
Part-of-Speech Tagging

Natural Language Processing 1

Part-of-Speech

Machine Learning 2

• Each word belongs to a word class.

• The word class of a word is known as part-of-speech (POS) of that word.

• Most POS tags implicitly encode fine-grained specializations of eight basic parts of

speech:

– noun, verb, pronoun, preposition, adjective, adverb, conjunction, article

• These categories are based on morphological and distributional similarities (not

semantic similarities).

• Part of speech is also known as:

– word classes, morphological classes, lexical tags, syntactic categories

Part-of-Speech

Natural Language Processing 3

• A POS tag of a word describes the major and minor word classes of that word.

• A POS tag of a word gives a significant amount of information about that word and its

neighbours.

– For example, a possessive pronoun (my, your, her, its) most likely will be followed by a

noun, and a personal pronoun (I, you, he, she) most likely will be followed by a verb.

• Most of words have a single POS tag, but some of them have more than one.

• For example, book/noun or book/verb

– I bought a book.

– Please book that flight.

Part-of-Speech

Natural Language Processing 4

• Part-of-speech can be divided into two broad categories:

– closed class types -- such as prepositions

– open class types -- such as noun, verb

• Closed class words are generally also function words.

– Function words play important role in grammar

– Some function words are: of, it, and, you

– Functions words are most of time very short and frequently occur.

• There are four major open classes.

– noun, verb, adjective, adverb

– a new word may easily enter into an open class.

• Word classes may change depending on the natural language, but all natural languages

have at least two word classes: noun and verb.

English Word Classes

Natural Language Processing 5

• Nouns can be divided as:

– proper nouns -- names for specific entities such as Ankara, John, Ali

– common nouns

• Proper nouns do not take an article but common nouns may take.

• Common nouns can be divided as:

– count nouns -- they can be singular or plural -- chair/chairs

– mass nouns -- they are used when something is conceptualized as a homogenous

group -- snow, salt

• Mass nouns cannot take articles a and an, and they can not be plural.

Nouns

Natural Language Processing 6

• Verb class includes the words referring actions and processes.

• Verbs can be divided as:

– main verbs -- open class -- draw, bake

– auxiliary verbs -- closed class -- can, should

• Auxiliary verbs can be divided as:

– copula -- be, have

– modal verbs -- may, can, must, should

• Verbs have different morphological forms:

– non-3rd-person-sg eat

– 3rd-person-sg - eats

– progressive -- eating

– past -- ate

– past participle -- eaten

Verbs

Natural Language Processing 7

• Adjectives describe properties or qualities

– for color -- black, white

– for age -- young, old

• In Turkish, all adjectives can also be used as noun.

– kırmızı kitap red book

– kırmızıyı the red one (ACC)

Adjectives

Natural Language Processing 8

• Adverbs normally modify verbs.

• Adverb categories:

– locative adverbs -- home, here, downhill

– degree adverbs -- very, extremely

– manner adverbs -- slowly, delicately

– temporal adverbs -- yesterday, Friday

• Because of the heterogeneous nature of adverbs, some adverbs such as Friday may be

tagged as nouns.

Adverbs

Natural Language Processing 9

• Prepositions -- on, under, over, near, at, from, to, with

• Determiners -- a, an, the

• Pronouns -- I, you, he, she, who, others

• Conjunctions -- and, but, if, when

• Participles -- up, down, on, off, in, out

• Numerals -- one, two, first, second

Major Closed Classes

Natural Language Processing 10

• Occur before noun phrases

• indicate spatial or temporal relations

• Example:

– on the table

– under chair

• They occur so often. For example, some of the frequency counts in a 16 million word
corpora (COBUILD).

– of 540,085

– in 331,235

– for 142,421

– to 125,691

– with 124,965

– on 109,129

– at 100,169

Prepositions

Natural Language Processing 11

• A particle combines with a verb to form a larger unit called phrasal verb.

– go on

– turn on

– turn off

– shut down

Particles

Natural Language Processing 12

• A small closed class

• Only three words in the class: a an the

• Marks definite or indefinite

• They occur so often. For example, some of the frequency counts in a 16 million word

corpora (COBUILD).

– the 1,071,676

– a 413,887

– an 59,359

• Almost 10% of words are articles in this corpus.

Articles

Natural Language Processing 13

• Conjunctions are used to combine or join two phrases, clauses or sentences.

• Coordinating conjunctions -- and or but

– join two elements of equal status

– Example: you and me

• Subordinating conjunctions -- that who

– combines main clause with subordinate clause

– Example:

• I thought that you might like milk

Conjunctions

Natural Language Processing 14

• Shorthand for referring to some entity or event.

