
Vector Semantics and Embeddings

• Lexical Semantics

• Vector Semantics

• Embeddings: Word2vec

Natural Language Processing 1

Lexical Semantics

Natural Language Processing 2

Lexical Semantics

• How should we represent the meaning of a word?

– A model of word meaning should allow us to draw useful inferences that will help us solve

meaning-related tasks like question-answering, summarization or plagiarism detection.

• What do words mean?

– Words are just strings (or indices wi in a vocabulary list)➔That's not very satisfactory!

– In logic, the meaning of words can be represented by just spelling the word with small

capital letters; representing the meaning of “dog” as DOG, and “cat” as CAT.

• The meaning of "dog" is DOG; cat is CAT; ∀x DOG(x) ⟶ MAMMAL(x)

– Modern NLP algorithms use embeddings as the representation of word meaning

• The linguistic study of word meaning is called Lexical Semantics.

Natural Language Processing 3

• What’s a word?

– Types, tokens, stems, roots, inflected forms?

• A word mouse might be defined in a dictionary as follows:

• The form mouse is the lemma.

– The form mouse would also be the lemma for the word mice;

• dictionaries don’t have separate definitions for inflected forms like mice.

– Similarly sing is the lemma for sing, sang, sung.

• In many languages the infinitive form is used as the lemma for the verb.

• The specific forms sung, carpets or sing are called word forms.

Words, Lemmas and Senses

Natural Language Processing 4

mouse (N)

1. any of numerous small rodents...

2. a hand-operated device that controls a cursor...

lemma

sense

• Each lemma can have multiple meanings;

– the lemma mouse can refer to rodent or cursor control device.

• We call each of these aspects of the meaning of mouse a word sense.

• The fact that lemmas can be homonymous (have multiple senses) can make

interpretation difficult.

– mouse ➔ rodent or cursor control device.

– Word sense disambiguation is the task of determining which sense of a word is being used

in a particular context.

• There can be many different relationships between word senses.

– synonymy, antonym, similarity, superordinate/subordinate, …

Words, Lemmas and Senses

Natural Language Processing 5

• When one word has a sense whose meaning is identical to a sense of another

word, or nearly identical, we say the two senses of those two words are synonyms.

– couch/sofa, big/large, car/automobile, vomit/throw up, …

• Note that there are probably no examples of perfect synonymy.

– Even if many aspects of meaning are identical

– Still may not preserve the acceptability based on notions of politeness, slang, register,

genre, etc.

• That’s my big sister a big plane

• That’s my large sister a large plane

• The Linguistic Principle of Contrast:

– Difference in form → difference in meaning

Relation: Synonym

Natural Language Processing 6

• Two word senses can be antonyms if they are opposites with respect to one feature

of meaning.

dark/light short/long fast/slow rise/fall

hot/cold up/down in/out

• Antonyms can define a binary opposition with respect to one feature of meaning or

are at opposite ends of some scale.

– long/short or big/little, which are at opposite ends of the length or size scale.

– Reversives are another group of antonyms which describe change or movement in opposite
directions, such as rise/fall or up/down.

• Antonyms thus differ completely with respect to one aspect of their meaning but they

are otherwise very similar, sharing almost all other aspects of meaning.

– Thus, automatically distinguishing synonyms from antonyms can be difficult because they

appear in similar contexts.

Relation: Antonym

Natural Language Processing 7

• While words don’t have many synonyms, most words do have lots of similar words.

– Cat is not a synonym of dog, but cats and dogs are certainly similar words.

• Similar words (words with similar meanings) share some element of meaning.

– Although similar words are not synonyms, but they share some element of meaning.

• Cat and dog are both animals (house pet).

• Which words are similar?

car suv bicycle eggplant

• The notion of word similarity is very useful in larger semantic tasks.

– Word similarity help to determine phrase or sentence similarity .

– Phrase or sentence similarity is useful in NLP tasks as question answering, paraphrasing,

and summarization.

Relation: Word Similarity

Natural Language Processing 8

• One way of getting values for word similarity is to ask humans to judge how similar

one word is to another.

