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• Each word belongs to a word class. 

• The word class of a word is  known as part-of-speech (POS) of that word.

• Most POS tags implicitly encode fine-grained specializations of eight basic parts of 

speech:

– noun, verb, pronoun, preposition, adjective, adverb, conjunction, article

• These categories are based on morphological and distributional similarities (not 

semantic similarities).

• Part of speech is also known as:

– word classes, morphological classes, lexical tags, syntactic categories

Part-of-Speech
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• A POS tag of a word describes the major and minor word classes of  that word.

• A POS tag of a word gives a significant amount of information about that word and its 

neighbours. 

– For example, a possessive pronoun (my, your, her, its)  most likely will be followed by a 

noun, and a personal pronoun (I, you, he, she) most likely will  be followed by a verb.

• Most of words have a single POS tag, but some of them have more than one.

• For example,   book/noun  or  book/verb

– I bought a  book.

– Please book that flight.

Part-of-Speech
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• Part-of-speech can be divided into two broad categories:

– closed class types -- such as prepositions

– open class types -- such as noun, verb

• Closed class words are generally also function words. 

– Function words play important role in grammar

– Some function words are: of, it, and, you

– Functions words are most of time very short and frequently occur.

• There are four major open classes.

– noun, verb, adjective, adverb

– a new word may easily enter into an open class.

• Word classes may change depending on the natural language, but all natural languages 

have at least two word classes: noun and verb.

English Word Classes
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• Nouns can be divided as:

– proper nouns -- names for specific entities such as Ankara, John, Ali

– common nouns

• Proper nouns do not take an article but common nouns may take.

• Common nouns can be divided as:

– count nouns -- they can be singular or plural   -- chair/chairs

– mass nouns -- they are used when something is conceptualized  as a homogenous 

group  -- snow, salt

• Mass nouns cannot take articles a and an, and they can not be plural.

Nouns
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• Verb class includes the words referring actions and processes.

• Verbs can be divided as:

– main verbs  -- open class   -- draw, bake

– auxiliary verbs  -- closed class  -- can, should

• Auxiliary verbs can be divided as:

– copula  -- be, have

– modal verbs  -- may, can, must, should

• Verbs have different morphological forms:

– non-3rd-person-sg  eat

– 3rd-person-sg  - eats

– progressive  -- eating

– past  -- ate

– past participle  -- eaten

Verbs
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• Adjectives describe properties or qualities

– for color  -- black, white

– for age  -- young, old

• In Turkish, all adjectives can also be used as noun.

– kırmızı kitap red book

– kırmızıyı the red one (ACC)

Adjectives

Natural Language Processing 8



• Adverbs normally modify verbs.

• Adverb categories:

– locative adverbs  -- home, here, downhill

– degree adverbs  -- very, extremely

– manner adverbs  -- slowly, delicately

– temporal adverbs  -- yesterday, Friday

• Because of the heterogeneous nature of adverbs, some adverbs  such as Friday may be 

tagged as nouns.

Adverbs
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• Prepositions  -- on, under, over, near, at, from, to, with

• Determiners  -- a, an, the

• Pronouns  -- I, you, he, she, who, others

• Conjunctions  -- and, but, if, when

• Participles  -- up, down, on, off, in, out

• Numerals  -- one, two, first, second

Major Closed Classes
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• Occur before noun phrases

• indicate spatial or temporal relations

• Example:

– on the table

– under chair

• They occur so often. For example, some of the frequency counts in a 16 million word 
corpora (COBUILD).

– of 540,085

– in 331,235

– for 142,421

– to 125,691

– with 124,965

– on 109,129

– at 100,169

Prepositions
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• A particle combines with a verb to form a larger unit called phrasal verb.

– go on

– turn on

– turn off

– shut down

Particles
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• A small closed class

• Only three words in the class:   a   an   the

• Marks definite or indefinite

• They occur so often. For example, some of the frequency counts in a 16 million word 

corpora (COBUILD).

– the 1,071,676

– a 413,887

– an 59,359

• Almost 10% of words are articles in this corpus.

Articles
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• Conjunctions are used to combine or join two phrases, clauses or sentences.

• Coordinating conjunctions -- and  or  but

– join two elements of equal status

– Example:    you and me

• Subordinating conjunctions -- that   who

– combines main clause with subordinate clause

– Example:   

• I thought that you might like milk

Conjunctions
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• Shorthand for referring to some entity or event.

• Pronouns can be divided:

– personal you  she  I

– possessive my  your   his

– wh-pronouns who  what  -- who is the president?