• Pronouns can be divided:

– personal you she I

– possessive my your his

– wh-pronouns who what -- who is the president?

Pronouns

Natural Language Processing 15

• There are various tag sets to choose.

• The choice of the tag set depends on the nature of the application.

– We may use small tag set (more general tags) or

– large tag set (finer tags).

• Some of widely used part-of-speech tag sets:

– Penn Treebank has 45 tags

– Brown Corpus has 87 tags

– C7 tag set has 146 tags

• In a tagged corpus, each word is associated with a tag from the used tag set.

Part-of-Speech Tagsets

Natural Language Processing 16

• An important tagset for English is the 45-tag Penn Treebank tagset.

• A sentence from Brown corpus which is tagged using Penn Treebank tagset.

– The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ

topics/NNS ./.

Penn Treebank Part-of-Speech Tagset

Natural Language Processing 17

Part-of-Speech Tagging

• Rule-Based POS Tagging

• Transformation-Based Tagging

• HMM Part-of-Speech Tagging

Machine Learning 18

• Part of speech tagging is simply assigning the correct part of speech tag for each

word in an input text.

• Tagging is a disambiguation task; words are ambiguous—have more than one

possible part-of-speech and the goal is to find the correct tag for the situation.

– For example, book can be a verb (book that flight) or a noun (hand me that book).

• There are different algorithms for tagging.

– Rule Based Tagging

– Transformation Based Tagging

– Statistical Tagging (HMM Part-of-Speech Tagging)

Part-of-Speech Tagging

Natural Language Processing 19

• Most words in English are unambiguous. They have only a single tag.

• But many of most common words are ambiguous:

– can/verb can/auxiliary can/noun

Tag ambiguity for word types in Brown and WSJ, Penn Treebank (45-tag) tagging.

How hard is tagging?

Natural Language Processing 20

• Most Frequent Tag Baseline: Always compare a classifier against a baseline at least

as good as the most frequent tag baseline (assigning each token to the tag it occurred in

most often in the training set).

• Most Frequent Tag Baseline achieves an accuracy of 92% for WSJ corpus.

• The state of the art in part-of-speech tagging achieves an accuracy more than 97% for

WSJ corpus.

• Some taggers can perform 99% percent.

How hard is tagging?

Natural Language Processing 21

• The rule-based approach uses handcrafted sets of rules to tag input sentence.

• There are two stages in rule-based taggers:

– First Stage: Uses a dictionary to assign each word a list of potential parts-of-

speech.

– Second Stage: Uses a large list of handcrafted rules to window down this list to a

single part-of-speech for each word.

• The ENGTWOL is a rule-based tagger

– In the first stage, uses a two-level lexicon transducer

– In the second stage, uses hand-crafted rules (about 1100 rules).

• Rule-1: if (the previous tag is an article)

then eliminate all verb tags

• Rule-2: if (the next tag is verb)

then eliminate all verb tags

Rule-Based Part-of-Speech Tagging

Natural Language Processing 22

• Example: He had a fly.

• The fırst stage:

– he he/pronoun

– had have/verbpast have/auxliarypast

– a a/article

– fly fly/verb fly/noun

• The second stage:

apply rule: if (the previous tag is an article)
then eliminate all verb tags

– he he/pronoun

– had have/verbpast have/auxliarypast

– a a/article

– fly fly/verb fly/noun

Rule-Based Part-of-Speech Tagging: Example

Natural Language Processing 23

• Transformation-based tagging is also known as Brill Tagging.

• Brill Tagging uses transformation rules and rules are learned from a tagged corpus.

• Then these learned rules are used in tagging.

• Before the rules are applied, the tagger labels every word with its most likely tag.

– We get these most likely tags from a tagged corpus.

Transformation-Based Tagging

Natural Language Processing 24

• Example:

– He is expected to race tomorrow

– he/PRN is/VBZ expected/VBN to/TO race/NN tomorrow/NN

• After selecting most-likely tags, we apply transformation rules.

– Change NN to VB when the previous tag is TO

– This rule converts race/NN into race/VB

• This may not work for every case

– ….. According to race

Transformation-Based Tagging: Example

Natural Language Processing 25

• We assume that we have a tagged corpus.

• Brill Tagger algorithm has three major steps.

– Tag the corpus with the most likely tag for each (unigram model)

– Choose a transformation that deterministically replaces an existing tag with a
new tag such that the resulting tagged training corpus has the lowest error
rate out of all transformations.

– Apply the transformation to the training corpus.

• These steps are repeated until a stopping criterion is reached.