– SimLex-999 dataset (Hill et al., 2015) gives values on a scale from 0 to 10 which range

from near-synonyms (vanish, disappear) to pairs that scarcely seem to have anything in

common (hole, agreement):

Relation: Word Similarity

Natural Language Processing 9

word1 word2 similarity

vanish disappear 9.8

behave obey 7.3

belief impression 5.95

muscle bone 3.65

modest flexible 0.98

hole agreement 0.3

• Word Relatedness: The meaning of two words can be related in ways other than

similarity.

• The word relatedness is also called as word association.

• Coffee is not similar to cup because they share practically no features.

• But coffee and cup are related since they are associated in a shared event (the event of

drinking coffee out of a cup).

• Scalpel and surgeon are not similar but are related eventively (a surgeon tends to

make use of a scalpel).

Relation: Word Relatedness

Natural Language Processing 10

• One common kind of relatedness between words is if they belong to the same

semantic field.

• A semantic field is a set of words which cover a particular semantic domain and

bear structured relations with each other.

Semantic Field Examples:

– Hospitals: surgeon, scalpel, nurse, anesthetic, hospital

– Restaurants: waiter, menu, plate, food, menu, chef,

– Houses: door, roof, kitchen, family, bed

• Semantic fields are also related to topic models.

• Semantic fields and topic models are a very useful tool for discovering topical

structure in documents.

Relation: Word Relatedness - Semantic Field

Natural Language Processing 11

• A semantic frame is a set of words that denote perspectives or participants in a

particular type of event.

– A commercial transaction is a kind of event in which one entity trades money to another

entity in return for some good, after which the good changes hands.

– The commercial transaction event can be encoded lexically by using verbs like buy or sell.

• Semantic frames have semantic roles (like buyer, seller, goods), and words in a

sentence can take on these roles.

• Sam bought the book from John could be paraphrased as John sold the book to Sam

by knowing

– a commercial transaction can be encoded by buy or sell .

– Semantic roles:

• Buyer: Sam Seller: John Goods: book

Relation: Word Relatedness - Semantic Frame

Natural Language Processing 12

• A word (or word sense) is a hyponym (subordinate) of another word (or word sense)

if the first is more specific, denoting a subclass of the other.

• A word (or word sense) is a hypernym (superordinate) of another word (or word

sense) if the first is more general, denoting a superclass of the other.

– car is a subordinate of vehicle vehicle is a superordinate of car

– mango is a subordinate of fruit fruit is a superordinate of mango

Relation: Taxonomic Relations

Natural Language Processing 13

• Hypernymy can also be defined in terms of entailment.

– A word sense A is a hyponym of a word sense B if everything that is A is also B, and hence

being an A entails being a B.

• Another name for the hypernym/hyponym structure is the IS-A hierarchy, in which

we say A IS-A B, or B subsumes A.

– IS-A: car IS-A vehicle

– Entailment: every car is a vehicle

• Hypernymy is useful for tasks like textual entailment or question answering.

– knowing that leukemia is a type of cancer would certainly be useful in answering questions

about leukemia.

Relation: Taxonomic Relations

Natural Language Processing 14

• Words have affective meanings (or connotations).

– connotation means the aspects of a word’s meaning that are related to a writer or reader’s

emotions, sentiment, opinions, or evaluations.

– positive connotations: happy

– negative connotations: sad

– positive evaluation: great, love

– negative evaluation: terrible, hate

• Positive or negative evaluation expressed through language is called sentiment.

Relation: Connotation

Natural Language Processing 15

Vector Semantics

Natural Language Processing 16

• How can we build a computational model that successfully deals with the different

aspects of word meaning (word senses, word similarity and relatedness, semantic

fields and frames, connotation)?

• There is NO perfect model that completely deals with each of the different aspects of

word meaning.

• One computational model is the usage of a lexicon such as WordNet:

– WordNet is a database of lexical relations for English (and other languages).

• The current best model to represent word meaning in NLP is vector semantics.

Vector Semantics

Natural Language Processing 17

• Ludwig Wittgenstein who was skeptical of the possibility of building a completely

formal theory of meaning definitions for each word suggested instead that “the

meaning of a word is its use in the language”.