Pronouns
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• There are various tag sets to choose.

• The choice of the tag set depends on the nature of the application.

– We may use small tag set (more general tags) or 

– large tag set (finer tags).

• Some of widely used part-of-speech tag sets:

– Penn Treebank has 45 tags

– Brown Corpus has 87 tags

– C7 tag set has 146 tags

• In a tagged corpus, each word  is associated with a tag from the used tag set.

Part-of-Speech Tagsets
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• An important tagset for English is the 45-tag Penn Treebank tagset.

• A sentence from Brown corpus which is tagged using Penn Treebank tagset.

– The/DT  grand/JJ  jury/NN  commented/VBD  on/IN  a/DT  number/NN   of/IN  other/JJ  

topics/NNS  ./.

Penn Treebank Part-of-Speech Tagset

Natural Language Processing 17



Part-of-Speech Tagging

• Rule-Based POS Tagging

• Transformation-Based Tagging

• HMM Part-of-Speech Tagging
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• Part of speech tagging is simply assigning the correct part of speech tag  for each 

word in an input text.

• Tagging is a disambiguation task; words are ambiguous—have more than one 

possible part-of-speech and the goal is to find the correct tag for the situation.

– For example, book can be a verb (book that flight) or a noun (hand me that book).

• There are different algorithms for tagging.

– Rule Based Tagging

– Transformation Based Tagging

– Statistical Tagging (HMM Part-of-Speech Tagging)

Part-of-Speech Tagging
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• Most words in English are unambiguous. They have only a single tag.

• But many of most common words are ambiguous:

– can/verb can/auxiliary can/noun

Tag ambiguity for word types in Brown and WSJ, Penn Treebank (45-tag) tagging.

How hard is tagging?
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• Most Frequent Tag Baseline: Always compare a classifier against a baseline at least 

as good as the most frequent tag baseline (assigning each token to the tag it occurred in 

most often in the training set).

• Most Frequent Tag Baseline achieves an accuracy of 92% for WSJ corpus.

• The state of the art in part-of-speech tagging achieves an accuracy more than 97% for 

WSJ corpus.

• Some taggers can perform 99% percent.

How hard is tagging?
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• The rule-based  approach uses handcrafted sets of rules to tag input sentence.

• There are two stages in rule-based taggers:

– First Stage: Uses a dictionary to assign each word a list of potential parts-of-

speech.

– Second Stage:  Uses a large list of handcrafted rules to window down this list to a 

single part-of-speech for each word.

• The ENGTWOL is a rule-based tagger

– In the first stage, uses a two-level lexicon transducer

– In the second stage, uses hand-crafted rules (about 1100 rules).

• Rule-1:    if   (the previous tag is an article)

then eliminate all verb tags

• Rule-2:    if   (the next tag is verb)

then eliminate all verb tags 

Rule-Based Part-of-Speech Tagging
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• Example: He had a fly.

• The fırst stage:

– he he/pronoun

– had have/verbpast have/auxliarypast

– a a/article

– fly fly/verb fly/noun

• The second stage:

apply rule: if   (the previous tag is an article)
then eliminate all verb tags

– he he/pronoun

– had have/verbpast have/auxliarypast

– a a/article

– fly fly/verb   fly/noun

Rule-Based Part-of-Speech Tagging: Example
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• Transformation-based tagging is also known as Brill Tagging.

• Brill Tagging uses transformation rules and rules are learned from a tagged corpus.

• Then these learned rules are used in tagging.

• Before the rules are applied, the tagger labels every word with its most likely tag.

– We get these most likely tags from a tagged corpus.

Transformation-Based Tagging
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• Example:

– He is expected to race tomorrow

– he/PRN  is/VBZ  expected/VBN  to/TO race/NN tomorrow/NN

• After selecting most-likely tags, we apply transformation rules.

– Change NN to VB when the previous tag is TO

– This rule converts  race/NN   into   race/VB

• This may not work for every case

– ….. According to race   

Transformation-Based Tagging: Example
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• We assume that we have a tagged corpus.

• Brill Tagger algorithm has three major steps.

– Tag the corpus with the most likely tag for each (unigram model)

– Choose a transformation that deterministically replaces an existing tag with a 
new tag such that the resulting tagged training corpus has the lowest error 
rate out of all transformations.

– Apply the transformation to the training corpus.

• These steps are repeated until a stopping criterion is reached.

• The result (which will be our tagger) will be:

– First tags using most-likely tags

– Then apply the learned transformations in the learning order.

