Minimum Edit Distance

Definition of Minimum Edit Distance

- Many NLP tasks are concerned with measuring *how similar two strings are*.
- Spell correction:
 - The user typed "graffe"
 - Which is closest? : graf grail giraffe
 - the word **giraffe**, which differs by only one letter from **graffe**, seems intuitively to be more similar than, say **grail** or **graf**,
- The **minimum edit distance** between two strings is defined as the *minimum number of editing operations* (insertion, deletion, substitution) needed to transform one string into another.

Minimum Edit Distance: Alignment

- The **minimum edit distance** between **intention** and **execution** can be visualized using their alignment.
- Given two sequences, an **alignment** is a correspondence between substrings of the two sequences.

INTE*NTION | | | | | | | | | *EXECUTION dss is

Minimum Edit Distance

INTE*NTION | | | | | | | | | | * EXECUTION d s s i s

- If each operation has cost of 1
 - Distance between them is 5
- If substitutions cost 2 (Levenshtein Distance)
 - Distance between them is 8

Other uses of Edit Distance in NLP

• Evaluating Machine Translation and speech recognition

Т

R Spokesman confirms senior government adviser was shotH Spokesman said the senior adviser was shot dead

D

- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today

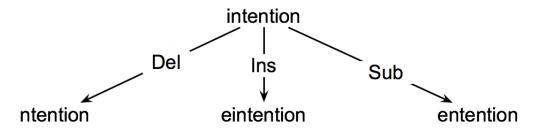
S

- **IBM** profits
- Stanford President John Hennessy announced yesterday
- for Stanford University President John Hennessy

Ι

The Minimum Edit Distance Algorithm

- How do we find the minimum edit distance?
 - We can think of this as a **search task**, in which we are searching for **the shortest path**—a sequence of edits—from one string to another.



- The space of all possible edits is enormous, so we can't search naively.
 - Most of distinct edit paths ends up in the same state, so rather than recomputing all those paths, we could just remember *the shortest path to a state* each time we saw it.
 - We can do this by using **dynamic programming**.
 - **Dynamic programming** is the name for a class of algorithms that apply a table-driven method to solve problems by combining solutions to sub-problems.

Minimum Edit Distance between Two Strings

- For two strings
 - the source string X of length **n**
 - the target string Y of length m
- We define **D**(**i**,**j**) as the **edit distance** between X[1..i] and Y[1..j]
 - i.e., the first **i** characters of X and the first **j** characters of Y
- The edit distance between X and Y is thus D(n,m)

Dynamic Programming for Computing Minimum Edit Distance

- We will compute D(n,m) **bottom up**, combining solutions to subproblems.
- Compute **base cases** first:
 - D(i,0) = i
 - a source substring of length i and an empty target string requires i deletes.
 - D(0,j) = j
 - a target substring of length j and an empty source string requires j inserts.
- Having computed D(i,j) for small i, j we then compute larger D(i,j) based on previously computed smaller values.
- The value of D(i, j) is computed by taking the minimum of the three possible paths through the matrix which arrive there:

$$D[i, j] = \min \begin{cases} D[i-1, j] + del \cdot cost(source[i]) \\ D[i, j-1] + ins \cdot cost(target[j]) \\ D[i-1, j-1] + sub \cdot cost(source[i], target[j]) \end{cases}$$

Dynamic Programming for Computing Minimum Edit Distance

• If we assume the version of **Levenshtein distance** in which the insertions and deletions each have a cost of 1, and substitutions have a cost of 2 (except substitution of identical letters have zero cost), the computation for D(i,j) becomes:

$$D[i, j] = \min \begin{cases} D[i-1, j] + 1\\ D[i, j-1] + 1\\ D[i-1, j-1] + \begin{cases} 2; & \text{if } source[i] \neq target[j]\\ 0; & \text{if } source[i] = target[j] \end{cases}$$