– That is, instead of using some logical language to define each word, we should define

words by some representation of how the word was used by actual people.

• In distributionalist approach, a word is defined by its environment or its

distribution in language use.

– Words are defined by their usages.

• A word’s distribution is the set of contexts in which it occurs, the neighboring words

or grammatical environments.

• The idea is that two words that occur in very similar distributions (that occur together

with very similar words) are likely to have the same meaning.

Vector Semantics
Distributionalist Approach

Natural Language Processing 18

• We do not know the meaning of the word ongchoi, but we see its usage in the

following sentences (contexts).

– Ongchoi is delicious sauteed with garlic.

– Ongchoi is superb over rice.

• Some of context words of ongchoi (delicious, sauteed, garlic, rice) also occur in the

following contexts.

– ...spinach sauteed with garlic over rice...

– ...spinach leaves are delicious...

• The fact that the context words of ongchoi also occur around spinach can help us

discover the similarity between spinach and ongchoi.

– Ongchoi is “water spinach”

Vector Semantics
Distributionalist Approach: Example

Natural Language Processing 19

• Vector semantics combines two intuitions:

Distributionalist Intuition: Define a word by counting what other words occur in

its environment.

Vector Intuition: Define the meaning of a word w as a vector, a list of numbers, a

point in N dimensional space.

• There are various versions of vector semantics, each defining the numbers in the

vector somewhat differently, but in each case the numbers are based in some way on

counts of neighboring words.

• The idea of vector semantics is to represent a word as a point in some

multidimensional semantic space.

Vector Semantics

Natural Language Processing 20

• Vectors for representing words are generally called embeddings, because the word

is embedded in a particular vector space.

Vector Semantics: embeddings

Natural Language Processing 21

A two-dimensional projection of embeddings (learned for a

sentiment analysis task) for some words and phrases, showing

that words with similar meanings are nearby in space.

positive and negative words

seem to be located in

distinct portions of the space

• We define meaning of a word as a vector, and those vectors are called as embeddings.

• Every modern NLP algorithm uses embeddings as the representation of word

meaning

• Embeddings are a fine-grained model of meaning for similarity.

– In embeddings, similar words appear "nearby in space".

– In Sentiment analysis:

• With words, requires same word to be in training and test.

• With embeddings, ok if similar words occurred!!!

• Vector semantic models are also extremely practical because they can be learned

automatically from text without any complex labeling or supervision.

Vector Semantics: embeddings

Natural Language Processing 22

• We will look at two vector semantic models :

tf-idf model:

– often used a baseline, very long vectors that are sparse,

– the meaning of a word is defined by a simple function of the counts of nearby

words.

word2vec model:

– Dense vectors

– Representation is created by training a classifier to distinguish nearby and far-

away words.

Vector Semantics: embeddings

Natural Language Processing 23

Vector Semantics: Words and Vectors

Natural Language Processing 24

• Vector models of meaning are generally based on a co-occurrence matrix, a way of

representing how often words co-occur.

• In a term-document matrix, each row represents a word in the vocabulary and each

column represents a document from some collection of documents.

• Each document is represented by a vector of words.

– The vector for a document is a point in |V|-dimensional space.

Term-Document Matrix

Natural Language Processing 25

• The term-document matrix for four words in four Shakespeare plays.

• The red boxes show that each document is represented as a column vector of length four.

• A spatial visualization of the document vectors for the four Shakespeare play documents,

showing just two of the dimensions, corresponding to the words battle and fool.

• The comedies have high values for the fool dimension and low values for the battle dimension.

Visualizing Document Vectors

Natural Language Processing 26

• Term-document matrices are used to find similar documents for the task of

information retrieval.

– Two documents that are similar tend to have similar words.

• The vectors of two comedy documents are similar and they are different than the

vectors of two history documents.

– Comedies have more fools and wit and fewer battles.

Term-Document Matrix

Natural Language Processing 27

• Words can be vectors too!

• The word vector is a row vector rather than a column vector.

– The four dimensions of the vector for fool, wit, battle, good.

– Each entry in the vector thus represents the counts of the word’s occurrence in the

document corresponding to that dimension.

