization.
 - For many tasks in English, however, wordforms are sufficient.

Words: How many words are there in English?

- A **type** is a distinct Word in a corpus.
- **V: Vocabulary** is the set of types.
 - |V| is the size of the vocabulary.
- Each word in a corpus is a token.
 - N is the number of tokens in the corpus.

Corpus	# of Tokens = N	# of Types = V
Shakespeare	884,000	31 thousand
Switchboard phone conversations	2.4 million	20 thousand
Brown corpus	1 million	38 thousand
Google N-grams	1 trillion	13 million

Word Tokenization and Normalization

- **Tokenization** is the task of segmenting the text into words.
- **Normalization** is the task of putting words in a standard format.
- We can use **regular expressions** to segment the text into words for **tokenization** task.
 - Since tokenization needs to be run before any other language processing, it is important for it to be very fast.
 - The method for tokenization/normalization is to use deterministic algorithms
 based on regular expressions compiled into very efficient finite state automata.

Tokenization

- Normally we want to break off **punctuations** as separate tokens, but sometimes we want to keep them in words internally.
- Punctuations as separate tokens: He ate apple, orange and banana.
- Punctuations kept internally:
 - m.p.h. Ph.D. AT&T Prices: \$43.55 Dates: 27/09/2019
 - URLs: http://www.hacettepe.edu.tr
 Twitter hashtags: #nlproc
- A tokenizer can also expand **clitic** contractions that are marked by apostrophes.
 - what're to two tokens what are
 - we're to two tokens we are
- Tokenization algorithms may also tokenize multiword expressions like New York or rock 'n' roll as a single token.

Tokenization in NLTK

```
sentence = 'That U.S.A. poster-print costs $12.40...'
nltk.word tokenize(sentence)
→ ['That', 'U.S.A.', 'poster-print', 'costs', '$', '12.40', '...']
pattern = r'''(?x)  # set flag to allow verbose regexps
 (?:[A-Z]\setminus.)+ # abbreviations, e.g. U.S.A.
 | \$?\d+(?:\.\d+)?%?  # currency, percentages, e.g. $12.40, 82%
 | \.\.\.
               # ellipsis
| [][.,;"'?(): `-] '''  # these are separate tokens; includes ], [
nltk.regexp tokenize(sentence, pattern)
→ ['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
patternWS = r' \S+'
nltk.regexp tokenize(sentence,patternWS)
→ ['That', 'U.S.A.', 'poster-print', 'costs', '$12.40...']
```

Tokenization: Language Issues

- French:
 - L'ensemble

to two words

un ensemble

- German noun compounds are not segmented:
 - Lebensversicherungsgesellschaftsangestellter
 - German tokenizer needs compound splitter.
- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - **莎拉波娃** 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida

Word Tokenization in Chinese

- Word tokenization is also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm: Maximum Matching

Given a wordlist of Chinese, and a string.

- 1. Start a pointer at the beginning of the string
- 2. Find the longest word in dictionary that matches the string starting at pointer
- 3. Move the pointer over the word in string
- 4. Go to 2

Max-match segmentation

Thecatinthehat the cat in the hat

• Thetabledownthere the table down there theta bled own there

Doesn't generally work in English!

- But works well in Chinese
 - **莎拉波娃现在居住在美国东南部的佛罗里达**。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Subword Tokenization

- Another option for text tokenization → Subword Tokenization
- Instead of white-space word segmentation, use single-character segmentation
- Use the data (**training corpus**) to tell us how to tokenize.
- Subword tokenization (because tokens can be parts of words as well as whole words)
- To deal with this unknown word problem, modern tokenizers (used by Large Language Models) automatically induce sets of tokens that include tokens smaller than words, called **subwords**.
 - Subwords can be arbitrary substrings, or they can be meaning-bearing units like the morphemes -est or -er.
 - In modern tokenization schemes, most tokens are words, but some tokens are frequently occurring morphemes or other subwords like -er.
 - Every unseen word like lower can thus be represented by some sequence of known subword units, such as low and er, or even as a sequence of individual letters if necessary.

