
N-gram Language Models

Natural Language Processing 1

Statistical Language Processing

• In the solution of many problems in the natural language processing, statistical
language processing techniques can be also used.

– optical character recognition

– spelling correction

– speech recognition

– machine translation

– part of speech tagging

– parsing

• Statistical techniques can be used to disambiguate the input.

• They can be used to select the most probable solution.

• Statistical techniques depend on the probability theory.

• To able to use statistical techniques, we will need corpora to collect statistics.

• Corpora should be big enough to capture the required knowledge.

Natural Language Processing 2

• Probability Theory: predicting how likely it is that something will happen.

• Probabilities: numbers between 0 and 1.

• Probability Function:

– P(A) means that how likely the event A happens.

– P(A) is a number between 0 and 1

– P(A)=1 => a certain event

– P(A)=0 => an impossible event

• Example: a coin is tossed three times. What is the probability of 3 heads?

– 1/8

– uniform distribution

Basic Probability

Natural Language Processing 3

• There is a sample space and the subsets of this sample space describe the events.

•  is a sample space.

–  is the certain event

– the empty set is the impossible event.

P(A) is between 0 and 1

P() = 1

Probability Spaces

Natural Language Processing 4

• Unconditional Probability or Prior Probability

– P(A)

– the probability of the event A does not depend on other events.

• Conditional Probability -- Posterior Probability -- Likelihood

– P(A|B)

– this is read as the probability of A given that we know B.

• Example:

– P(put) is the probability of to see the word put in a text

– P(on|put) is the probability of to see the word on after seeing the word put.

Unconditional and Conditional Probability

Natural Language Processing 5

P(A|B) = P(AB) / P(B)

P(B|A) = P(AB) / P(A)

Unconditional and Conditional Probability

Natural Language Processing 6

• Bayes’ theorem is used to calculate P(A|B) from given P(B|A).

• We know that:

P(AB) = P(A|B) P(B)

P(AB) = P(B|A) P(A)

• So, we will have:

Bayes’ Theorem

Natural Language Processing 7

)(

)()|(
)|(

BP

APABP
BAP 

)(

)()|(
)|(

AP

BPBAP
ABP 

• Models that assign probabilities to sequences of words are called language models

(LMs).

• The simplest language model that assigns probabilities to sentences and sequences of

words is the n-gram.

• An n-gram is a sequence of N words:

– A 1-gram (unigram) is a single word sequence of words like “please” or “ turn”.

– A 2-gram (bigram) is a two-word sequence of words like “please turn”, “turn your”, or

”your homework”.

– A 3-gram (trigram) is a three-word sequence of words like “please turn your”, or “turn your

homework”.

• We can use n-gram models to estimate the probability of the last word of an n-gram

given the previous words, and also to assign probabilities to entire word sequences.

Language Model

Natural Language Processing 8

• Probabilistic language models can be used to assign a probability to a sentence in

many NLP tasks.

• Machine Translation:

– P(high winds tonight) > P(large winds tonight)

• Spell Correction:

– Thek office is about ten minutes from here

– P(The Office is) > P(Then office is)

• Speech Recognition:

– P(I saw a van) >> P(eyes awe of an)

• Summarization, question-answering, …

Probabilistic Language Models

Natural Language Processing 9

• Our goal is to compute the probability of a sentence or sequence of words W

(=w1,w2,…wn):

– P(W) = P(w1,w2,w3,w4,w5…wn)

• What is the probability of an upcoming word?:

– P(w5|w1,w2,w3,w4)

• A model that computes either of these:

– P(W) or P(wn|w1,w2…wn-1) is called a language model.

Probabilistic Language Models

Natural Language Processing 10

• How can we compute probabilities of entire word sequences like w1,w2,…wn?

– The probability of the word sequence w1,w2,…wn is P(w1,w2,…wn).