• The result (which will be our tagger) will be:

– First tags using most-likely tags

– Then apply the learned transformations in the learning order.

Transformation-Based Tagging
How Transformation Rules are Learned?

Natural Language Processing 26

• A transformation rule is selected from a small set of templates.

Change tag a to tag b when

– The preceding (following) word is tagged z.

– The word two before (after) is tagged z.

– One of two preceding (following) words is tagged z.

– One of three preceding (following) words is tagged z.

– The preceding word is tagged z and the following word is tagged w.

– The preceding (following) word is tagged z and the word two before (after) is

tagged w.

Transformation-Based Tagging
Transformation Rules

Natural Language Processing 27

HMM Part-of-Speech Tagging

Machine Learning 28

• A Markov chain is a model that tells us something about the probabilities of

sequences of states (random variables).

– A Markov chain makes a very strong assumption that if we want to predict the future in the

sequence, all that matters is the current state (Markov assumption).

– All states before the current state have no impact on the future except via the current state.

• A Markov model embodies Markov assumption on the probabilities of the sequence

q1 … qi-1 qi :

Markov Assumption: P(qi | q1…qi-1) = P(qi | qi-1)

HMM Part-of-Speech Tagging
Markov Chains

Natural Language Processing 29

• A Markov chain is specified by the following components:

HMM Part-of-Speech Tagging
Markov Chains

Natural Language Processing 30

• A Markov chain for weather transitions:

• A start distribution is required.

– setting = [0.1, 0.7, 0.2] would mean a probability 0.7 of starting in state 2 (cold),

probability 0.1 of starting in state 1 (hot), etc.

• Probability of the sequence: cold hot hot warm

– P(cold hot hot warm) = 2 * P(hot|cold) * P(hot|hot) * P(warm|hot)

= 0.7 * 0.1 * 0.6 * 0.3

HMM Part-of-Speech Tagging
Markov Chains

Natural Language Processing 31

• Markov chain is useful to compute a probability for a sequence of observable events.

• In many cases, the events we are interested in are hidden events:

– We don’t observe hidden events directly.

– For example we don’t normally observe part-of-speech tags in a text. Rather, we see words,

and must infer the tags from the word sequence.

– We call the tags hidden because they are not observed.

• A Hidden Markov model (HMM) allows us to talk about both observed events (like

words that we see in the input) and hidden events (like part-of-speech tags) that we

think of as causal factors in our probabilistic model.

HMM Part-of-Speech Tagging
Hidden Markov Model

Natural Language Processing 32

• A HMM is specified by the following components:

HMM Part-of-Speech Tagging
Hidden Markov Model

Natural Language Processing 33

• A first-order hidden Markov model uses two simplifying assumptions:

1. As with a first-order Markov chain, the probability of a particular state depends only

on the previous state:

– Markov Assumption: P(qi | q1…qi-1) = P(qi | qi-1)

2. Probability of an output observation oi depends only on the state that produced the

observation qi and not on any other states or any other observations:

– Output Independence: P(oi | q1…qi…qn, o1…oi…on) = P(oi | qi)

HMM Part-of-Speech Tagging
First-Order Hidden Markov Model

Natural Language Processing 34

States: Set of part-of-speech tags.

Transition Probabilities: Tag transition probabilities.

– A tag transition probability P(tagb | taga) represents the probability of a tag tagb

occurring given the previous tag taga.

– P(tagb | taga) =
𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠𝐚 𝐭𝐚𝐠𝐛)

𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠𝐚)
Example: P(VB | MD) =

count(MD VB)

count(MD)

Observations: Words (Vocabulary)

Observation Likelihoods (Emission Probabilities):Emission Probabilities P(word|tag)

– A emission probability P(word | tag) represents probability of tag producing word.

– P(word | tag) =
𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠, 𝐰𝐨𝐫𝐝)

𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠)
Example: P(will | MD) =

count(MD, will)

count(MD)

Initial Probability Distribution: First Tag Probabilities P(tag |<s>) in sentences.

– P(tag | <s>) =
𝐜𝐨𝐮𝐧𝐭(<𝐬> 𝐭𝐚𝐠)

𝐜𝐨𝐮𝐧𝐭(<𝐬>)

First-Order HMM for Part-of-Speech Tagging

Natural Language Processing 35

• The A transition probabilities, and B observation likelihoods (emission

probabilities) of the HMM are illustrated for three states in an HMM part-of-speech

tagger; the full tagger would have one state for each tag.

First-Order HMM for POS Tagging: Example

Natural Language Processing 36

• For an HMM that contains hidden variables, task of determining hidden variables

sequence corresponding to sequence of observations is called decoding.