Minimum Edit Distance Algorithm

function MIN-EDIT-DISTANCE(source, target) returns min-distance

```
n \leftarrow \text{LENGTH}(source)
m \leftarrow \text{LENGTH}(target)
Create a distance matrix distance[n+1,m+1]
```

```
# Initialization: the zeroth row and column is the distance from the empty string

D[0,0] = 0

for each row i from 1 to n do

D[i,0] \leftarrow D[i-1,0] + del \cdot cost(source[i])

for each column j from 1 to m do

D[0,j] \leftarrow D[0,j-1] + ins \cdot cost(target[j])
```

```
# Recurrence relation:

for each row i from 1 to n do

for each column j from 1 to m do

D[i, j] \leftarrow MIN(D[i-1, j] + del \cdot cost(source[i]),

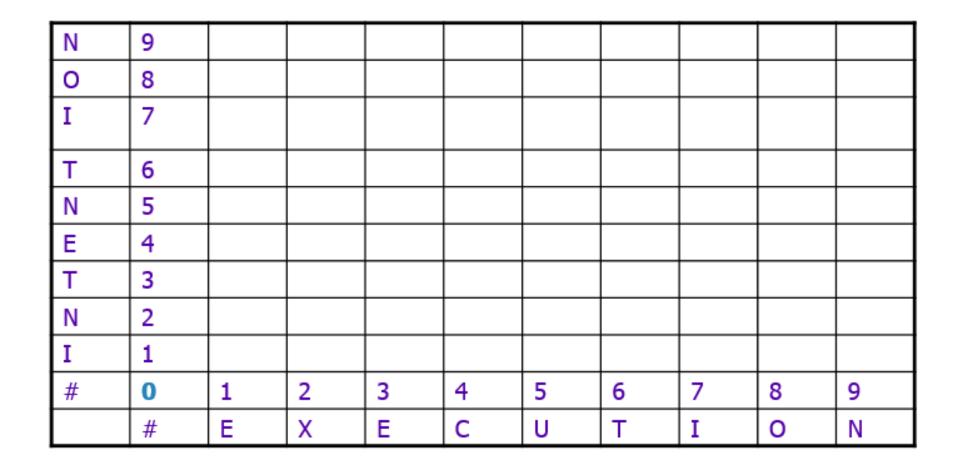
D[i-1, j-1] + sub \cdot cost(source[i], target[j]),

D[i, j-1] + ins \cdot cost(target[j]))

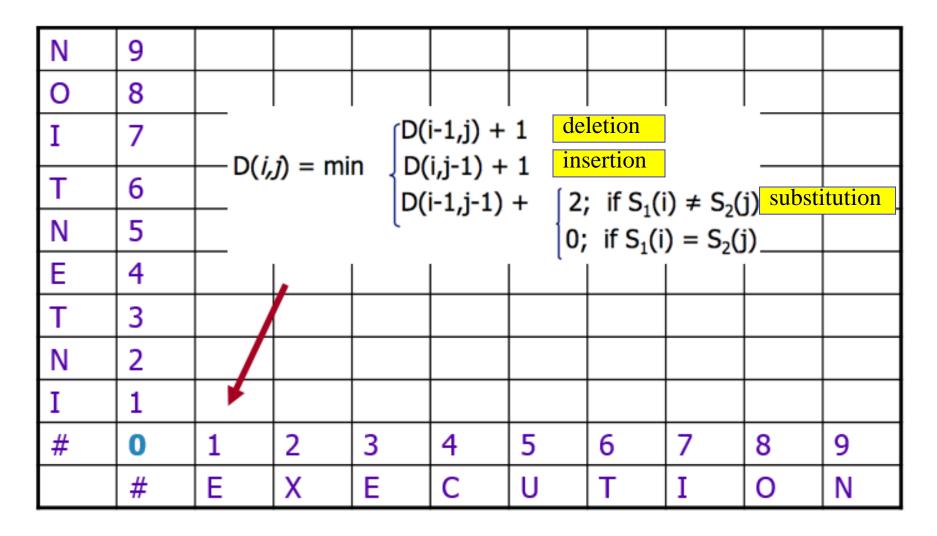
# Termination

return D[n,m]
```

Computation of Minimum Edit Distance between intention and execution



Computation of Minimum Edit Distance between intention and execution



Computation of Minimum Edit Distance between intention and execution

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Х	Е	С	U	Т	Ι	0	Ν

Computing Alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

MinEdit with Backtrace

Ν	9									
0	8									
I	7				، D(i-1,j)		deletion		I	
Т	6		D(<i>i,j</i>) =	= min	D(i,j-1) + 1		insertion			
Ν	5				D(i-1,j-	,	2; if S_1			titution
E	4				I	l	0; if S ₁ ($J_{1} = S_{2}($)) 	
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

MinEdit with Backtrace

n	9	↓ 8	$\swarrow \downarrow 9$	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	_∠ 8	
0	8	↓ 7	$\swarrow {\leftarrow} 8$	∠←↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$\leftarrow 9$	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	.∠←↓9	∠←↓ 10	↓ 9	∠ 8	$\leftarrow 9$	$\leftarrow 10$	
t	6	↓ 5	∠⇔↓6	∠←↓ 7	∠⇔↓ 8	∠⇒, 9	∠ 8	$\leftarrow 9$	← 10	←↓ 11	
n	5	↓ 4	∠⇔, 5	∠←↓6	∠⊢↓7	∠⇒ ↓ 8	∠⇔, 9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	$\leftarrow \downarrow 8$	∠⇔, 9	∠←↓ 10	↓ 9	
t	3	∠-↓4	∠⇔, 5	∠←↓6	∠←↓7	∠←↓ 8	∠ 7	$\leftarrow \downarrow 8$.∠←↓9	↓ 8	
n	2	∠-↓3	∠⊣,4	∠⇔, 5	∠←↓6	∠←↓ 7	∠←↓ 8	↓ 7	.∠←↓ 8	∠7	
i	1		∠←↓3	∠⊣↓ 4	∠⇔↓ 5	∠←↓6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

- Base conditions: Termination: D(i,0) = i D(0,j) = j D(N,M) is
 - D(N,M) is distance

• Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \\ 0; & \text{if } X(i) = Y(j) \end{cases}$
 $ptr(i,j) = \begin{cases} \text{LEFT} & \text{insertion} \\ \text{DOWN} & \text{deletion} \\ \text{DIAG} & \text{substitution} \end{cases}$

Performance of Minimum Edit Distance Algorithm

- Time: O(nm)
- Space: O(nm)
- Backtrace: O(n+m)