• We can use the chain rule of the probability to decompose this probability:

P(w1
n) = P(w1) P(w2|w1) P(w3|w1

2) … P(wn|w1
n-1)

=

Example:

P(the man from jupiter) =

P(the) P(man|the) P(from|the man) P(jupiter|the man from)

Chain Rule of Probability

Natural Language Processing 11

)|(1

1
1






k

k

n

k

wwP

• The chain rule shows the link between computing the joint probability of a sequence

and computing the conditional probability of a word given previous words.

• Definition of Conditional Probabilities:

P(B|A) = P(A,B) / P(A)  P(A,B) = P(A) P(B|A)

• Conditional Probabilities with More Variables:

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)

• Chain Rule:

P(w1… wn) = P(w1) P(w2|w1) P(w3|w1w2) … P(wn|w1…wn-1)

Chain Rule of Probability

and Conditional Probabilities

Natural Language Processing 12

• To compute the exact probability of a word given a long sequence of preceding words

is difficult (sometimes impossible).

• We are trying to compute P(wn|w1…wn-1) which is the probability of seeing wn after

seeing w1
n-1

.

• We may try to compute P(wn|w1…wn-1) exactly as follows:

P(wn|w1…wn-1) = count(w1…wn-1wn) / count(w1…wn-1)

• Too many possible sentences and we may never see enough data for estimating these

probability values.

• So, we need to compute P(wn|w1…wn-1) approximately.

Computing Conditional Probabilities

Natural Language Processing 13

• The intuition of the n-gram model (simplifying assumption):

– instead of computing the probability of a word given its entire history, we can

approximate the history by just the last few words.

P(wn|w1…wn-1) ≈ P(wn) unigram

P(wn|w1…wn-1) ≈ P(wn|wn-1) bigram

P(wn|w1…wn-1) ≈ P(wn|wn-1wn-2) trigram

P(wn|w1…wn-1) ≈ P(wn|wn-1wn-2wn-3) 4-gram

P(wn|w1…wn-1) ≈ P(wn|wn-1wn-2wn-3wn-4) 5-gram

• In general, N-Gram is

P(wn|w1…wn-1) ≈ 𝐏(wn|𝐰𝐧−𝐍+𝟏
𝐧−𝟏)

N-Grams

Natural Language Processing 14

Unigrams -- P(w1
n) 

Bigrams -- P(w1
n) 

Trigrams -- P(w1
n) 

4-grams -- P(w1
n) 

N-Grams
computing probabilities of word sequences

Natural Language Processing 15

)(
1

k

n

k

wP


)|(1
1



 kk

n

k

wwP

)|(21
1



 kkk

n

k

wwwP

)|(321
1



 kkkk

n

k

wwwwP

Unigram

P(<s> the man from jupiter came </s>) 

P(the) P(man) P(from) P(jupiter) P(came)

Bigram

P(<s> the man from jupiter came </s>) 

P(the|<s>) P(man|the) P(from|man) P(jupiter|from) P(came|jupiter) P(</s>|came)

Trigram

P(<s> the man from jupiter came </s>) 

P(the|<s> <s>) P(man|<s> the) P(from|the man) P(jupiter|man from)

P(came|from jupiter) P(</s>|jupiter came) P(</s>|came </s>)

N-Grams
computing probabilities of word sequences (Sentences)

Natural Language Processing 16

• In general, a n-gram model is an insufficient model of a language because languages

have long-distance dependencies.

– “The computer(s) which I had just put into the machine room is (are) crashing.”

– But we can still effectively use N-Gram models to represent languages.

• Which N-Gram should be used as a language model?

– Bigger N, the model will be more accurate.

• But we may not get good estimates for N-Gram probabilities.

• The N-Gram tables will be more sparse.

– Smaller N, the model will be less accurate.

• But we may get better estimates for N-Gram probabilities.

• The N-Gram table will be less sparse.

– In reality, we do not use higher than Trigram (not more than Bigram).

– How big are N-Gram tables with 10,000 words?

• Unigram -- 10,000

• Bigram – 10,000*10,000 = 100,000,000

• Trigram – 10,000*10,000*10,000 = 1,000,000,000,000

N-gram models

Natural Language Processing 17

• The assumption that the probability of a word depends only on the previous word(s) is

called Markov assumption.

