Minimum Edit Distance

Definition of Minimum Edit Distance

- Many NLP tasks are concerned with measuring how similar two strings are.
- Spell correction:
- The user typed "graffe"
- Which is closest?: graf grail giraffe
- the word giraffe, which differs by only one letter from graffe, seems intuitively to be more similar than, say grail or graf,
- The minimum edit distance between two strings is defined as the minimum number of editing operations (insertion, deletion, substitution) needed to transform one string into another.

Minimum Edit Distance: Alignment

- The minimum edit distance between intention and execution can be visualized using their alignment.
- Given two sequences, an alignment is a correspondence between substrings of the two sequences.

```
INTE*NTION
||||||||||
* EXECUTION
d s s i s
```


Minimum Edit Distance

```
INTE*NTION
||||||||||
* EXECUTION
d s s i s
```

- If each operation has cost of 1
- Distance between them is 5
- If substitutions cost 2 (Levenshtein Distance)
- Distance between them is 8

Other uses of Edit Distance in NLP

- Evaluating Machine Translation and speech recognition

R Spokesman confirms	senior government adviser was shot		
H Spokesman said	the senior	adviser was shot dead	
	S	I	I

- Named Entity Extraction and Entity Coreference
- IBM Inc. announced today
- IBM profits
- Stanford President John Hennessy announced yesterday
- for Stanford University President John Hennessy

The Minimum Edit Distance Algorithm

- How do we find the minimum edit distance?
- We can think of this as a search task, in which we are searching for the shortest path-a sequence of edits-from one string to another.

- The space of all possible edits is enormous, so we can't search naively.
- Most of distinct edit paths ends up in the same state, so rather than recomputing all those paths, we could just remember the shortest path to a state each time we saw it.
- We can do this by using dynamic programming.
- Dynamic programming is the name for a class of algorithms that apply a table-driven method to solve problems by combining solutions to sub-problems.

Minimum Edit Distance between Two Strings

- For two strings
- the source string X of length \mathbf{n}
- the target string Y of length \mathbf{m}
- We define $\mathbf{D}(\mathbf{i}, \mathbf{j})$ as the edit distance between $\mathrm{X}[1 . . \mathrm{i}]$ and $\mathrm{Y}[1 . . \mathrm{j}]$
- i.e., the first \mathbf{i} characters of X and the first \mathbf{j} characters of Y
- The edit distance between \mathbf{X} and \mathbf{Y} is thus $\mathbf{D}(\mathbf{n}, \mathbf{m})$

Dynamic Programming for Computing Minimum Edit Distance

- We will compute $\mathrm{D}(\mathrm{n}, \mathrm{m})$ bottom up, combining solutions to subproblems.
- Compute base cases first:
$-\mathrm{D}(\mathrm{i}, 0)=\mathrm{i}$
- a source substring of length i and an empty target string requires i deletes.
$-\mathrm{D}(0, \mathrm{j})=\mathrm{j}$
- a target substring of length j and an empty source string requires j inserts.
- Having computed $\mathrm{D}(\mathrm{i}, \mathrm{j})$ for small i, j we then compute larger $\mathrm{D}(\mathrm{i}, \mathrm{j})$ based on previously computed smaller values.
- The value of $D(i, j)$ is computed by taking the minimum of the three possible paths through the matrix which arrive there:

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i-1, j]+\text { del-cost }(\text { source }[i]) \\
D[i, j-1]+\text { ins-cost }(\text { target }[j]) \\
D[i-1, j-1]+\operatorname{sub}-\operatorname{cost}(\text { source }[i], \text { target }[j])
\end{array}\right.
$$

Dynamic Programming for Computing Minimum Edit Distance

- If we assume the version of Levenshtein distance in which the insertions and deletions each have a cost of 1, and substitutions have a cost of 2 (except substitution of identical letters have zero cost), the computation for $\mathrm{D}(\mathrm{i}, \mathrm{j})$ becomes:

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i-1, j]+1 \\
D[i, j-1]+1 \\
D[i-1, j-1]+ \begin{cases}2 ; & \text { if } \text { source }[i] \neq \operatorname{target}[j] \\
0 ; & \text { if } \text { source }[i]=\operatorname{target}[j]\end{cases}
\end{array}\right.
$$

Minimum Edit Distance Algorithm

```
function MIN-EDIT-DISTANCE(source, target) returns min-distance
    \(n \leftarrow\) LENGTH(source)
\(m \leftarrow\) LENGTH (target)
Create a distance matrix distance \([n+1, m+1]\)
\# Initialization: the zeroth row and column is the distance from the empty string
    \(D[0,0]=0\)
    for each row \(i\) from 1 to \(n\) do
        \(D[i, 0] \leftarrow D[i-1,0]+\) del-cost \((\) source \([i])\)
    for each column \(j\) from 1 to \(m\) do
        \(D[0, j] \leftarrow D[0, j-1]+\) ins-cost \((\) target \([j])\)
\# Recurrence relation:
for each row \(i\) from 1 to \(n\) do
    for each column \(j\) from 1 to \(m\) do
        \(D[i, j] \leftarrow \operatorname{MiN}(D[i-1, j]+\) del-cost(source \([i])\),
            \(D[i-1, j-1]+\operatorname{sub}-\operatorname{cost}(\) source \([i]\), target \([j])\),
    \(D[i, j-1]+\operatorname{ins}-\operatorname{cost}(\operatorname{target}[j]))\)
\# Termination
return \(D[\mathrm{n}, \mathrm{m}]\)
```