– battle is "the kind of word that occurs in history documents (Julius Caesar and Henry V)"

– fool is "the kind of word that occurs in comedies, especially Twelfth Night"

Words as Vectors

Natural Language Processing 28

• Rather than the term-document matrix, we use the term-term matrix, more

commonly called the word-word matrix (or the term-context matrix) in which the

columns are labeled by words rather than documents.

– The matrix is |V|x|V| matrix and each cell records number of times the row (target)

word and column (context) word co-occur in some context in some training corpus.

• The context could be the document, in which case the cell represents the number of

times the two words appear in the same document.

• It is most common to use smaller contexts: generally a window around the word, for

example of 4 words to left and 4 words to right, in which case the cell represents

number of times column word occurs in such a ±4 word window around row word.

• Each row in word-word matrix is co-occurrence vector (context vector) of that row

(target) word.

• Two words are similar in meaning if their context vectors are similar.

Word-Word Matrix

Natural Language Processing 29

• Co-occurrence vectors for four words, computed from the Wikipedia corpus, showing

only six of the dimensions.

– A real vector would have vastly more dimensions and thus be much sparser.

– cherry and strawberry are more similar to each other (both pie and sugar tend to occur in

their window).

– digital and information are more similar to each other.

Word-Word Matrix

Natural Language Processing 30

Word-Word Matrix

Natural Language Processing 31

• A spatial visualization of word vectors for

digital and information, showing just two

of the dimensions, corresponding to the

words data and result.

• In real life these vectors aren't just of length

2. The length of the vector, is generally the

size of the vocabulary (more than 50,000).

• Since most of these numbers are zero these

are sparse vector representations.

• To define similarity between two target words v and w, we need a measure for taking

two such vectors and giving a measure of vector similarity.

• The most common similarity metric is the cosine of the angle between the vectors.

• The cosine is based on dot product operator, also called inner product:

• The dot product acts as a similarity metric because:

– It will tend to be high just when the two vectors have large values in the same dimensions.

– Alternatively, vectors that have zeros in different dimensions—orthogonal vectors—will

have a dot product of 0, representing their strong dissimilarity.

Cosine for Measuring Similarity

Natural Language Processing 32

• The raw dot-product has a problem as a similarity metric: it favors long vectors.

• The vector length is defined as:

– The dot product is higher if a vector is longer, with higher values in each dimension.

– More frequent words have longer vectors, since they tend to co-occur with more words

and have higher co-occurrence values with each of them.

– The raw dot product will be higher for frequent words.

– But this is a problem; we’d like a similarity metric that tells us how similar two words

are regardless of their frequency.

Cosine for Measuring Similarity

Natural Language Processing 33

• The normalized dot product is same as cosine of the angle between two vectors.

• Cosine similarity metric between two vectors 𝒗 and 𝒘 can be computed as:

• The cosine value ranges from 1 for vectors pointing in the same direction, through 0

for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.

• But raw frequency values are non-negative, so cosine for these vectors ranges from 0

to 1.

Cosine for Measuring Similarity

Natural Language Processing 34

• Cosine computes which of the words cherry or digital is closer in meaning to

information.

• The model decides that information is closer to digital than it is to cherrey.

– cos(0) = 1 cos(90) = 0

Cosine for Measuring Similarity

Natural Language Processing 35

• A graphical demonstration of cosine similarity, showing vectors for three words

(cherry, digital, and information) in the two dimensional space defined by counts of

the words pie and computer in the neighborhood.

– The angle between digital and information is smaller than the angle between

cherry and information.

– When two vectors are more similar, the cosine is larger but the angle is smaller

Cosine for Measuring Similarity

Natural Language Processing 36

• Although frequency is important, but simple frequency isn’t the best measure of

association between words.

• Word that occur nearby frequently (maybe sugar appears often in our corpus near

cherry) are more important than words that only appear once or twice.

• On the other hand, words that are too frequent such as the or a are unimportant.

• How can we balance these two conflicting constraints?

– We need a function that resolves this frequency paradox!

➔ one solution is TF-IDF (term frequency _ inverse document frequency)

– TF-IDF value (the ‘-’ here is a hyphen, not a minus sign) is the product of two

terms, each term capturing one of these two intuitions.