• Markov models are the class of probabilistic models that assume that we can predict

the probability of some future unit without looking too far into the past.

• A bigram is called a first-order Markov model (because it looks one token into the

past);

• A trigram is called a second-order Markov model;

• In general a N-Gram is called a N-1 order Markov model.

N-Grams and Markov Models

Natural Language Processing 18

• Estimating n-gram probabilities is called maximum likelihood estimation (or MLE).

• We get the MLE estimate for the parameters of an n-gram model by getting counts

from a corpus, and normalizing the counts so that they lie between 0 and 1.

• Estimating bigram probabilities:

P(wn|wn-1) = = where C is the count of

that pattern in the corpus

• Estimating N-Gram probabilities

Estimating N-Gram Probabilities

Natural Language Processing 19

 



w n

nn

wwC

wwC

)(

)(

1

1

)(

)(

1

1





n

nn

wC

wwC

)(

)(
)|(

1

1

1

11

1 







 
n

Nn

n

n

Nnn

Nnn
wC

wwC
wwP

• A mini-corpus: We augment each sentence with a special symbol <s> at the beginning of the

sentence, to give us the bigram context of the first word, and special end-symbol </s>.

<s> I am Sam </s>

<s> Sam I am </s>

<s> I fly </s>

• Unique words: I, am, Sam, fly

• Bigrams: <s> and </s> are also tokens. There are 6(4+2) tokens and 6*6=36 bigrams

Estimating N-Gram Probabilities
A Bigram Example

Natural Language Processing 20

P(I|<s>)=2/3 P(Sam|<s>)=1/3 P(am|<s>)=0 P(fly|<s>)=0 P(<s>|<s>)=0 P(</s>|<s>)=0

P(I|I)=0 P(Sam|I)=0 P(am|I)=2/3 P(fly|I)=1/3 P(<s>|I)=0 P(</s>|I)=0

P(I|am)=0 P(Sam|am)=1/2 P(am|am)=0 P(fly|am)=0 P(<s>|am)=0 P(</s>|am)=1/2

P(I|Sam)=1/2 P(Sam|Sam)=0 P(am|Sam)=0 P(fly|Sam)=0 P(<s>|Sam)=0 P(</s>|Sam)=1/2

P(I|fly)=0 P(Sam|fly)=0 P(am|fly)=0 P(fly|fly)=0 P(<s>|fly)=0 P(</s>|fly)=1

P(I|</s>)=0 P(Sam|</s>)=1/3 P(am|</s>)=1/3 P(fly|</s>)=1/3 P(<s>|</s>)=0 P(</s>|</s>)=0

• Unigrams: I, am, Sam, fly

P(I)=3/8 P(am)=2/8 P(Sam)=2/8 P(fly)=1/8

• Trigrams: There are 6*6*6=216 trigrams.

– Assume there are two tokens <s> <s> at the begining, and two tokens </s> </s> at the end.

P(I|<s> <s>)=2/3 P(Sam|<s> <s>)=1/3

P(am|<s> I)=1/2 P(fly|<s> I)=1/2

P(I|<s> Sam)=1

P(Sam|I am)=1/2 P(</s>|I am)=1/2

P(</s>|am Sam)=1

P(</s>|Sam </s>)=1

Estimating N-Gram Probabilities
Example

Natural Language Processing 21

• There are 9222 sentences in the corpus.

• Raw biagram counts of 8 words (out of 1446 words)

Estimating N-Gram Probabilities
Corpus: Berkeley Restaurant Project Sentences

Natural Language Processing 22

• Unigram counts:

• Normalize bigrams by unigram counts:

Estimating N-Gram Probabilities
Corpus: Berkeley Restaurant Project Sentences

Natural Language Processing 23

• Some other bigrams:

P(i|<s>)=0.25 P(english|want)=0.0011

P(food|english)=0.5 P(</s>|food)=0.68

• Compute the probability of sentence I want English food

P(<s> i want english food </s>)

= P(i|<s>) P(want|i) P(english|want) P(food|english) P(</s>|food)

= 0.25*0.33*0.0011*0.5*0.68

= 0.000031

Bigram Estimates of Sentence Probabilities

Natural Language Processing 24

• Since probabilities are less than or equal to 1, the more probabilities we multiply

together, the smaller the product becomes.