Computation of Minimum Edit Distance between intention and execution

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

Computation of Minimum Edit Distance between intention and execution

N	9																
0	8																
I	7			$\left\{\begin{array}{l} D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+ \end{array}\right.$				dele	etion								
T	6	$-D(i, j)=\min$						inse	ertion								
N	5							$\left\{\begin{array}{l} 2 ; \text { if } \mathrm{S}_{1}(\mathrm{i}) \neq \mathrm{S}_{2}(\mathrm{j}) \\ 0 ; \text { if } \mathrm{S}_{1}(\mathrm{i})=\mathrm{S}_{2}(\mathrm{j}) \end{array}\right.$				sub	ution				
E	4																
T	3																
N	2																
I	1	V															
\#	0	1	2	3	4	4	5		6	7	8		9				
	\#	E	X	E	C	C	U		T	I	0		N				

Computation of Minimum Edit Distance between intention and execution

N	9	8	9	10	11	12	11	10	9	8
O	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

Computing Alignments

- Edit distance isn't sufficient
- We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
- Trace back the path from the upper right corner to read off the alignment

MinEdit with Backtrace

N	9											
0	8											
I	7		$D(i, j)=\min$		$\left\{\begin{array}{l} D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+ \end{array}\right.$		deletion insertion					
T	6											
N	5				$\left\{2 ;\right.$ if $\mathrm{S}_{1}(\mathrm{i}) \neq \mathrm{S}_{2}(\mathrm{j})$ substitution							
E	4				$\left[0 ; \text { if } \mathrm{S}_{1}(\mathrm{i})=\mathrm{S}_{2}(\mathrm{j})\right.$							
T	3											
N	2											
I	1											
\#	0	1	2	3	4	5	6	7	8	9		
	\#	E	X	E	C	U	T	I	0	N		

MinEdit with Backtrace

n	9	18	\llcorner ¢ 9	く-10	$\leftarrow \downarrow 11$	$\stackrel{+12}{ }$	$\downarrow 11$	$\downarrow 10$	19	8
0	8	$\downarrow 7$	- -18	$\checkmark \downarrow 9$	-৮10	-৮11	10	19	8	$\leftarrow 9$
i	7	16	$\stackrel{-1}{ }$	$\stackrel{\downarrow}{ }$		$\stackrel{-10}{ }$	$\downarrow 9$	8	$\leftarrow 9$	$\leftarrow 10$
t	6	15	<-16	$\llcorner\downarrow 7$	<-18	$\checkmark-19$	/8	$\leftarrow 9$	$\leftarrow 10$	$-\downarrow 11$
n	5	14	$\stackrel{1}{ }$	$\checkmark \checkmark 6$	$\checkmark-1$	- -1	/-19	$\stackrel{-10}{ }$	$\stackrel{-11}{ }$	$\checkmark 10$
e	4	$\checkmark 3$	$\leftarrow 4$	< 5	$\leftarrow 6$	$\leftarrow 7$	$\square 8$	$\stackrel{\leftarrow}{\sim}$	$\stackrel{-10}{ }$	$\downarrow 9$
t	3	$\stackrel{\downarrow}{\wedge}$	<-15	$\stackrel{\downarrow}{1} 6$	$\checkmark-\downarrow$	$\checkmark-18$	$\checkmark 7$	$\square 8$	$\stackrel{\downarrow}{\wedge}$	18
n	2	/ +3	$\stackrel{1}{\wedge}$	$\llcorner\downarrow 5$	\checkmark ¢ 6	$\checkmark \downarrow 7$	く-8	17	$1-18$	$\checkmark 7$
i	1	$\checkmark+1$	$\checkmark-13$	$\llcorner\downarrow$	$\checkmark-1$	$\checkmark-16$	$\langle\downarrow 7$	$\checkmark 6$	$\leftarrow 7$	$\leftarrow 8$
\#	0	1	2	3	4	5	6	7	8	9
	\#	e	x	e	c	u	t	i	0	n

Adding Backtrace to Minimum Edit Distance

- Base conditions:
D(i,0) = i
$D(0, j)=j$

Termination:
D (N,M) is distance

- Recurrence Relation:

$$
\begin{aligned}
& \text { For each i=1...M } \\
& \text { For each } j=1 \ldots \mathrm{~N} \\
& \qquad D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \text { deletion } \\
D(i, j-1)+1 \text { insertion } \\
D(i-1, j-1)+2 ;\left\{\begin{array}{l}
\text { if } X(i) \neq Y(j) \text { substitution } \\
\text { if } X(i)=Y(j)
\end{array}\right. \\
\operatorname{ptr}(i, j)=\left\{\begin{array}{l}
\text { LEFT insertion } \\
D O W N \text { deletion } \\
D I A G \text { substitution }
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

Performance of
 Minimum Edit Distance Algorithm

- Time: $\mathrm{O}(\mathrm{nm})$
- Space: O(nm)
- Backtrace: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