Subword Tokenization

- Three common algorithms for subword tokenization:
 - **Byte-Pair Encoding (BPE)** (Sennrich et al., 2016)
 - Unigram language modeling tokenization (Kudo, 2018)
 - WordPiece (Schuster and Nakajima, 2012)

- All algorithms have 2 parts:
 - A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Byte-Pair Encoding (BPE) - Token Learner

• Let vocabulary be the set of all individual characters

$$= \{A, B, C, D, ..., a, b, c, d....\}$$

- Repeat:
 - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
 - Add a new merged symbol 'AB' to the vocabulary
 - Replace every adjacent 'A' 'B' in the corpus with 'AB'.
- Until k merges have been done.

Byte-Pair Encoding (BPE) - Token Learner

function BYTE-PAIR ENCODING(strings C, number of merges k) **returns** vocab V

```
V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

- Most subword algorithms are run inside space-separated tokens.
- So we commonly first add a special end-of-word symbol '__' before space which comes after each word in training corpus
- Next, separate into letters (character).
- Tiny Corpus:

low low low low lowest lowest newer newer newer newer newer wider wider wider new new

- Add end-of-word tokens
- → Initial Vocabulary: __, d, e, i, l, n, o, r, s, t, w

• Merge **e r** to **er**

Merge er _ to er_

```
vocabulary
```

, d, e, i, l, n, o, r, s, t, w, er, er

• Merge **n e** to **ne**

ne w _

vocabulary

__, d, e, i, l, n, o, r, s, t, w, er, er__, ne

• Next Merges:

```
      Merge
      Current Vocabulary

      (ne, w)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new

      (l, o)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo

      (lo, w)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__

      (low, __)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__, low__
```

Byte-Pair Encoding (BPE) - Token Segmenter

- On the test data, run each merge learned from the training data:
 - Greedily
 - In the order we learned them

- So: merge every er to er, then merge er to er, etc.
- Result:
 - Test set "n e w e r _" would be tokenized as a full word "newer_"
 - Test set "l o w e r _" would be two tokens: "low er_"

Properties of Byte-Pair Encoding Tokens

- Usually include frequent words
- And frequent subwords
 - Which are often morphemes like -est or -er
- A **morpheme** is the smallest meaning-bearing unit of a language
 - unlikeliest has 3 morphemes un-, likely, and -est

Text Normalization

- **Tokens** can also be **normalized**, in which a single normalized form is chosen for words with multiple forms like USA and US.
 - This standardization may be valuable, despite the spelling information that is lost in the normalization process.
 - For information retrieval, we want a query for US to match a document that has USA.

- Case folding is another kind of normalization: Reduce all letters to lower case.
 - For most applications (information retrieval), case folding is helpful.
 - For some NLP applications (MT, information extraction) cases can be helpful.
 - US versus us are important

Lemmatization

• **Lemmatization** is the task of determining that two words have the **same root**, despite their surface differences.

- am, are, is $\rightarrow be$
- car, cars, car's, cars' \rightarrow car
- Lemmatization: have to find correct dictionary headword form of the Word.
- The most sophisticated methods for lemmatization involve complete **morphological** parsing of the word.
- **Morphology** is the study of the way words are built up from smaller meaning-bearing units called **morphemes**.
- Two broad classes of morphemes can be distinguished:
 - Stems: the central morpheme of the word, supplying the main meaning
 - Affixes: adding "additional" meanings of various kinds.

Lemmatization

- Lemmatization algorithms can be complex.
- For this reason we sometimes make use of a simpler but cruder method, which mainly consists of chopping off word-final affixes.
- This naive version of morphological analysis is called **stemming**.
- One of the most widely used stemming algorithms is **Porter Stemmer.**
 - The algorithm is based on series of rewrite rules run in series, in which the output of each pass is fed as input to the next pass.
 - Some rules are:
 - ATIONAL → ATE
 - ING $\rightarrow \epsilon$ if stem contains vowel
 - SSES \rightarrow SS

(e.g., relational \rightarrow relate)

(e.g., motoring \rightarrow motor)

(e.g., grasses \rightarrow grass)

Sentence Segmentation

- Sentence segmentation is another important step in text processing.
- The most useful cues for segmenting a text into sentences are **punctuation**, like **periods**, **question marks**, **exclamation points**.
- Question marks and exclamation points are relatively unambiguous markers of sentence boundaries.
- Periods, on the other hand, are more ambiguous.
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Summary

- The **regular expression** language is a powerful tool for pattern-matching.
- Word tokenization and normalization are generally done by cascades of simple *regular expression substitutions* or finite automata.