– Multiplying enough n-grams together would result in numerical underflow.

• By using log probabilities instead of raw probabilities, we get numbers that are not as

small.

– Adding in log space is equivalent to multiplying in linear space, so we combine log

probabilities by adding them.

• adding is faster than multiplying

– The result of doing all computation and storage in log space is that we only need to convert

back into probabilities if we need to report them at the end

Log Probabilities

Natural Language Processing 25

log(p1 ´ p2 ´ p3 ´ p4) = log p1 + log p2 + log p3 + log p4

• Does our language model prefer good sentences to bad ones?

– Assign higher probability to “real” or “frequently observed” sentences than

“ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.

– A test set is an unseen dataset that is different from our training set, totally unused.

• An evaluation metric tells us how well our model does on the test set.

Evaluating Language Models

Natural Language Processing 26

• Extrinsic Evaluation of a N-gram language model is to use it in an application and

measure how much the application improves.

• To compare two language models A and B:

– Use each of language model in a task such as spelling corrector, MT system.

– Get an accuracy for A and for B

• How many misspelled words corrected properly

• How many words translated correctly

– Compare accuracy for A and B

• The model produces the better accuracy is the better model.

• Extrinsic evaluation can be time-consuming.

Evaluating Language Models
Extrinsic Evaluation

Natural Language Processing 27

• An intrinsic evaluation metric is one that measures the quality of a model

independent of any application.

• When a corpus of text is given and to compare two different n-gram models,

– Divide the data into training and test sets,

– Train the parameters of both models on the training set, and

– Compare how well the two trained models fit the test set.

• Whichever model assigns a higher probability to the test set

• In practice, probability-based metric called perplexity is used instead of raw

probability as our metric for evaluating language models.

Evaluating Language Models
Intrinsic Evaluation

Natural Language Processing 28

• The best language model is one that best predicts an unseen test set

– Gives the highest P(testset)

• The perplexity of a language model on a test set is the inverse probability of the test

set, normalized by the number of words.

• Minimizing perplexity is the same as maximizing probability

• The perpelexity PP for a test set W=w1w2…wn is

PP(W) by chain rule

• The perpelexity PP for bigrams:

PP(W)

Evaluating Language Models
Perplexity

Natural Language Processing 29

• Perplexity can be seen as the weighted average branching factor of a language.

– The branching factor of a language is the number of possible next words that can follow any

word.

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model that assign P=1/10 to each

digit?

Evaluating Language Models
Perplexity as branching factor

Natural Language Processing 30

• Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

• An intrinsic improvement in perplexity does not guarantee an (extrinsic) improvement

in the performance of a language processing task like speech recognition or machine

translation.

– Nonetheless, because perplexity often correlates with such improvements, it is commonly

used as a quick check on an algorithm.

– But a model’s improvement in perplexity should always be confirmed by an end-to-end

evaluation of a real task before concluding the evaluation of the model.

Evaluating Language Models
Perplexity

Natural Language Processing 31

• The n-gram model, like many statistical models, is dependent on the training corpus.

– the probabilities often encode specific facts about a given training corpus.

• N-grams only work well for word prediction if the test corpus looks like the training

corpus

– In real life, it often doesn’t

– We need to train robust models that generalize!

– One kind of generalization: Getting rid of Zeros!

• Things that don’t ever occur in the training set, but occur in the test set

• Zeros: things that don’t ever occur in the training set but do occur in the test set causes

problem for two reasons.

– First, underestimating the probability of all sorts of words that might occur,

– Second, if probability of any word in test set is 0, entire probability of test set is 0.

Generalization and Zeros

Natural Language Processing 32

• We have to deal with words we haven’t seen before, which we call unknown words.

• We can model these potential unknown words in the test set by adding a pseudo-word

called <UNK> into our training set too.