TF-IDF: Weighing Terms in Vector

Natural Language Processing 37

tf: term frequency: the frequency of the word in the document.

– frequency is down-weighted by using its log value.

• a word appearing 100 times in a document doesn’t make that word 100 times more

likely to be relevant to the meaning of the document.

• term frequency: tft,d = count(t,d)

• term frequency (instead of using raw count, we can squash a bit)

– count=0➔tf=0; count=1➔tf=1; count=10➔ tf=2; count=100➔tf=3

• Term frequency can also be defined as:

tft,d = count(t,d) / #ofwords(d)

TF-IDF

Natural Language Processing 38

idf: inverse document frequency: give a higher weight to words that occur only in a

few documents.

– Terms that are limited to a few documents are useful for discriminating those documents;

terms that occur frequently across the entire collection aren’t as helpful.

– Document frequency dft of a term t is the number of documents it occurs in.

– Inverse document frequency idf can be using the fraction N/dft where N is the number of

documents in the collection.

• Because of the large number of documents in many collections, this measure is usually squashed

with a log function.

Inverse document frequency idft is defined as:

where N is the number of documents in the collection and

dft is the number of documents that contain the term t.

TF-IDF

Natural Language Processing 39

TF-IDF Value:

• tf-idf weighting of the value wt,d for term t in document d combines term

frequency with idf:

wt,d = tft,d * idft

TF-IDF

Natural Language Processing 40

• A collection contains 37 documents (Shakespeare’s play):

• idf values of some words

in this collection:

• A tf-idf weighted term-document matrix for four words in four Shakespeare plays.

TF-IDF – Example

Natural Language Processing 41

log10(37/1)=1.57

log10(37/2)=1.27

log10(37/36)=0.012

log10(37/37)=0

• A tf-idf vector model of a target word is a vector with dimensions corresponding to

all the words in the vocabulary.

– The values in each dimension are the frequency with which the target word co-occurs with

each neighboring context word, weighted by tf-idf.

– The model computes the similarity between two words x and y by taking the cosine of their

tf-idf vectors; high cosine, high similarity.

• To compare two documents:

– Take the centroid of vectors of all the words in the document

– Given k word vectors w1,…,wk, centroid document vector d is:

– Given two documents, we can then compute their centroid document vectors d1 and d2, and

estimate the similarity between the two documents by cos(d1,d2).

TF-IDF Vector Models

Natural Language Processing 42

• An alternative weighting function to tf-idf is called PPMI (positive pointwise mutual

information).

– PPMI draws on the intuition that best way to weigh the association between two words is to

ask how much more the two words co-occur in our corpus than we would have a priori

expected them to appear by chance.

• Pointwise mutual information is a measure of how often two events x and y occur,

compared with what we would expect if they were independent:

• The pointwise mutual information between a target word w and a context word c

is then defined as:

Pointwise Mutual Information (PMI)

Natural Language Processing 43

• PMI ranges from −∞ to +∞

• But the negative values are problematic

– Things are co-occurring less than we expect by chance

– Unreliable without enormous corpora

– So, we just replace negative PMI values by 0

– Positive PMI (PPMI) between a target word w and a context word c:

Positive Pointwise Mutual Information

Natural Language Processing 44

• We have a co-occurrence matrix with W rows (target words) and C columns

(contexts), where fij gives the number of times word wi occurs in context cj.

• We can compute a PPMI matrix where PPMIij gives the PPMI value of word wi with

context cj as follows:

Natural Language Processing 45

Computing PPMI on a Term-Context Matrix

• Compute PPMI(w=information, c=data),

Computing PPMI on a Term-Context Matrix –

Example

Natural Language Processing 46

joint probabilities

computed from the counts

• PPMI Matrix

– The PPMI matrix showing the association between words and context words

– Note that most of the 0 PPMI values are ones that had a negative PMI,

we replace negative values by zero.

Computing PPMI on a Term-Context Matrix –

Example

Natural Language Processing 47

• PMI has the problem of being biased toward infrequent events;

– very rare words tend to have very high PMI values.