Transformation-Based Tagging
How Transformation Rules are Learned?
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• A transformation rule  is selected from a small set of templates.

Change tag a  to tag b  when

– The preceding (following) word is tagged z.

– The word two before (after) is tagged z.

– One of two preceding (following) words is tagged z.

– One of three preceding (following) words is tagged z.

– The preceding word is tagged z and the following word is tagged w.

– The preceding (following) word is tagged z and the word  two before (after) is  

tagged w.

Transformation-Based Tagging
Transformation Rules

Natural Language Processing 27



HMM Part-of-Speech Tagging
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• A Markov chain is a model that tells us something about the probabilities of 

sequences of states (random variables).

– A Markov chain makes a very strong assumption that if we want to predict the future in the 

sequence, all that matters is the current state (Markov assumption). 

– All states before the current state have no impact on the future except via the current state.

• A Markov model embodies Markov assumption on the probabilities of the sequence

q1 … qi-1 qi : 

Markov Assumption: P(qi | q1…qi-1) = P(qi | qi-1) 

HMM Part-of-Speech Tagging
Markov Chains
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• A Markov chain is specified by the following components:

HMM Part-of-Speech Tagging
Markov Chains
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• A Markov chain for weather transitions:

• A start distribution  is required.

– setting  = [0.1, 0.7, 0.2] would mean a probability 0.7 of starting in state 2 (cold), 

probability 0.1 of starting in state 1 (hot), etc.

• Probability of the sequence: cold hot hot warm

– P(cold hot hot warm) = 2 * P(hot|cold) * P(hot|hot) * P(warm|hot)

= 0.7 * 0.1 * 0.6 * 0.3

HMM Part-of-Speech Tagging
Markov Chains
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• Markov chain is useful to compute a probability for a sequence of observable events. 

• In many cases, the events we are interested in are hidden events: 

– We don’t observe hidden events directly.

– For example we don’t normally observe part-of-speech tags in a text. Rather, we see words, 

and must infer the tags from the word sequence. 

– We call the tags hidden because they are not observed.

• A Hidden Markov model (HMM) allows us to talk about both observed events (like 

words that we see in the input) and hidden events (like part-of-speech tags) that we 

think of as causal factors in our probabilistic model.

HMM Part-of-Speech Tagging
Hidden Markov Model
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• A HMM is specified by the following components:

HMM Part-of-Speech Tagging
Hidden Markov Model
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• A first-order hidden Markov model uses two simplifying assumptions:

1. As with a first-order Markov chain, the probability of a particular state depends only 

on the previous state:

– Markov Assumption:  P(qi | q1…qi-1) = P(qi | qi-1) 

2. Probability of an output observation oi depends only on the state that produced the 

observation qi and not on any other states or any other observations:

– Output Independence: P(oi | q1…qi…qn, o1…oi…on) = P(oi | qi ) 

HMM Part-of-Speech Tagging
First-Order Hidden Markov Model
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States: Set of part-of-speech tags.

Transition Probabilities: Tag transition probabilities.

– A tag transition probability P(tagb | taga) represents the probability of a tag tagb

occurring given the previous tag taga.

– P(tagb | taga) = 
𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠𝐚 𝐭𝐚𝐠𝐛)

𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠𝐚)
Example: P(VB | MD) = 

count(MD VB)

count(MD)

Observations: Words (Vocabulary)

Observation Likelihoods (Emission Probabilities):Emission Probabilities P(word|tag)

– A emission probability P(word | tag ) represents probability of tag producing word.

– P(word | tag) = 
𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠, 𝐰𝐨𝐫𝐝)

𝐜𝐨𝐮𝐧𝐭(𝐭𝐚𝐠)
Example: P(will | MD) = 

count(MD, will)

count(MD)

Initial Probability Distribution: First Tag Probabilities P(tag |<s>) in sentences. 

– P(tag | <s>) = 
𝐜𝐨𝐮𝐧𝐭(<𝐬> 𝐭𝐚𝐠)

𝐜𝐨𝐮𝐧𝐭(<𝐬>)

First-Order HMM for Part-of-Speech Tagging
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• The A transition probabilities, and B observation likelihoods (emission 

probabilities) of the HMM are illustrated for three states in an HMM part-of-speech 

tagger; the full tagger would have one state for each tag.

First-Order HMM for POS Tagging: Example
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• For an HMM that contains hidden variables, task of determining hidden variables 

sequence corresponding to sequence of observations is called decoding.