• One way to handle unknown words is:

– Replace words in the training data by <UNK> based on their frequency.

• For example we can replace by <UNK> all words that occur fewer than n times in the

training set, where n is some small number, or

• Equivalently select a vocabulary size V in advance (say 50,000) and choose the top V

words by frequency and replace the rest by <UNK>.

– Proceed to train the language model as before, treating <UNK> like a regular word.

Unknown Words

Natural Language Processing 33

• To keep a language model from assigning zero probability to these unseen events,

we’ll have to shave off a bit of probability mass from some more frequent events and

give it to the events we’ve never seen.

• This modification is called smoothing (or discounting).

• There are many ways to do smoothing, and some of them are:

– Add-1 smoothing (Laplace Smoothing)

– Add-k smoothing,

– Backoff

– Kneser-Ney smoothing.

Smoothing

Natural Language Processing 34

• The simplest way to do smoothing is to add one to all the counts, before we

normalize them into probabilities.

– All the counts that used to be zero will now have a count of 1, the counts of 1 will be 2, and

so on.

• This algorithm is called Laplace smoothing (Add-1 Smoothing).

• We pretend that we saw each word one more time than we did, and we just add one to

all the counts!,

Laplace Smoothing

Natural Language Processing 35

Laplace Smoothing for Unigrams:

• The unsmoothed maximum likelihood estimate of the unigram probability of the word

wi is its count ci normalized by the total number of word tokens N:

P(wi) = ci / N

• Laplace smoothing adds one to each count. Since there are V words in the vocabulary

and each one was incremented, we also need to adjust the denominator to take into

account the extra V observations.

PLaplace(wi) = (ci + 1) / (N + V)

Laplace Smoothing

(Add-1 Smoothing)

Natural Language Processing 36

• It is convenient to describe how a smoothing algorithm affects the numerator, by

defining an adjusted count c*.

– This adjusted count is easier to compare directly with the MLE counts and can be turned

into a probability like an MLE count by normalizing by N.

• The adjusted count 𝒄𝒊
∗ of word wi is:

ci
∗ wi = (ci + 1)

N

N+V

Pi
∗ wi = ci

∗ wi / N = (ci + 1) / (N + V) = PLaplace(wi)

• A related way to view smoothing is as discounting (lowering) some non-zero counts

in order to get the probability mass that will be assigned to the zero counts.

– Thus, instead of referring to the discounted counts c*, we might describe smoothing in

terms of a relative discount dc, the ratio of the discounted counts to the original counts:

dc = c* / c

Discounting

Natural Language Processing 37

• The normal bigram probabilities are computed by normalizing each bigram counts

by the unigram count:

• Add-one smoothed bigram probabilities:

• Adjusted counts can be computed:

Laplace Smoothing for Bigrams

Natural Language Processing 38

Laplace-smoothed Bigrams
Corpus: Berkeley Restaurant Project Sentences

Natural Language Processing 39

Laplace-smoothed Bigrams
Corpus: Berkeley Restaurant Project Sentences: Adjusted counts

Natural Language Processing 40

• Add-one smoothing has made a very big change to the counts.

– C(want to) changed from 608 to 238!

– P(to|want) decreases from .66 in the unsmoothed case to .26 in the smoothed case.

– Looking at discount d shows us how counts for each prefix word have been reduced;

• discount for bigram want to is .39, while discount for Chinese food is .10, a factor of 10

• The sharp change in counts and probabilities occurs because too much probability

mass is moved to all the zeros.

• One alternative to add-one smoothing is to move a bit less of the probability mass

from the seen to the unseen events.

• Instead of adding 1 to each count, we add a fractional count k (.5? .05? .01?).

• This algorithm is called add-k smoothing.

Add-k Smoothing

Natural Language Processing 41

• Sometimes it helps to use less context

• In backoff, we use the trigram if the evidence is sufficient, otherwise we use the

bigram, otherwise the unigram.

• In other words, we only “back off” to a lower-order n-gram if we have zero evidence

for a higher-order n-gram.