• One way to reduce this bias is to slightly change computation for P(c), using a

different function P(c) that raises contexts to power of  :

• Raise the context probabilities to 𝛼 = 0.75:

• This helps because 𝑃𝛼 𝑐 > 𝑃 𝑐 for rare c

• Consider two events, P(a) = .99 and P(b) = .01

Pα a =
.99.75

.99.75+.01.75
= .97 Pα b =

.01.75

.01.75+.01.75
= .03

Weighting PMI
Giving rare context words slightly higher probability

Natural Language Processing 48

Vector Semantics

• Word2vec

Natural Language Processing 49

• TF-IDF and PPMI vectors are

– long vectors with dimensions corresponding to the words in the vocabulary, i.e.

their lengths are |V| which is the number of words in the language and |V| can be

around 50,000.

– sparse, i.e most of the elements in those vectors are zero.

• There are no negative values.

• In most of NLP tasks, dense vectors work better than sparse vectors.

• Dense vectors are short, and their lengths are between 50 and 1000.

– They are dense, i.e. their most-elements are non-zero.

– The values will be real-valued numbers that can be negative.

TF-IDF and PPMI Vectors

Natural Language Processing 50

Why dense vectors?

• Short vectors may be easier to use as features in machine learning (less weights to

tune).

• Dense vectors may generalize better than storing explicit counts.

• They may do better at capturing synonymy:

– car and automobile are synonyms; but they are in distinct dimensions

– a neighboring word with car and a neighboring word with automobile should be

similar, but they are not similar.

• In practice, dense vectors work better.

Sparse versus Dense Vectors

Natural Language Processing 51

• One of the most popular embedding method is Word2vec (Mikolov et al. 2013).

• Word2vec embeddings are static embeddings, meaning that the method learns one

fixed embedding for each word in the vocabulary.

• Later we will talk dynamic contextual embeddings methods like BERT, ELMo

representations, in which the vector for each word is different in different contexts.

• The Word2vec methods are very fast, efficient to train and easily available online

with code and pretrained embeddings.

– Main dense vector idea: predict rather than count .

• Popular dense static embeddings:

– Word2vec (Mikolov et al.) https://code.google.com/archive/p/word2vec/

– Fasttext http://www.fasttext.cc/

– Glove (Manning et al.) http://nlp.stanford.edu/projects/glove/

Word2vec

Natural Language Processing 52

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/

• The intuition of word2vec is:

– Instead of counting how often each word w occurs near "apricot"

– Train a classifier on a binary prediction task:

• Is w likely to show up near "apricot"?

• We don’t actually care about this task

– But we'll take the learned classifier weights as the word embeddings.

Brilliant insight: Use running text (plain text) as implicitly supervised training data!

• A word s near apricot acts as gold ‘correct answer’ to the question “Is word w likely

to show up near apricot?”

• No need for hand-labeled supervision.

Word2vec

Natural Language Processing 53

The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.

2. Randomly sample other words in the lexicon to get negative samples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the regression weights as the embeddings

Word2vec: Skip-Gram Algorithm
skip-gram with negative sampling (SGNS)

Natural Language Processing 54

• Assume that context words are those in +/- 2 word window.

• A training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 target c3 c4

Skip-Gram Training Data

Natural Language Processing 55

• Our goal is to train a classifier such that,

– Given a tuple (w,c) of a target word t paired with a context word c

• (apricot, jam)

• (apricot, aardvark)

– it will return the probability that c is a real context word (true for jam, false for

aardvark):

P(+ | w,c) Probability that word c is a real context word for w

P(− | w,c) = 1−P(+|w,c) Probability that word c is not a real context word for w

Skip-Gram Goal

Natural Language Processing 56

The intuition of the skipgram model is to base this probability on similarity:

• A word is likely to occur near the target if its embedding is similar to the target

embedding.

• Two vectors are similar if they have a high dot product.

– Similarity(w,c) ≈ w ∙ c

– The dot product w.c is not a probability,

it’s just a number ranging from −∞ to +∞.

How to Compute P(+|w,c)?

Natural Language Processing 57

• To turn dot product into a probability, we’ll use logistic or sigmoid function (x).