Decoding:  

Given as input an HMM  = (TransProbs, ObsLikelihoods) and a sequence of 

observations O = o1,…,on, find the most probable sequence of states Q = q1,…,qn .

• For part-of-speech tagging, we will find the most probable sequence of tags 

t1,…,tn (hidden variables) for a given sequence of  words w1,…,wn (observations). 

HMM Tagging as Decoding
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• For part-of-speech tagging, we will find most probable tag sequence  T=t1,…,tn for a 

given sequence of n words W=w1,…,wn .

• The most probable tag sequence 𝐓 (among possible tag sequences 𝛕) is:

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏(𝐓|𝐖)

• By Bayes rule:

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏 𝐖 𝐓 𝐏(𝐓)

𝐏(𝐖)

• Since P(W) is same for all tag sequences.

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏 𝐖 𝐓 𝐏(𝐓)

HMM Tagging as Decoding
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• HMM taggers make two simplifying assumptions. 

• The first is that the probability of a word appearing depends only on its own tag 

and is independent of neighboring words and tags:

𝐏 𝐖 𝐓 = 𝐏 𝐰𝟏…𝐰𝐧 𝐭𝟏…𝒕𝒏 ≈ ෑ

𝐢=𝟏

𝐧

𝐏(𝐰𝐢|𝐭𝐢)

• The second assumption, the bigram assumption (first-order HMM), is that the 

probability of a tag is dependent only on the previous tag, rather than the entire 

tag sequence:

𝐏(𝐓) = 𝐏(𝐭𝟏…𝐭𝐧) ≈ ෑ

𝐢=𝟏

𝐧

𝐏(𝐭𝐢|𝐭𝐢−𝟏)

HMM Tagging as Decoding
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• Plugging the simplifying assumptions results in the following equation for the most 

probable tag sequence from a bigram tagger (first-order HMM):

𝐓 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

𝐏(𝐓|𝐖) = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐓∈𝛕

ෑ

𝐢=𝟏

𝐧

𝐏(𝐰𝐢|𝐭𝐢) 𝐏(𝐭𝐢|𝐭𝐢−𝟏)

HMM Tagging as Decoding
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• The decoding algorithm for HMMs is the Viterbi algorithm.

• Viterbi algorithm finds the optimal sequence of tags. 

– Given an observation sequence and an HMM  = (A, B) the algorithm returns the state path 

through the HMM that assigns maximum likelihood to the observation sequence.

Viterbi Algorithm
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Viterbi Algorithm for POS Tagging
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word sequence o1,…,oT
number of tags

most probable

tag sequence



Viterbi Algorithm for POS Tagging
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most probable path probabilities of first word o1 where

s is first tag probability of tag s and

bs(o1) is emission probability P(word o1 | tag s)



Viterbi Algorithm for POS Tagging
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most probable path probabilities of first t words where 

viterbi[st,t-1] is most probable path probability of t-1

words such that the tag of word t-1 is st

ast,s is transition probability P(tag s | tag st)  and

bs(ot) is emission probability P(word ot | tag s)



Viterbi Algorithm for POS Tagging
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most probable path probability of T words



• Observation likelihoods B computed from the WSJ corpus without smoothing

Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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• The A transition probabilities P(ti|ti-1) computed from the WSJ corpus without

smoothing.

Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill

Natural Language Processing 47



Sketch of Viterbi matrix for Janet will back the bill, 

– possible tags for each word and highlighting the path corresponding to the correct tag 

sequence through the hidden states. States (parts-of-speech) which have a zero probability 

of generating a particular word according to the B matrix (such as the probability that a 

determiner DT will be realized as Janet) are greyed out..

Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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Viterbi[NNP,Janet] =

P(NNP|<s>)*P(Janet|NNP) = 0.2767*0.000032 = 0.00000885 = 8.85x10-6

• All other values in the first column will be zero because

observation likelihoods for all other tags (such as 

P(Janet|MD), P(Janet|VB),  …) are zero.



Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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Viterbi[NN,will] = Viterbi[NNP,Janet]*P(NN|NNP)*P(will|NN) 

= 8.85x10-6*0.0584*0.0002 = 1.03368x10-9

Viterbi[VB,will] = Viterbi[NNP,Janet]*P(VB|NNP)*P(will|VB) 

= 8.85x10-6*0.0009*0.000028 = 0.22302x10-12

Viterbi[MD,will] = Viterbi[NNP,Janet]*P(MD|NNP)*P(will|MD) 

= 8.85x10-6*0.011*0.308431 = 0.203x10-6

8.85x10-6



Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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Viterbi[RB,back]=max({Viterbi[NN,will]*P(RB|NN)*P(back|RB), 

Viterbi[VB,will]*P(RB|VB)*P(back|RB),

Viterbi[MD,will]*P(RB|MD)*P(back|RB)})

Viterbi[NN,back]=max({Viterbi[NN,will]*P(NN|NN)*P(back|NN), 

Viterbi[VB,will]*P(NN|VB)*P(back|NN),

Viterbi[MD,will]*P(NN|MD)*P(back|NN)})

Viterbi[JJ,back]=max({Viterbi[NN,will]*P(JJ|NN)*P(back|JJ), 

Viterbi[VB,will]*P(JJ|VB)*P(back|JJ),

Viterbi[MD,will]*P(JJ|MD)*P(back|JJ)})

Viterbi[VB,back]=max({Viterbi[NN,will]*P(VB|NN)*P(back|VB), 

Viterbi[VB,will]*P(VB|VB)*P(back|VB),

Viterbi[MD,will]*P(VB|MD)*P(back|VB)})



Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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Viterbi[DT,the]= 

max({Viterbi[RB,back]*P(DT|RB)*P(the|DT), 

Viterbi[NN,back]*P(DT|NN)*P(the|DT),

Viterbi[JJ,back]*P(DT|JJ)*P(the|DT),

Viterbi[VB,back]*P(DT|VB)*P(the|DT)})

Viterbi[NNP,the]= 

max({Viterbi[RB,back]*P(NNP|RB)*P(the|NNP), 

Viterbi[NN,back]*P(NNP|NN)*P(the|NNP),

Viterbi[JJ,back]*P(NNP|JJ)*P(the|NNP),

Viterbi[VB,back]*P(NNP|VB)*P(the|NNP)})



Viterbi Algorithm for POS Tagging

Example:  Janet will back the bill
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Viterbi[NN,bill]= 

max({Viterbi[DT,the]*P(NN|DT)*P(bill|NN), 

Viterbi[NNP,the]*P(NN|NNP)*P(bill|NN)})

Viterbi[VB,bill]= 

max({Viterbi[DT,the]*P(VB|DT)*P(bill|VB), 

Viterbi[NNP,the]*P(VB|NNP)*P(bill|VB)})



• Practical HMM taggers may use higher-order (such as tri-gram) models instead of 

the first-order HMM (bi-gram) model. 

𝐏(𝐓) = 𝐏(𝐭𝟏…𝐭𝐧) ≈ ෑ

𝐢=𝟏

𝐧

𝐏(𝐭𝐢|𝐭𝐢−𝟏, 𝐭𝐢−𝟐)

• When the number of states grows very large for trigram taggers, Viterbi algorithm can 

be slow.

– The complexity of Viterbi algorithm O(N2T).

– One solution is the usage of Beam Search where only few best states are propagated 

forward instead of all non-zero states at each time step.

• To achieve high accuracy with part-of-speech taggers, it is also important to have a 

good model for dealing with unknown words.

HMM Part-of-Speech Tagging
In Practice
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• Highly inflectional languages have much more information than English coded in 

word morphology, like case (nominative, accusative, …) or gender. 

– Because this information is important for part-of-speech taggers for morphologically rich 

languages, they need to label words with case and gender information. 

• Tagsets for morphologically rich languages are therefore sequences of morphological 

tags rather than a single primitive tag.

• For Turkish, some tags can be:

– Noun+A3sg+Pnon+Gen

– Noun+A3sg+P2sg+Nom

– Noun+A3sg+Pnon+Nom

Part-of-Speech Tagging for Other Languages
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• Languages generally have a small set of closed class words that are highly frequent, 

ambiguous, and open-class words like nouns, verbs, adjectives. 

– Various part-of-speech tagsets exist for English, of between 40 and 200 tags.

– For Turkish, the size of a tagset can be more than 1000.

• Part-of-speech tagging is the process of assigning a part-of-speech label to each of a 

sequence of words.

• The probabilities in HMM taggers are estimated by maximum likelihood estimation 

on tag-labeled training corpora. 

– Viterbi algorithm is used for decoding, finding the most likely tag sequence.

– Beam search is a variant of Viterbi decoding that maintains only a fraction of high scoring 

states rather than all states during decoding.

• Maximum Entropy Markov Model (MEMM) taggers are another types of taggers 

that train logistic regression models to pick the best tag given a word, its context and 

its previous tags using feature templates.

Part-of-Speech Tagging: Summary 
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