• In interpolation, we always mix the probability estimates from all the n-gram

estimators, weighing and combining the trigram, bigram, and unigram counts.

Smoothing: Backoff and Interpolation

Natural Language Processing 42

• In simple linear interpolation, we combine different order n-grams by linearly

interpolating all the models.

• In a slightly more sophisticated version of linear interpolation, each 𝜆 weight is

computed by conditioning on the context.

• Interpolation with context-conditioned weights:

Smoothing: Backoff and Interpolation

Natural Language Processing 43

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:

– Fix the N-gram probabilities (on the training data)

– Then search for λs that give highest probability to held-out set:

– There are various ways to find this optimal set of λs.

Smoothing: Backoff and Interpolation
How to set the lambdas?

Natural Language Processing 44

Training Data
Held-Out

Data

Test

Data

• One of the most commonly used and best performing n-gram smoothing methods is

the interpolated Kneser-Ney algorithm.

• Kneser-Ney has its roots in a method called absolute discounting.

Kneser-Ney Smoothing

Natural Language Processing 45

For all bigrams in 22 million words

of count 0, 1, 2,...,9, the counts of

these bigrams in a held-out corpus

also of 22 million words.

• Except for the held-out counts for 0 and 1, all

the other bigram counts in the held-out set could

be estimated pretty well by just subtracting 0.75

from the count in the training set!

• Absolute discounting formalizes this intuition

by subtracting a fixed (absolute) discount d

from each count.

Interpolated absolute discounting applied to bigrams:

• We could just set all the d values to .75, or we could keep a separate discount value of

0.5 for the bigrams with counts of 1.

Kneser-Ney Smoothing
absolute discounting

Natural Language Processing 46

discounted bigram

Interpolation weight

unigram

• Kneser-Ney discounting augments absolute discounting with a more sophisticated

way to handle the lower-order unigram distribution.

• Instead of P(w) : “How likely is w”

• PCONTINUATION(w) : “How likely is w to appear as a novel continuation?

– For each word, count the number of bigram types it completes

– Every bigram type was a novel continuation the first time it was seen

– How many times does w appear as a novel continuation:

– To turn this count into a probability, we normalize by the total number of word

bigram types.

Kneser-Ney Smoothing
Kneser-Ney discounting

Natural Language Processing 47

• Alternative metaphor: The number of # of word types seen to precede w

• normalized by the # of words preceding all words:

• A frequent word (Francisco) occurring in only one context (San) will have a low

continuation probability.

Kneser-Ney Smoothing
Kneser-Ney discounting

Natural Language Processing 48

Interpolated Kneser-Ney smoothing for bigrams is:

λ is a normalizing constant; the probability mass we’ve discounted

Kneser-Ney Smoothing
Kneser-Ney discounting

Natural Language Processing 49

the normalized discount

The number of word types that can follow wi-1

= # of word types we discounted

= # of times we applied normalized discount

• By using text from the web, it is possible to build extremely large language models.

– Google created a very large set of n-gram counts from a corpus containing more

than 1 trillion words.

• Efficiency considerations are important when building language models that use such

large sets of n-grams.

– N-grams can also be shrunk by pruning, for example only storing n-grams with

counts greater than some threshold (Google used threshold of 40)

• Although we can build web-scale language models using Kneser-Ney smoothing, a

simpler smoothing algorithm may be sufficient with very large language models.

Huge Language Models

Natural Language Processing 50

• Smoothing algorithms provide a more sophisticated way to estimate the probability of

n-grams.

• Add-1 smoothing (or Add-k smoothing) is okay for some NLP tasks such as text

categorization, it is not so good for language modeling.

• Both backoff and interpolation are commonly used and they require discounting to

create a probability distribution.

• The most commonly used method is the Interpolated Kneser-Ney

– Kneser-Ney smoothing makes use of the probability of a word being a novel

continuation.

– The interpolated Kneser-Ney smoothing algorithm mixes a discounted probability

with a lower-order continuation probability.

N-gram Smoothing Summary

Natural Language Processing 51