Decoding:

Given as input an HMM = (TransProbs, ObsLikelihoods) and a sequence of

observations O = o1,…,on, find the most probable sequence of states Q = q1,…,qn .

• For part-of-speech tagging, we will find the most probable sequence of tags

t1,…,tn (hidden variables) for a given sequence of words w1,…,wn (observations).

HMM Tagging as Decoding

Natural Language Processing 37

• For part-of-speech tagging, we will find most probable tag sequence T=t1,…,tn for a

given sequence of n words W=w1,…,wn .

• The most probable tag sequence 𝐓 (among possible tag sequences 𝛕) is:

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏(𝐓|𝐖)

• By Bayes rule:

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏 𝐖 𝐓 𝐏(𝐓)

𝐏(𝐖)

• Since P(W) is same for all tag sequences.

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏 𝐖 𝐓 𝐏(𝐓)

HMM Tagging as Decoding

Natural Language Processing 38

• HMM taggers make two simplifying assumptions.

• The first is that the probability of a word appearing depends only on its own tag

and is independent of neighboring words and tags:

𝐏 𝐖 𝐓 = 𝐏 𝐰𝟏…𝐰𝐧 𝐭𝟏…𝒕𝒏 ≈ ෑ

𝐢=𝟏

𝐧

𝐏(𝐰𝐢|𝐭𝐢)

• The second assumption, the bigram assumption (first-order HMM), is that the

probability of a tag is dependent only on the previous tag, rather than the entire

tag sequence:

𝐏(𝐓) = 𝐏(𝐭𝟏…𝐭𝐧) ≈ ෑ

𝐢=𝟏

𝐧

𝐏(𝐭𝐢|𝐭𝐢−𝟏)

HMM Tagging as Decoding

Natural Language Processing 39

• Plugging the simplifying assumptions results in the following equation for the most

probable tag sequence from a bigram tagger (first-order HMM):

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏(𝐓|𝐖) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

ෑ

𝐢=𝟏

𝐧

𝐏(𝐰𝐢|𝐭𝐢) 𝐏(𝐭𝐢|𝐭𝐢−𝟏)

HMM Tagging as Decoding

Natural Language Processing 40

emission

probability

transition

probability

• The decoding algorithm for HMMs is the Viterbi algorithm.

• Viterbi algorithm finds the optimal sequence of tags.

– Given an observation sequence and an HMM = (A, B) the algorithm returns the state path

through the HMM that assigns maximum likelihood to the observation sequence.

Viterbi Algorithm

Natural Language Processing 41

Viterbi Algorithm for POS Tagging

Natural Language Processing 42

word sequence o1,…,oT
number of tags

most probable

tag sequence

Viterbi Algorithm for POS Tagging

Natural Language Processing 43

most probable path probabilities of first word o1 where

s is first tag probability of tag s and

bs(o1) is emission probability P(word o1 | tag s)

Viterbi Algorithm for POS Tagging

Natural Language Processing 44

most probable path probabilities of first t words where

viterbi[st,t-1] is most probable path probability of t-1

words such that the tag of word t-1 is st

ast,s is transition probability P(tag s | tag st) and

bs(ot) is emission probability P(word ot | tag s)

Viterbi Algorithm for POS Tagging

Natural Language Processing 45

most probable path probability of T words

• Observation likelihoods B computed from the WSJ corpus without smoothing

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 46

• The A transition probabilities P(ti|ti-1) computed from the WSJ corpus without

smoothing.

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 47

Sketch of Viterbi matrix for Janet will back the bill,

– possible tags for each word and highlighting the path corresponding to the correct tag

sequence through the hidden states. States (parts-of-speech) which have a zero probability

of generating a particular word according to the B matrix (such as the probability that a

determiner DT will be realized as Janet) are greyed out..

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 48

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 49

Viterbi[NNP,Janet] =

P(NNP|<s>)*P(Janet|NNP) = 0.2767*0.000032 = 0.00000885 = 8.85x10-6

• All other values in the first column will be zero because

observation likelihoods for all other tags (such as

P(Janet|MD), P(Janet|VB), …) are zero.

