
Minimum Edit Distance

Natural Language Processing 1

Definition of Minimum Edit Distance

• Many NLP tasks are concerned with measuring how similar two strings are.

• Spell correction:

– The user typed “graffe”

– Which is closest? : graf grail giraffe

• the word giraffe, which differs by only one letter from graffe, seems intuitively to be

more similar than, say grail or graf,

• The minimum edit distance between two strings is defined as the minimum number

of editing operations (insertion, deletion, substitution) needed to transform one

string into another.

Natural Language Processing 2

• The minimum edit distance between intention and execution can be

visualized using their alignment.

• Given two sequences, an alignment is a correspondence between substrings of the two

sequences.

Minimum Edit Distance: Alignment

Natural Language Processing 3

• If each operation has cost of 1

– Distance between them is 5

• If substitutions cost 2 (Levenshtein Distance)

– Distance between them is 8

Minimum Edit Distance

Natural Language Processing 4

• Evaluating Machine Translation and speech recognition

R Spokesman confirms senior government adviser was shot

H Spokesman said the senior adviser was shot dead

S I D I

• Named Entity Extraction and Entity Coreference

– IBM Inc. announced today

– IBM profits

– Stanford President John Hennessy announced yesterday

– for Stanford University President John Hennessy

Other uses of Edit Distance in NLP

Natural Language Processing 5

• How do we find the minimum edit distance?

– We can think of this as a search task, in which we are searching for the shortest path—a

sequence of edits—from one string to another.

• The space of all possible edits is enormous, so we can’t search naively.

– Most of distinct edit paths ends up in the same state, so rather than recomputing all those

paths, we could just remember the shortest path to a state each time we saw it.

– We can do this by using dynamic programming.

– Dynamic programming is the name for a class of algorithms that apply a table-driven

method to solve problems by combining solutions to sub-problems.

The Minimum Edit Distance Algorithm

Natural Language Processing 6

• For two strings

– the source string X of length n

– the target string Y of length m

• We define D(i,j) as the edit distance between X[1..i] and Y[1..j]

• i.e., the first i characters of X and the first j characters of Y

• The edit distance between X and Y is thus D(n,m)

Minimum Edit Distance between Two Strings

Natural Language Processing 7

• We will compute D(n,m) bottom up, combining solutions to subproblems.

• Compute base cases first:

– D(i,0) = i

• a source substring of length i and an empty target string requires i deletes.

– D(0,j) = j

• a target substring of length j and an empty source string requires j inserts.

• Having computed D(i,j) for small i, j we then compute larger D(i,j) based on

previously computed smaller values.

• The value of D(i, j) is computed by taking the minimum of the three possible paths

through the matrix which arrive there:

Dynamic Programming for

Computing Minimum Edit Distance

Natural Language Processing 8

• If we assume the version of Levenshtein distance in which the insertions and

deletions each have a cost of 1, and substitutions have a cost of 2 (except substitution

of identical letters have zero cost), the computation for D(i,j) becomes:

Dynamic Programming for

Computing Minimum Edit Distance

Natural Language Processing 9

Minimum Edit Distance Algorithm

Natural Language Processing 10

Computation of Minimum Edit Distance between

intention and execution

Natural Language Processing 11

Computation of Minimum Edit Distance between

intention and execution

Natural Language Processing 12

deletion

substitution

insertion

Computation of Minimum Edit Distance between

intention and execution

Natural Language Processing 13

• Edit distance isn’t sufficient

– We often need to align each character of the two strings to each other

• We do this by keeping a “backtrace”

• Every time we enter a cell, remember where we came from

• When we reach the end,

– Trace back the path from the upper right corner to read off the alignment

Computing Alignments

Natural Language Processing 14

MinEdit with Backtrace

Natural Language Processing 15

deletion

insertion

substitution

MinEdit with Backtrace

Natural Language Processing 16

• Base conditions: Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

• Recurrence Relation:

For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

LEFT

ptr(i,j)= DOWN

DIAG

Adding Backtrace to

Minimum Edit Distance

Natural Language Processing 17

deletion

deletion

insertion

insertion

substitution

substitution

• Time: O(nm)

• Space: O(nm)

• Backtrace: O(n+m)

Performance of

Minimum Edit Distance Algorithm

Natural Language Processing 18