• The probability that word c is a real context word for target word t is:

How to Compute P(+|t,c)?
Turning dot product into a probability

Natural Language Processing 58

• We need to take account of the multiple context words in the window.

• Skip-gram makes the strong but very useful simplifying assumption that all context

words are independent, allowing us to just multiply their probabilities:

– Skip-gram trains a probabilistic classifier that, given a test target word t and its context

window of k words c1:L, assigns a probability based on how similar this context window is

to the target word.

– The probability is based on applying the logistic (sigmoid) function to the dot product of the

embedings of the target word with each context word.

How to Compute P(+|t,c)?
For all the context words:

Natural Language Processing 59

Learning skip-gram embeddings

Machine Learning 60

• Skip-gram actually stores two embeddings for each word, one for the word as a

target, and one for the word considered as context.

• Thus the parameters we need to learn are two matrices W and C, each containing an

embedding for every one of the |V| words in the vocabulary

skip-gram embeddings to be learned

Natural Language Processing 61

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 target w c3 c4

• Training data: pairs centering on apricot

• Assume a +/- 2 word window is used.

Learning skip-gram embeddings
Skip-Gram Training Data

Natural Language Processing 62

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 w c3 c4

Learning skip-gram embeddings
Skip-Gram Training

Natural Language Processing 63

positive examples +

w c

apricot tablespoon

apricot of

apricot jam

apricot a

• For each positive example, we'll create

k negative examples.

• Using noise words

• Noise word is any random word

that isn't target word w (apricot)

• Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 w c3 c4

Learning skip-gram embeddings
Skip-Gram Training

Natural Language Processing 64

• Create k (=2) negative examples.

• We’ll have 2 negative examples for each positive example w,cpos.

• The noise words are chosen according to their weighted unigram frequency.

positive examples +

w c

apricot tablespoon

apricot of

apricot jam

apricot a

negative examples -

w c w c

apricot aardvark apricot twelve

apricot puddle apricot hello

apricot where apricot dear

apricot coaxial apricot forever

• Could pick w as a noise word according to their unigram frequency P(w)

• More common to chosen then according to Pα(w)

• α= 0.75 works well because it gives rare noise words slightly higher probability

• To show this, imagine two events P(a)=.99 and P(b) = .01:

Learning skip-gram embeddings
Choosing noise words

Natural Language Processing 65

• Let's represent words as vectors of some length (say 300), randomly initialized.

• So, we start with 300*V random parameters

• Over the entire training set, we’d like to adjust those word vectors such that we

– Maximize the similarity of the target word w, context word c pairs (w,c)

drawn from the positive data

– Minimize the similarity of the pairs (w,c) drawn from the negative data.

• We’ll start with 0 or random weights

• Then adjust the word weights to make the positive pairs more likely and the

negative pairs less likely over the entire training set:

Learning skip-gram embeddings
Setup

Natural Language Processing 66

• We want to maximize

• Maximize the + label for the pairs from the positive training data, and the – label

for the pairs sample from the negative data.

Learning skip-gram embeddings
Objective Criteria

Natural Language Processing 67

• Focusing in on one word/context pair (w,c) with its k noise words neg1…negk,

the loss function is:

• That is, we want to maximize the dot product of the word with the actual context

word, and minimize the dot products of the word with the k negative sampled

non-neighbor words.

– all multiplied because we assume independence.

Learning skip-gram embedings
Loss function for one target word w with cpos , cneg1 ...cnegk

Natural Language Processing 68

• We can then use stochastic gradient descent to train to this objective,

– iteratively modifying the parameters (the embeddings for each target word t and

each context word or noise word c in the vocabulary) to maximize the objective.

• Skip-gram model actually learns two separate embeddings for each word w:

– target embedding w and

– context embedding c.

• These embeddings are stored in two matrices,

– target matrix W and

– context matrix C.

• We’ll adjust the word weights to make the positive pairs more likely and the negative

pairs less likely, over the entire training set.