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 50

Viterbi[NN,will] = Viterbi[NNP,Janet]*P(NN|NNP)*P(will|NN)

= 8.85x10-6*0.0584*0.0002 = 1.03368x10-9

Viterbi[VB,will] = Viterbi[NNP,Janet]*P(VB|NNP)*P(will|VB)

= 8.85x10-6*0.0009*0.000028 = 0.22302x10-12

Viterbi[MD,will] = Viterbi[NNP,Janet]*P(MD|NNP)*P(will|MD)

= 8.85x10-6*0.011*0.308431 = 0.203x10-6

8.85x10-6

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 51

Viterbi[RB,back]=max({Viterbi[NN,will]*P(RB|NN)*P(back|RB),

Viterbi[VB,will]*P(RB|VB)*P(back|RB),

Viterbi[MD,will]*P(RB|MD)*P(back|RB)})

Viterbi[NN,back]=max({Viterbi[NN,will]*P(NN|NN)*P(back|NN),

Viterbi[VB,will]*P(NN|VB)*P(back|NN),

Viterbi[MD,will]*P(NN|MD)*P(back|NN)})

Viterbi[JJ,back]=max({Viterbi[NN,will]*P(JJ|NN)*P(back|JJ),

Viterbi[VB,will]*P(JJ|VB)*P(back|JJ),

Viterbi[MD,will]*P(JJ|MD)*P(back|JJ)})

Viterbi[VB,back]=max({Viterbi[NN,will]*P(VB|NN)*P(back|VB),

Viterbi[VB,will]*P(VB|VB)*P(back|VB),

Viterbi[MD,will]*P(VB|MD)*P(back|VB)})

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 52

Viterbi[DT,the]=

max({Viterbi[RB,back]*P(DT|RB)*P(the|DT),

Viterbi[NN,back]*P(DT|NN)*P(the|DT),

Viterbi[JJ,back]*P(DT|JJ)*P(the|DT),

Viterbi[VB,back]*P(DT|VB)*P(the|DT)})

Viterbi[NNP,the]=

max({Viterbi[RB,back]*P(NNP|RB)*P(the|NNP),

Viterbi[NN,back]*P(NNP|NN)*P(the|NNP),

Viterbi[JJ,back]*P(NNP|JJ)*P(the|NNP),

Viterbi[VB,back]*P(NNP|VB)*P(the|NNP)})

Viterbi Algorithm for POS Tagging

Example: Janet will back the bill

Natural Language Processing 53

Viterbi[NN,bill]=

max({Viterbi[DT,the]*P(NN|DT)*P(bill|NN),

Viterbi[NNP,the]*P(NN|NNP)*P(bill|NN)})

Viterbi[VB,bill]=

max({Viterbi[DT,the]*P(VB|DT)*P(bill|VB),

Viterbi[NNP,the]*P(VB|NNP)*P(bill|VB)})

• Practical HMM taggers may use higher-order (such as tri-gram) models instead of

the first-order HMM (bi-gram) model.

𝐏(𝐓) = 𝐏(𝐭𝟏…𝐭𝐧) ≈ ෑ

𝐢=𝟏

𝐧

𝐏(𝐭𝐢|𝐭𝐢−𝟏, 𝐭𝐢−𝟐)

• When the number of states grows very large for trigram taggers, Viterbi algorithm can

be slow.

– The complexity of Viterbi algorithm O(N2T).

– One solution is the usage of Beam Search where only few best states are propagated

forward instead of all non-zero states at each time step.

• To achieve high accuracy with part-of-speech taggers, it is also important to have a

good model for dealing with unknown words.

HMM Part-of-Speech Tagging
In Practice

Natural Language Processing 54

• Highly inflectional languages have much more information than English coded in

word morphology, like case (nominative, accusative, …) or gender.

– Because this information is important for part-of-speech taggers for morphologically rich

languages, they need to label words with case and gender information.

• Tagsets for morphologically rich languages are therefore sequences of morphological

tags rather than a single primitive tag.

• For Turkish, some tags can be:

– Noun+A3sg+Pnon+Gen

– Noun+A3sg+P2sg+Nom

– Noun+A3sg+Pnon+Nom

Part-of-Speech Tagging for Other Languages

Natural Language Processing 55

• Languages generally have a small set of closed class words that are highly frequent,

ambiguous, and open-class words like nouns, verbs, adjectives.

– Various part-of-speech tagsets exist for English, of between 40 and 200 tags.

– For Turkish, the size of a tagset can be more than 1000.

• Part-of-speech tagging is the process of assigning a part-of-speech label to each of a

sequence of words.

• The probabilities in HMM taggers are estimated by maximum likelihood estimation

on tag-labeled training corpora.

– Viterbi algorithm is used for decoding, finding the most likely tag sequence.

– Beam search is a variant of Viterbi decoding that maintains only a fraction of high scoring

states rather than all states during decoding.

• Maximum Entropy Markov Model (MEMM) taggers are another types of taggers

that train logistic regression models to pick the best tag given a word, its context and

its previous tags using feature templates.

Part-of-Speech Tagging: Summary

Natural Language Processing 56

