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Definition of Minimum Edit Distance

• Many NLP tasks are concerned with measuring how similar two strings are.

• Spell correction:

– The user typed “graffe”

– Which is closest? :  graf grail giraffe

• the word giraffe, which differs by only one letter from graffe, seems intuitively to be 

more similar than, say grail or graf,

• The minimum edit distance between two strings is defined as the minimum number 

of editing operations (insertion, deletion, substitution) needed to transform one 

string into another.
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• The minimum edit distance between intention and execution can be 

visualized using their alignment.

• Given two sequences, an alignment is a correspondence between substrings of the two 

sequences.

Minimum Edit Distance: Alignment
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• If each operation has cost of 1

– Distance between them is 5

• If substitutions cost 2 (Levenshtein Distance)

– Distance between them is 8

Minimum Edit Distance
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• Evaluating Machine Translation and speech recognition

R Spokesman confirms    senior government adviser was shot

H Spokesman said    the senior            adviser was shot dead

S      I              D                        I

• Named Entity Extraction and Entity Coreference

– IBM Inc. announced today

– IBM profits

– Stanford President John Hennessy announced yesterday

– for Stanford University President John Hennessy

Other uses of Edit Distance in NLP
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• How do we find the minimum edit distance? 

– We can think of this as a search task, in which we are searching for the shortest path—a 

sequence of edits—from one string to another.

• The space of all possible edits is enormous, so we can’t search naively. 

– Most of distinct edit paths ends up in the same state, so rather than recomputing all those 

paths, we could just remember the shortest path to a state each time we saw it. 

– We can do this by using dynamic programming. 

– Dynamic programming is the name for a class of algorithms that apply a table-driven 

method to solve problems by combining solutions to sub-problems.

The Minimum Edit Distance Algorithm
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• For two strings

– the source string X of length n 

– the target string Y of length m

• We define D(i,j) as the edit distance between X[1..i] and Y[1..j] 

• i.e., the first i characters of X and the first j characters of Y

• The edit distance between X and Y is thus D(n,m)

Minimum Edit Distance between Two Strings
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• We will compute D(n,m) bottom up, combining solutions to subproblems. 

• Compute base cases first:

– D(i,0) = i

• a source substring of length i and an empty target string requires i deletes. 

– D(0,j) = j

• a target substring of length j and an empty source string requires j inserts. 

• Having computed D(i,j) for small i, j we then compute larger D(i,j) based on 

previously computed smaller values. 

• The value of D(i, j) is computed by taking the minimum of the three possible paths 

through the matrix which arrive there:

Dynamic Programming for

Computing Minimum Edit Distance

Natural Language Processing 8



• If we assume the version of Levenshtein distance in which the insertions and 

deletions each have a cost of 1, and substitutions have a cost of 2 (except substitution 

of identical letters have zero cost), the computation for D(i,j) becomes:

Dynamic Programming for

Computing Minimum Edit Distance
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Minimum Edit Distance Algorithm
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Computation of Minimum Edit Distance between 

intention and execution
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Computation of Minimum Edit Distance between 

intention and execution
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Computation of Minimum Edit Distance between 

intention and execution
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• Edit distance isn’t sufficient

– We often need to align each character of the two strings to each other

• We do this by keeping a “backtrace”

• Every time we enter a cell, remember where we came from

• When we reach the end, 

– Trace back the path from the upper right corner to read off the alignment

Computing Alignments
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MinEdit with Backtrace
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MinEdit with Backtrace
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• Base conditions:                                                        Termination:

D(i,0) = i D(0,j) = j         D(N,M) is distance 

• Recurrence Relation:

For each  i = 1…M

For each  j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

LEFT

ptr(i,j)= DOWN

DIAG

Adding Backtrace to 

Minimum Edit Distance
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• Time:  O(nm)

• Space:  O(nm)

• Backtrace: O(n+m)

Performance of 

Minimum Edit Distance Algorithm
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