Learning skip-gram embeddings
Train using gradient descent

Natural Language Processing 69

• The skip-gram model tries to shift embeddings so the target embeddings (here for

apricot) are closer to (have a higher dot product with) context embeddings for nearby

words (here jam) and further from (lower dot product with) context embeddings for

noise words that don’t occur nearby (here Tolstoy and matrix).

Learning skip-gram embeddings
Intuition of one step of gradient descent

Natural Language Processing 70

• To get the gradient, we need to take the derivative of the loss function with respect to

the different embeddings.

– We'll need a derivate for the C embeddings and for the W embeddings.

– And we'll want a different derivative for the weights for the positive context examples and

the negative context examples, since we want to move them in opposite directions.

• The derivatives are

Learning skip-gram embeddings
The derivatives of the loss function

Natural Language Processing 71

• Just as in logistic regression, then, the learning algorithm starts with randomly

initialized W and C matrices, and then walks through the training corpus using

gradient descent to move W and C so as to maximize the objective.

• Update equations going from time step t to t + 1 in stochastic gradient descent.

Learning skip-gram embeddings
Update equation in stochastic gradient descent

Natural Language Processing 72

Semantic properties of embeddings

Machine Learning 73

Similarity depends on window size C

• One parameter that is relevant to both sparse tf-idf vectors and dense word2vec vectors

is the size of the context window used to collect counts.

Short context windows ➔most similar words to a target word w tend to be semantically

similar words with same parts of speech.

Long context windows ➔ the highest cosine words to a target word w tend to be words that

are topically related but not similar.

Example:

window of +/-2 ➔ the most similar words to the word Hogwarts (from the Harry Potter

series) were names of other fictional schools: Sunnydale (from Buffy the Vampire

Slayer) or Evernight (from a vampire series).

window of +/-5 ➔ the most similar words to Hogwarts were other words topically related to

the Harry Potter series: Dumbledore, Malfoy, and half-blood.

Semantic properties of embeddings

Natural Language Processing 74

• Another semantic property of embeddings is their ability to capture relational

meanings.

vector(‘king’) - vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)

Analogy: Embeddings capture relational meaning!

Natural Language Processing 75

• Relational properties of the vector space, shown by projecting vectors onto two

dimensions

Analogy: Embeddings capture relational meaning!

Natural Language Processing 76

• offsets seem to capture comparative and superlative morphology

Analogy: Embeddings capture relational meaning!

Natural Language Processing 77

• Train embeddings on old books to study changes in word meaning!!

Embeddings and Historical Semantics

Natural Language Processing 78

• Compare to human scores on word similarity-type tasks:

• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)

• TOEFL dataset:

• Levied is closest in meaning to: imposed, believed, requested, correlated

Evaluating Vector Models

Natural Language Processing 79

• In vector semantics, a word is modeled as a vector — a point in high-dimensional space, also

called an embedding.

• Vector semantic models fall into two classes: sparse and dense.

Sparse Models:

• In sparse models like tf-idf each dimension corresponds to a word in the vocabulary.

• Cell in sparse models are functions of co-occurrence counts.

• The term document matrix has rows for each word (term) in the vocabulary and a column for

each document.

• The word-context matrix has a row for each (target) word in the vocabulary and a column for

each context term in the vocabulary.

• A common sparse weighting is tf-idf, which weights each cell by its term frequency and

inverse document frequency.

• Word and document similarity is computed by computing the dot product between vectors.

The cosine of two vectors—a normalized dot product—is the most popular such metric.

• PPMI (pointwise positive mutual information) is an alternative weighting scheme to tf-idf.

Vector Semantics: Summary

Natural Language Processing 80

Dense Models:

• Dense vector models have dimensionality 50-300 and the dimensions are harder to interpret.

• The word2vec family of models, including skip-gram, is a popular efficient way to compute

dense embeddings.

• Skip-gram trains a logistic regression classifier to compute the probability that two words are

‘likely to occur nearby in text’.

– This probability is computed from the dot product between the embeddings for the two words,

• Skip-gram uses stochastic gradient descent to train the classifier, by learning embeddings

that have a high dot-product with embeddings of words that occur nearby and a low dot-product

with noise words.

• Other important embedding algorithms include GloVe, and fasttext.

Vector Semantics: Summary

Natural Language Processing 81

